МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 12

УТВЕРЖДАЮ

Руководитель образовательной программы

доц.,к.т.н.

(должность, уч. степень, звание)

В.Е. Таратун

(инициалы, фамилия)

(подпись)

19 февраля 2025

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Эксплуатация беспилотных авиационных систем» (Наименование дисциплины)

Код направления подготовки/ специальности	23.03.01
Наименование направления подготовки/ специальности	Технология транспортных процессов
Наименование направленности	Организация перевозок и управление в единой транспортной системе
Форма обучения	очная
Год приема	2025

Лист согласования рабочей программы дисциплины

Программу составил (а)	1	
к.т.н., доц.	ADDATA	А.С. Костин
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Программа одобрена на заседан	ии кафедры № 12	
«19» февраля 2025 г, протокол J	<u> 6a/2024-2025</u>	
Заведующий кафедрой № 12 д.т.н.,проф.		В.А. Фетисов
(уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Заместитель директора институ доц.,к.т.н.	га №1 по методической ра	аботе В.Е. Таратун
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Эксплуатация беспилотных авиационных систем» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 23.03.01 «Технология транспортных процессов» направленности «Организация перевозок и управление в единой транспортной системе». Дисциплина реализуется кафедрой «№12».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-7 «Эксплуатация беспилотных авиационных систем»

Содержание дисциплины охватывает круг вопросов, связанных с управлением и эксплуатацией, техническим обслуживанием, настройкой беспилотной авиационной системы, применения технических средств и оборудования, используемых для управления полетом беспилотного летательного аппарата мультироторного типа, разработки решений в области программирования автономного полета.

В рамках данной дисциплины выпускник освоит ряд цифровых компетенций, при помощи которых выполняется разработка решений в области программирования и реализации автономного полета беспилотных авиационных систем на базе языка программирования Python и применения ROS (Robot Operating System). Для решения сложных задач в рамках идентификации объектов при помощи машинного зрения и автономной посадки на сложные объекты применяются сквозные технологии, связанные с элементами искусственного интеллекта и OpenCV (библиотека компьютерного зрения с открытым исходным кодом).

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические работы, самостоятельная работа студента, консультации.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы, 108 часов.

Язык обучения по дисциплине «русский»

- 1. Перечень планируемых результатов обучения по дисциплине
- 1.1. Цели преподавания дисциплины
- 1. Получение знаний в области эксплуатации беспилотных авиационных систем мультироторного типа, знаний конструкции и особенностей настройки;
- 2. Получение практического навыка работы в прикладные информационные системы и решения задач программирования дрона (квадрокоптера) на основе использования языка программирования Python Programming Language;
 - 3. Получение практических навыков для решения задач автономного пилотирования;
- 4. Знакомство с Техническим описанием компетенции «Эксплуатация беспилотных авиационных систем» WorldSkills Россия;
- 5. Знакомство с модулями и конкурсными заданиями компетенции «Эксплуатация беспилотных авиационных систем» WorldSkills Россия для университетских направлений подготовки и участия в межвузовских чемпионатах.
- 6. Получение знаний в решении практических задач на основе БАС для транспортной сферы
- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Профессиональные компетенции	ПК-7 Эксплуатация беспилотных авиационных систем	ПК-7.3.1 знать тенденции развития отрасли беспилотных авиационных систем применительно к транспорту, включающие новые материалы, методы, модели и технологии ПК-7.3.2 знать конструкцию беспилотной авиационной системы, как сложной технической системы, и принципы функционирования ПК-7.3.3 знать модели и методы построения полетных заданий внутри помещений ПК-7.3.4 знать технологию навигации беспилотной авиационной системы внутри помещения ПК-7.3.5 знать основные модули и техническое описание компетенции будущего "Эксплуатация беспилотных авиационных систем" профессии будущего ПК-7.У.1 уметь вносить аппаратные и программные настройки, необходимые для эффективной работы беспилотной авиационной системы ПК-7.У.2 уметь устанавливать, настраивать и вносить корректировки в механические, электрические и сенсорные системы БАС

ПК-7.У.3 уметь выполнять предполетные
настройки и калибровки
ПК-7.В.1 владеть навыками
программирования автономного полета в
ограниченном пространстве в помещении
ПК-7.В.2 владеть навыками выполнения
задач в автономном режиме в том числе
применительно к решению транспортных и
системных задач
ПК-7.В.3 владеть навыками построения
полета через контрольные точки
ПК-7.В.4 владеть навыками работы с
информационным обеспечением,
применительно к программированию
беспилотных авиационных систем

2. Место дисциплины в структуре ОП

Дисциплина базируется на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- Теория транспортных процессов и систем;
- Глобальные информационные технологии;
- Грузоведение

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- Интеллектуальные транспортные системы
- Производственная преддипломная (практика)
- Выпускная квалификационная работа

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

		Трудоемкость по	
Вид учебной работы	Всего	семестрам	
		№7	
1	2	3	
Общая трудоемкость дисциплины, 3E/ (час)	3/ 108	3/ 108	
Из них часов практической подготовки	34	34	
Аудиторные занятия, всего час.	51	51	
в том числе:			
лекции (Л), (час)	17	17	
практические/семинарские занятия (ПЗ), (час)	34	34	
лабораторные работы (ЛР), (час)			
курсовой проект (работа) (КП, КР), (час)			
экзамен, (час)	36	36	
Самостоятельная работа, всего (час)	21	21	

Вид промежуточной аттестации: зачет,		
дифф. зачет, экзамен (Зачет, Дифф. зач,	Экз.	Экз.
Экз.**)		

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции (час)	П3 (C3)	ЛР (час)	КП (час)	СРС (час)
Сем	естр 7				
Раздел 1.	4	8			5
Раздел 2.	4	8			5
Раздел 3.	4	8			5
Раздел 4.	5	10			6
Итого в семестре:	17	34			21
Итого	17	34	0	0	21

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий
1	Основные положения эксплуатации беспилотных авиационных систем. Современные тренды. Представление компетенций Ворлдскиллс Россия. Компетенции Ворлдскиллс в ГУАП. Описание и модули компетенции «Эксплуатация беспилотных авиационных систем». Примеры решения задач автономного управления беспилотными авиационными системами для решения транспортных задач. Знакомство с лабораторией беспилотных авиационных систем ИШ ГУАП. Изучение программного обеспечения Betaflight и Qgroundcontrol, подключение видеопередатчика и приемника радиоуправления, установка прошивки и применение базовых настроек. Основные понятия компьютерного зрения OpenCV. Основные алгоритмы. Распознавание объектов с беспилотной авиационной системы.
2	Базовая теория. Мультикоптеры. Этапы разработки мультикоптера (шаг за шагом), подбор комплектующих. Сборка квадрокоптера СОЕХ Clover. Датчики и фильтрация. Аппаратные компоненты беспилотной авиационной системы мультироторного типа и их взаимодействие. Наземное ПО. QGroundControl. Режимы полета. Raspberry Pi. Клевер. Датчики, фильтрация, регулирование. Физические и логические протоколы взаимодействия компонентов. Демонстрация взаимодействия полетного контроллера и RaspberryPi на квадрокоптере COEX Clover.

3	Основы пилотирования квадрокоптера в тренажерной системе, получение			
	навыков пилотирования от первого лица с отработкой элементов			
	пилотирования. Настройка и первый полет Клевера в ручном			
	режиме. Дистанционное управление квадрокоптером. Режимы полета.			
	Основные алгоритмы полетного контроллера (ПИД, фильтрация).			
4	Среда моделирования Gazebo. Знакомство с Python. Программирование			
	простейшего полета квадрокоптера. Основные понятия компьютерного			
	зрения. Работа с изображениями. Машинное зрение на Клевере.			
	Демонстрация OpticalFlow и различных видов навигации. Работа с			
	лазерным дальномером			

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

п/п	Темы практических занятий	Формы практических занятий	Трудоемкость, (час)	№ раздела дисциплины
		Семестр 7		
1	Этапы разработки мультикоптера (шаг за шагом), подбор комплектующих. Сборка квадрокоптера СОЕХ Clover. Датчики и фильтрация.	Практическое задание	8	1
	Основные элементы квадрокоптера, описание элементов, изучение и разборка квадрокоптера пайка основных элементов квадрокоптера. Проектирование элемента конструкции квадрокоптера.			
	Взаимодействие компонентов. Физические и логические протоколы взаимодействия компонентов. Демонстрация взаимодействия полетного контроллера и RaspberryPi на квадрокоптере COEX Clover.			
2	Основы пилотирования квадрокоптера в тренажерной системе, получение навыков	Практическое занятие	8	2

лица	вания от первого с отработкой в пилотирования.			
Пилотиро квадроког	вание реального итера в летном учение навыков			
лица в Отработка пилотиров	вания в			
Клевера	а и первый полет в ручном			
управлени квадроког полета.	тером. Режимы Основные			
алгоритме контролле фильтраці 7 Среда	ера (ПИД, мя).	Проктиноское за начина	8	3
Gazebo. Python. Программ простейше	Знакомство с прование	Практическое задание	8	3
квадроког	тера.		4.0	
Машинно Клевере. OpticalFlo видов нав	рного зрения. изображениями. е зрение на Демонстрация w и различных игации. Работа с	Практическое задание	10	4
Выполнен	дальномером.			
идентифи на реально	кации объектов			
The pearling	Ap	Всего:	34	

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

№ Наименование лабораторных работ	па о Упоораторные запитии и их трудоски		Из них	$N_{\underline{0}}$	
	Трудоемкость,	практической	раздела		
	Паименование лаоораторных раоот	(час)	подготовки,	дисцип	
			(час)	лины	
	Учебным планом не предусмотрено				

Всего		

- 4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено
- 4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 7,
Вид самостоятельной работы	час	час
1	2	3
Изучение теоретического материала дисциплины (TO)	10	10
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю успеваемости (ТКУ)	11	11
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной		
аттестации (ПА)		
Всего:	21	21

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8— Перечень печатных и электронных учебных изданий

Количество экземпляров в Шифр/ Библиографическая ссылка библиотеке URL адрес (кроме электронных экземпляров) 50 (лаборатория БАС ГУАП) Основы автономного управления 629.735 беспилотными авиационными системами для решения транспортных задач: учеб.-E 50 метод. пособие / Д.В. Еленин, А.С. Костин, Н.Н. Майоров. – СПб.: ГУАП, 2020. - 71 c. 629.7 50 (лаборатория БАС ГУАП) Эксплуатация беспилотных авиационных K 26 систем: учебное пособие / Ю.А. Антохина, Т.Ю. Карпова, А.С. Костин, Н.Н. Майоров. – СПб.: ГУАП, 2021. – 178 c.

Практические решения на основе	50 (лаборатория БАС ГУАП)
беспилотных авиационных систем для	
транспортных задач/ В. А. Фетисов, А. С.	
Костин, Н. Н. Майоров. – Учеб метод.	
пособие. – СПб.: ГУАП, 2022. – 63 с.	
Практические примеры	50 (лаборатория БАС ГУАП)
программирования беспилотных	
авиационных систем/ Е. А. Вознесенский,	
А. С. Костин, Н. Н. Майоров. – Учеб	
метод. пособие. – СПб.: ГУАП, 2023. – 82	
c.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 — Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование	
https://clover.coex.tech/ru/assemble_4.html	Сборка клевер 4	
https://clover.coex.tech/ru/calibration.html	Калибровка датчиков	
https://clover.coex.tech/ru/programming.html	Программирование системы	
	позиционирования	
https://clover.coex.tech/ru/auto_setup.html	Пошаговая инструкция по настройке	
	автономного полета Клевера 4	

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10– Перечень программного обеспечения

№ п/п	Наименование
1.	OC Microsoft Windows 10
2.	OC Raspbian
3.	Microsoft Office
4.	Adobe Acrobat
5.	QGroundControl
6.	Mission Planner
7.	Python 3
8.	Компас – 3D
9.	Autodesk Autocad
10.	Autodesk Fusion

11.	VSCode
12.	ESC Configurator
13.	Qgroundcontrol
14.	Комплектация ПО Клевер

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п		Наименование
	Не предусмотрено	

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ π/π	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лаборатория беспилотных авиационных систем ИШ ГУАП	31-03
2	Мультимедийная аудитория для проведения лекций	

10. Оценочные средства для проведения промежуточной аттестации

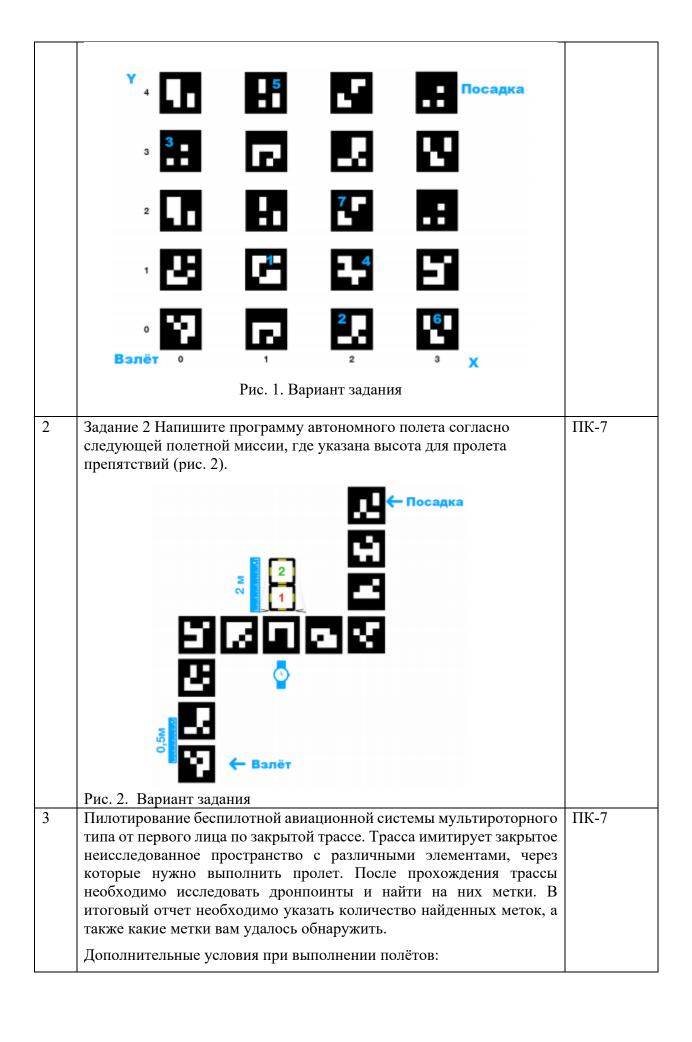
10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

	1 1 1
Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций


Оценка компетенции	Vanatetantativia ahan umanatuu iv tanutatavuuti		
5-балльная шкала	Характеристика сформированных компетенций		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; 		

Оценка компетенции	Характеристика сформированных компетенций	
5-балльная шкала	Дарактеристика еформированных компетенции	
	делает выводы и обобщения;	
	– свободно владеет системой специализированных понятий.	
	– обучающийся твердо усвоил программный материал, грамотно	
	и по существу излагает его, опираясь на знания основной	
	литературы;	
«хорошо»	– не допускает существенных неточностей;	
«зачтено»	– увязывает усвоенные знания с практической деятельностью	
	направления;	
	– аргументирует научные положения;	
	 делает выводы и обобщения; 	
	– владеет системой специализированных понятий.	
	– обучающийся усвоил только основной программный материал,	
	по существу излагает его, опираясь на знания только основной	
	литературы;	
«удовлетворительно»	– допускает несущественные ошибки и неточности;	
«зачтено»	- испытывает затруднения в практическом применении знаний	
((33 11 311 6))	направления;	
	– слабо аргументирует научные положения;	
	– затрудняется в формулировании выводов и обобщений;	
	– частично владеет системой специализированных понятий.	
	- обучающийся не усвоил значительной части программного	
	материала;	
«неудовлетворительно»	– допускает существенные ошибки и неточности при	
«не зачтено»	рассмотрении проблем в конкретном направлении;	
	 испытывает трудности в практическом применении знаний; 	
	– не может аргументировать научные положения;	
	– не формулирует выводов и обобщений.	

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
1	Задание 1 Сгенерируйте файл карты при помощи инструмента	ПК-7
	дептар.ру, согласно характеристикам существующего поля меток.	
	Выполните взлет на высоту z=1.5, перемещение коптера по	
	координатам поля меток, указанным на рис. 1, где номерами указана	
	очередность пролета контрольных точек в системе координат	
	aruco_map, возврат в исходную точку и посадку.	

- Обучающиеся могут находиться только в специально обозначенных для пилота зонах;
- Во время выполнения модуля, обучающийся может производить тестовые полеты, которые проходят в рамках живой очереди. Приоритет имеют те обучающиеся, которые еще не совершали тестовых полетов;
- Занять очередь на тестовые полеты можно не позднее, чем за 15 минут до окончания времени тестовых полетов;
- Максимальное время одной тестовой попытки -3 минуты. Количество тестовых попыток не ограничено в рамках отведенного на тестовые полеты времени;
- Время на устранение поломок, полученных в результате модуля, включено во время выполнения модуля;
- Предполетная подготовка 1 минута;
- Время прохождения трассы 3 мин с момента запуска двигателей;
- Количество кругов = 2.
- Время окончания прохождения трассы считается по полной остановке вращения моторов.
- Прохождение круга засчитываются только при условии прохождения всех элементов согласно заданию.
- Тренировочные полеты доступны на специальной трассе тренажерной системы FPV пилотирования.

4 Решение задачи автономной навигации квадрокоптера с П идентификацией Ог кодов в летном поле.

В рамках выполнения задачи авиамониторинга, вам необходимо исследовать летное поле. В летном поле находятся Qr — коды с зашифрованной информацией. Ваша задача найти все Qr — коды и вывести в терминал их содержимое. Во время полета цветовая индикация у дрона должна быть синего цвета. Посадку необходимо осуществить в начальных координатах, светодиодная лента должна мигать оранжевым цветом. Во время взлета цвет светодиодной ленты зеленый. В случае, если идентификация Qr кода успешна — вывести эффект rainbow на светодиодную ленту. Координаты размещенных QR кодов неизвестны и могут меняться в процессе выполнения задания.

Дополнительные условия при выполнении полётов:

- Обучающиеся могут находиться только в специально обозначенных для пилота зонах;
- Во время выполнения модуля, обучающийся может производить тестовые полеты, которые проходят в рамках живой очереди. Приоритет имеют те обучающиеся, которые еще не совершали тестовых полетов;
- Занять очередь на тестовые полеты можно не позднее, чем за 15 минут до окончания времени тестовых полетов;

ПК-7

- Максимальное время одной тестовой попытки -3 минуты. Количество тестовых попыток не ограничено в рамках отведенного на тестовые полеты времени;
- Время на устранение поломок, полученных в результате модуля, включено во время выполнения модуля;
- Предполетная подготовка 1 минута;
- Время выполнения зачетной попытки 5 минут;
- Программное обеспечение должно быть реализовано при помощи языка программирования Python.
- Тренировочные полеты доступны в симуляционной среде Gazebo, на базе которой выполняется отладка программного обеспечения для автономного полета.
- 5 Проектирование полезной нагрузки квадрокоптера.

В рамках решения задачи разработки полезной нагрузки для квадрокоптера, необходимо разработать подвес для FPV камеры квадрокоптера с возможностью стабилизации камеры по тангажу и крену.

Состав работ:

- 1.1. 3D модель полезной нагрузки в сборке.
- 1.2. 3D модель полезной нагрузки в разобранном виде.
- 1.3. Габаритный чертеж
- 1.4. Инструкция по сборке, монтажу и эксплуатации полезной нагрузки:
- Спецификация
- наличие всех сборочных единиц;
- наличие всех деталей;
- наличие стандартных изделий.
- Сборочный чертеж указаны сборочные единицы, детали и стандартные изделия с указанными взаимосвязями различных частей.
- Монтажная инструкция:
- наличие изображения монтируемого изделия;
- наличие изображения изделий, применяемых при монтаже;
- наличие перечня составных частей, необходимых для монтажа;
- технические требования к монтажу изделия;
- наличие структурной электрической схемы изготавливаемой полезной нагрузки.
- Инструкция по эксплуатации полезной нагрузки.
- 1.5. Видеопрезентация устройства в 3D, с наглядной демонстрацией функциональных возможностей полезной нагрузки квадрокоптера (продолжительностью не более 5 минут).

ПК-7

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов			
№ п/п		Примерный перечень вопросов для тестов	Код индикатора
1	Как на	азывается квадрокоптер с 6ю моторами? *	ПК-7
	a)	Пентакоптер	
	b)	Октокоптер	
		Трикоптер	
		Гексакоптер	
		кое "тангаж"? *	
		Наклон коптера влево-вправо	
		Вращение коптера вокруг совей оси	
		Наклон коптера вперед-назад	
		Набор скорости	
	Где ра	сположены датчики, отвечающие за определение положения	
		ра в пространстве? *	
		В регуляторе оборотов	
		В плате распределения питания	
		В полетном контроллере	
		В пульте радиоуправления	
		аккумуляторы бывают у БПЛА? *	
		Никель-кадмиевые	
		Литий-полимерные	
	/	Свинцово-кислотные	
		Никель-металл-гидридные	
		аком типе соединения аккумуляторов напряжение	
		ывается? *	
	/	Последовательное	
		Параллельное	
	/	Смешанное	
	/	Замкнутое	
		ожно изменить направление вращения бесколлекторного	
		теля на коптере? *	
	/	Поменять "+" и "-"	
		Перепрошить плату распределения питания	
		Поменять между собой 2 фазных провода	
	Это не	евозможно	

ПК-7 1. Какие основные компоненты включают беспилотную авиационную систему (БАС)? • а) Только беспилотный летательный аппарат (БПЛА) b) БПЛА, наземную станцию управления, системы связи и оператора • с) БПЛА и оператора • d) Только системы связи 2. Что такое радиус действия БАС? а) Максимальное расстояние, на котором БПЛА может подняться в воздух b) Максимальное расстояние, на котором БПЛА может управляться оператором • с) Максимальная высота, на которую может подняться БПЛА d) Дальность полета при максимальной загрузке 3. Что такое FPV (First Person View) в беспилотных системах? а) Способ управления БПЛА с использованием автоматических систем • b) Режим полета по заранее заданному маршруту с) Управление БПЛА с использованием камеры от первого лица d) Увеличение мощности двигателей БПЛА 4. Какова основная функция наземной станции управления? а) Заправка БПЛА топливом • b) Мониторинг полета и управление БПЛА • с) Хранение данных о полетах d) Управление воздушным пространством 5. Какой фактор ограничивает продолжительность полета БПЛА? а) Мощность антенны управления

- b) Программное обеспечение БПЛА
- с) Время автономной работы батареи
- d) Ветер
- 6. Какой из ниже перечисленных режимов управления позволяет БПЛА автоматически возвращаться к точке взлета?
- a) RTH (Return to Home)
- b) GPS Lock
- c) Manual Mode
- d) Altitude Hold
- 7. Что такое "автоматический режим" в управлении БПЛА?
- а) Полет по заранее запрограммированному маршруту без вмешательства оператора
- b) Полет под постоянным контролем оператора
- с) Полет по командам от наземного диспетчера
- d) Полет по визуальным ориентирам
- 8. Какая технология чаще всего используется для передачи команд и данных от оператора к БПЛА?
- a) Bluetooth
- b) Wi-Fi
- с) Радиоканал
- d) Инфракрасная связь
- 9. Какой из этих факторов может повлиять на точность GPSнавигации БПЛА?
- а) Температура воздуха
- b) Количество спутников на орбите
- с) Высота полета
- d) Электромагнитные помехи

10. Что означает термин "payload" (полезная нагрузка) в контексте БПЛА? • а) Максимальный вес, который может нести оператор • b) Максимальный вес топлива в БПЛА с) Оборудование или грузы, которые БПЛА может нести в полете • d) Запас энергии, доступной в аккумуляторе 11. Каковы основные причины потери связи между БПЛА и наземной станцией управления? • а) Низкий уровень заряда батареи и плохие погодные условия • b) Программные сбои • с) Препятствия и дальность полета • d) Сбои в двигателях 12. Какое оборудование необходимо для мониторинга состояния БПЛА в реальном времени? а) Камера b) GPS-модуль с) Телеметрическая система

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

• d) Транспондер

таолица	толица 17 – перечень контрольных расот			
№ п/п	Перечень контрольных работ			
1	1. Аппаратная составляющая беспилотной авиационной системой			
	2. Информационное обеспечение квадрокоптера Клевер			
	3. Программирование квадрокоптера Клевер			
	4. Программирование автономного полета при помощи Aruco-маркеров.			
	5. Полеты в летном исследовательском поле ГУАП			
	Согласно варианту задания из табл.1, разработайте полетную миссию, в рамках которой коптер будет рисовать определенную фигуру с заданной цветовой индикацией.			

Варианты заданий				
Фигупа	Пвет инликации			

Таблица 1

Вариант	Фигура	Цвет индикации
1	A4	Синий
2	И1	Желтый
3	Н6	Фиолетовый
4	Г9	Зеленый
5	Д2	Оранжевый
6	C5	Красный
7	P0	Золотой
8	E5	Фиолетовый
9	X7	Красный
10	Ф3	Синий

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

Целью дисциплины является – получение студентами необходимых знаний, умений и навыков в области программирования автономного полета беспилотной авиационной системой.

11.1. Методические указания для обучающихся по освоению лекционного материала ..

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

Проведение лекции;

Проведение практического занятия;

Проведение лабораторного занятия;

11.2. Методические указания для обучающихся по участию в семинарах

Основной целью для обучающегося является систематизация и обобщение знаний по изучаемой теме, разделу, формирование умения работать с дополнительными источниками информации, сопоставлять и сравнивать точки зрения, конспектировать прочитанное, высказывать свою точку зрения и т.п. В соответствии с ведущей дидактической целью содержанием семинарских занятий являются узловые, наиболее трудные для понимания и усвоения темы, разделы дисциплины. Спецификой данной формы занятий является совместная работа преподавателя и обучающегося над решением поставленной проблемы, а поиск верного ответа строится на основе чередования индивидуальной и коллективной деятельности.

При подготовке к семинарскому занятию по теме прослушанной лекции необходимо ознакомиться с планом его проведения, с литературой и научными публикациями по теме семинара.

11.3. Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

Практическое занятие – форма систематических учебно-теоретических занятий, с раздел "Эксплуатации беспилотных помощью которых обучающиеся изучают авиационных систем", входящего в состав учебный план. При подготовке к занятиям следует использовать основную литературу из представленного списка, а также руководствоваться приведенными указаниями и рекомендациями. Для наиболее глубокого дисциплины рекомендуется изучать литературу, обозначенную «дополнительная» в представленном списке. На практических занятиях приветствуется активное участие в обсуждении конкретных ситуаций, способность на основе полученных знаний находить наиболее эффективные решения поставленных проблем, уметь находить полезный дополнительный материал по тематике семинарских занятий. Студенту рекомендуется следующая схема подготовки к занятию:

- 1. Проработать конспект лекций;
- 2. Прочитать основную и дополнительную литературу, рекомендованную по изучаемому разделу;

- 3. Выполнить домашнее задание;
- 4. Проработать тестовые задания и задачи;
- 5. При затруднениях сформулировать вопросы к преподавателю.
- 11.4. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.5. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

11.6. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— экзамен — форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой