МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования "САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 14

УТВЕРЖДАЮ Руководитель образовательной программы (должность, уч. степень, звание) В.Л. Оленев «19» февраля 2025 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Сети ЭВМ и телекоммуникации» (Наименование дисциплины)

Код направления подготовки/ специальности	09.04.01	
Наименование направления подготовки/ специальности	Информатика и вычислительная техника	
Наименование Встроенные системы обработки инфо направленности управления		
Форма обучения	канью	
Год приема	2025	

Санкт-Петербург- 2025

Лист согласования рабочей программы дисциплины

Программу составил (а)	1.1	
к.т.н.,доц.	MM	В.Н. Иванов
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Программа одобрена на заседа	нии кафедры № 14	
«19» февраля 2025 г, протокол	п № 6	
Заведующий кафедрой № 14		
к.т.н.,доц.		В.Л. Оленев
(уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Заместитель директора институ	та №1 по-методинеской раб	боте
доц.,к.т.н.	ke	В.Е. Таратун
(должность, уч. степень, звание)	(фодпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Сети ЭВМ и телекоммуникации» входит в образовательную программу высшего образования — программу магистратуры по направлению подготовки/ специальности 09.04.01 «Информатика и вычислительная техника» направленности «Встроенные системы обработки информации и управления». Дисциплина реализуется кафедрой «№14».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-2 «Способен осуществлять интеграцию и внедрение разработанного программного обеспечения, вычислительных систем, коммуникационного оборудования»

ПК-3 «Способен осуществлять разработку средств и систем защиты информации автоматизированных систем»

Содержание дисциплины охватывает круг вопросов, связанных с изучением и построением сетей связи.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, самостоятельная работа студента.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы, 108 часов

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью дисциплины «Сети ЭВМ и телекоммуникации» является получение студентами знаний о интеллектуальных сетях связи, некоторых проблемных ситуациях и парадоксах маршрутизации, принципах построения сетей подвижной радиосвязи, особенностях построения телекоммуникационных сетей с использованием оптических средств связи, интегральных сетях связи, системах синхронизации на сетях связи.

Так же получение студентом умений, навыков и опыта деятельности в теоретическом исследовании алгоритмов для сетевых топологий, в построении проекта сети связи на базе заданного стандарта.

В области воспитания личности целью подготовки по данной дисциплине является закрепление общекультурных, общепрофессиональных и профессиональных компетенций для приобретения таких качеств, как целеустремленность, организованность, трудолюбие, ответственность, коммуникативность.

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблипа 1 – Перечень компетенций и индикаторов их достижения

Категория (группа)	Код и наименование	Код и наименование индикатора достижения
компетенции	компетенции	компетенции
Профессиональные компетенции	ПК-2 Способен осуществлять интеграцию и внедрение разработанного программного обеспечения, вычислительных систем, коммуникационного оборудования	ПК-2.3.1 знать основы архитектуры, устройство и принципы функционирования вычислительных информационных систем и коммуникационного оборудования ПК-2.В.1 владеть навыками оценки качества разрабатываемых программных и/или аппаратных средств
Профессиональные компетенции	ПК-3 Способен осуществлять разработку средств и систем защиты информации автоматизированных систем	ПК-3.У.1 уметь анализировать программные, архитектурно-технические и схемотехнические решения компонентов автоматизированных систем

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Вычислительные системы».
- «Вычислительные сети».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- «Интерфейсы встроенных систем».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам №3
1	2	3
Общая трудоемкость дисциплины, 3E/ (час)	3/ 108	3/ 108
Из них часов практической подготовки	17	17
Аудиторные занятия, всего час.	34	34
в том числе:		
лекции (Л), (час)	17	17
практические/семинарские занятия (ПЗ), (час)		
лабораторные работы (ЛР), (час)	17	17
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)	36	36
Самостоятельная работа, всего (час)	38	38
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.	Экз.

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Tuoningu 5 Tuo gentii, Tembi gireqiii ii ii ii ii ii yydoemkoe ii					
Разделы, темы дисциплины	Лекции	П3	ЛР	КΠ	CPC
т азделы, темы дисциплины	(час)	(C3)	(час)	(час)	(час)
Сем	естр 3				
Раздел 1. Интеллектуальные сети связи					
Тема 1.1. Интеллект. Интеллект в технике	3				4
Тема 1.2. Интеллектуальные сети связи					
Раздел 2. Некоторые проблемные ситуации и	2				4
парадоксы маршрутизации	2				†
Раздел 3. Принципы построения сетей					
подвижной радиосвязи					
Тема 3.1. Распространение электромагнитных					
волн	5				5
Тема 3.2. Диапазоны частот					
Тема 3.3. Введение в спутниковые сети связи					
Тема 3.4. Сотовая организация					
Раздел 4. Особенности построения					
телекоммуникационных сетей с	1				5
использованием оптических средств связи					

Раздел 5. Интегральные сети связи Тема 5.1. Различные типы трафика Тема 5.2. Достоинства интегральных сетей связи	5				5
Тема 5.3. Эволюция цифровых интегральных					
сетей связи					
Раздел 6. Системы синхронизации на сетях связи	1				5
Раздел 7. Алгоритмы для сетевых топологий			8		5
Раздел 8. Стандарты построения сетей			9		5
Итого в семестре:	17		17		38
Итого	17	0	17	0	38

4.2. Содержание разделов и тем лекционных занятий.

Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий			
Раздел 1	Интеллектуальные сети связи			
Тема 1.1	Интеллект. Интеллект в технике. Определения интеллекта. Определения			
	интеллекта в технике.			
Тема 1.2	Интеллектуальные сети связи. Определение. Примеры. Основная цель.			
	Архитектура. Списки услуг. Модель базового процесса обслуживания.			
	Концептуальная модель. Когнитивная инфокоммуникационная система			
Раздел 2	Некоторые проблемные ситуации и парадоксы маршрутизации. Рыба.			
	Качели. Пример Пигу. Парадокс Браеса			
Раздел 3	Принципы построения сетей подвижной радиосвязи			
Тема 3.1	Распространение электромагнитных волн. Особенности распространения			
	электромагнитных волн с повышением частоты. Препятствия. Проблемы			
	и способы борьбы с ними			
Тема 3.2	Диапазоны частот. От 3 Гц до 95 ГГц			
Тема 3.3	Введение в спутниковые сети связи. Атмосфера, космос. Сравнение			
	орбит. Космический мусор. Точки Лагранжа. Дальняя космическая			
	связь. Проблемы			
Тема 3.4	Сотовая организация. Поколения			
Раздел 4	Особенности построения телекоммуникационных сетей с			
	использованием оптических средств связи. Волокна. Окна прозрачности.			
	Источники света. Проблемы и способы борьбы с ними. Сравнение			
	проводных и оптических систем			
Раздел 5	Интегральные сети связи			
Тема 5.1	Различные типы трафика. Классификация. Некоторые практические			
	моменты. Определения. Особенности работы с трафиками различного			
	типа. Совмещение различных типов трафика.			
Тема 5.2	Достоинства интегральных сетей связи			
Тема 5.3	Эволюция цифровых интегральных сетей связи			
Раздел 6	Системы синхронизации на сетях связи			
Раздел 7	Алгоритмы для сетевых топологий			
Раздел 8	Стандарты построения сетей			

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

№ π/π	Темы практических занятий	Формы практических занятий	Трудоемкость, (час)	№ раздела дисцип лины	
Учебным планом не предусмотрено					

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

№ п/п	Наименование лабораторных работ	Трудоемкость, (час)	№ раздела дисцип лины		
	Семестр 3				
1	Алгоритмы для сетевых топологий	8	7		
2	Стандарты построения сетей	9	8		
	Всего	17			

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

 Таолица / − Виды самостоятельной расоты и ее трудоемкость 			
Вид самостоятельной работы	Всего,	Семестр 3,	
Вид самостоятсявной расоты	час	час	
1	2	3	
Изучение теоретического материала	15	15	
дисциплины (ТО)	13	13	
Курсовое проектирование (КП, КР)			
Расчетно-графические задания (РГЗ)			
Выполнение реферата (Р)			
Подготовка к текущему контролю	15	15	
успеваемости (ТКУ)	13	13	
Домашнее задание (ДЗ)			
Контрольные работы заочников (КРЗ)			
Подготовка к промежуточной	8	8	
аттестации (ПА)	8	8	
Всего:	38	38	

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8— Перечень печатных и электронных учебных изданий

Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)
681.3 Б52	Бертсекас Д., Галлагер Р. Сети передачи данных. – М.: Мир, 1989	15
004(075) O-54	Олифер В.Г., Олифер Н.А Компьютерные сети. Принципы, технологии, протоколы: Учебник для вузов. 4-е изд. – СПб.: Питер, 2012. – 944 с	50
004 C81	Современные компьютерные сети. 2-е изд. / В. Столлингс. – СПб.: Питер, 2003	6
004 K 90	Технологии корпоративных сетей / М. Кульгин. – СПб. : ПИТЕР, 1999. – 700 с	1
621.391 Ш33	Сети связи: протоколы, моделирование, анализ: в 2 кн. / Шварц М. – М. : Наука, 1992. – 336 с	14
681.3 M 58	Мизин И.А., Богатырёв В.А., Кулешов А.П. Сети коммутации пакетов. — М.: Радио и связь, 1986. — 408 с.	3
519.852 П17	Пападимитриу X. Комбинаторная оптимизация. Алгоритмы и сложность. – М.: Мир, 1985. – 510 с.	1
004(083) П83	Протоколы информационно-вычислительных сетей: справочник/ С.А. Белов [и др.]; ред.: И.А. Мизин, А.П. Кулешов. – М.: Радио и связь, 1990. – 503 с.	25
004 Б 20	Балонин, Н. А. Беспроводные персональные сети: учебное пособие / Н. А. Болонин, М. Б. Сергеев; СПБГУАП СПб.: ГОУ ВПО "СПбГУАП", 2012 60 с	60
621.395 Г63	Гольдштейн Б.С. Системы коммутации: Учебник для ВУЗов. – СПБ.: БХВ – Санкт- Петербург, 2003. – 318 с	5
004 И78	Ирвин Дж., Харль Д. Передача данных в сстях: инженерный подход СПб: БХВ-Петербург, 2003	5
621.395 P 75	Росляков, А. В. Сети доступа: учебное пособие М.: Горячая линия - Телеком, 2008 96 с	10
621.396 C 43	Скляров, О. К. Волоконно-оптические сети и системы связи: учебное пособие 2-е изд., стер СПб.: Лань, 2010 272 с	24
621.395 T 31	Телефонная связь: прошлое, настоящее, будущее: материалы Пятых научных чтений, посвященных Дню радио - празднику работников всех отраслей связи (5 мая 2012 г.) / Центр. музей связи им. А. С. Попова; ред. Н. А. Борисова. – СПб: ЦМС им. А.С. Попова, 2012 111 с	1
004 T 98	Тюхтин, М. Ф. Системы Интернет- телевидения М.: Горячая линия - Телеком,	1

	2008 320 c	
004.9 T 31	Телекоммуникационные технологии.	3
	Введение в технологии GSM: учебное	
	пособие / С. Б. Макаров [и др.] 2-е изд.,	
	испр М.: Академия, 2008 256 с	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование
	Не предусмотрено

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10– Перечень программного обеспечения

1 4001111144	10 Hepe lens inperpulsificio eccente tenno			
№ п/п	Наименование			
	Не предусмотрено			

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11– Перечень информационно-справочных систем

№ п/п		Наименование
	Не предусмотрено	

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ π/π	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

	оценки уровня сформированности компетенции		
Оценка компетенции	Характеристика сформированных компетенций		
5-балльная шкала			
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 		
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 		
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 		
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 		

Типовые контрольные задания или иные материалы.
 Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора		
1	Последние эпохи технического развития человечества. ПК-2.3 Интеллект. Интеллект в технике.			
2	Интеллектуальные сети связи. Архитектура. Списки услуг. Модель базового процесса обслуживания. Концептуальная модель	ПК-2.В.1		

3	Когнитивная инфокоммуникационная система. Доменная	ПК-3.У.1
4	модель. Модель. Парадоксы маршрутизации. Рыба. Пример Пигу.	
5	Парадоксы маршрутизации. Гыоа. пример пигу. Парадоксы маршрутизации. Качели. Парадокс Браеса.	
6	Принципы построения сетей подвижной радиосвязи.	
O	Примеры. Антенны. Распространение электромагнитных	
	волн. Препятствия.	
7	Принципы построения сетей подвижной радиосвязи.	
/	Проблемы. Способы борьбы. Вероятности ошибок.	
8	Принципы построения сетей подвижной радиосвязи.	
0	Принципы построения сетей подвижной радиосвязи. Диапазоны частот до 1 ГГц. Длины волн. Области	
	применения. Мощности излучаемых сигналов. Полосы,	
	применения. Мощности излучаемых сигналов. Полосы, каналы.	
9	Принципы построения сетей подвижной радиосвязи.	
,	Диапазоны частот от 1 до 13 ГГц. Длины волн. Области	
	применения. Мощности излучаемых сигналов. Полосы,	
	каналы.	
10	Принципы построения сетей подвижной радиосвязи.	
10	Диапазоны частот выше 13 ГГц. Длины волн. Области	
	применения. Мощности излучаемых сигналов. Полосы,	
	каналы. ISM диапазоны. Документы РФ. Нарушения.	
	Количество РЭС в РФ.	
11	Введение в спутниковые сети. Атмосфера. Космические	
	скорости. Линия Кармана. Пояса Ван Аллена. Орбиты.	
	Эклиптика. Вывод на целевую орбиту.	
12	Введение в спутниковые сети. Сравнение орбит.	
13	Введение в спутниковые сети. Космический мусор.	
	Синдром Кесслера. Уменьшение, увеличение мусора.	
14	Введение в спутниковые сети. Законы Кеплера, Ньютона.	
	Точки Лагранжа. Использование.	
15	Сотовая организация. Сравнение. Поколения.	
16	Системы синхронизации на сетях связи. Проблемы.	
	Способы решения. Сравнение самосинхронизирующихся	
	кодов.	
17	Определить цену анархии для парадокса Браеса.	
18	На каком максимальном расстоянии можно увидеть с	
	помощью телескопа, расположенного на крыше дома,	
	спутник массой 750 кг, летающий в ионосфере на низкой	
	орбите (Low Earth Orbit, LEO) высотой 250 км?	
19	Спутник массой 1 200 кг вращается вокруг Солнца.	
	Апоцентр орбиты расположен на расстоянии 120 млн км.	
	Рассчитать время, за которое этот спутник делает полный	
	оборот вокруг Солнца. За какое время этот же спутник	
	будет делать полный оборот вокруг Солнца, если его	
	переместить в коллинеарную точку Лагранжа L1? В	
	коллинеарную точку Лагранжа L4?	
20	Приведите пример организации частотного покрытия	
	одной территории сетью GSM, если в ней одновременно	
	работают 3 оператора связи (каждый полностью	
	покрывает всю территорию), использующие	
	соответственно 6, 7 и 8 базовых станций (Base Station	
	Subsystem, BSS) и по 1 центральному коммутатору	

	(Network Switching Subsystem, NSS).			
21	Разложить передачу в канал последовательности бит			
	'0110101010011111100' (биты передаются с разными			
	скоростями) по манчестерскому коду и DS-кодированию.			
	Сравнить полученные последовательности по частоте			
	основной гармоники полученных сигналов.			
22	10 спутников равномерно распределены на одной средней			
	орбите (Medium Earth Orbit, MEO) высотой 14 500 км.			
	Рассчитать задержку передачи сигнала по маршруту:			
	Земля \rightarrow 8-й спутник \rightarrow 9-й спутник \rightarrow 10-й спутник \rightarrow			
	1-й спутник \to 2-й спутник \to 3емля.			
23	Докажите, используя 3-й закон Кеплера, что с			
	увеличением дальности от Солнца скорость планеты по			
	орбите уменьшается. Как соотносятся между собой			
	скорости движения планет по орбите?			
24	Используя алгоритм найти компоненты сильной связности			
	A B F G G F F G F F G F F G F F F F F F F			

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы			
Учебным планом не предусмотрено				

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п			Пример	ныі	й перечень вопросов для тестов
	Учебным планом не предусмотрено				

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

	таолице	17 Tiepe iens komponsiisiik pacot
	№ п/п	Перечень контрольных работ
		Учебным планом не предусмотрено

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру

проведения текущего контроля успеваемости и промежуточной аттестации обучающихся $\Gamma \mathbf{Y} \mathbf{A} \Pi$.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- Интеллектуальные сети связи;
- Некоторые проблемные ситуации и парадоксы маршрутизации;
- Принципы построения сетей подвижной радиосвязи;
- Особенности построения телекоммуникационных сетей с использованием оптических средств связи;
 - Интегральные сети связи;
 - Системы синхронизации на сетях связи.
- 11.2. Методические указания для обучающихся по выполнению лабораторных работ

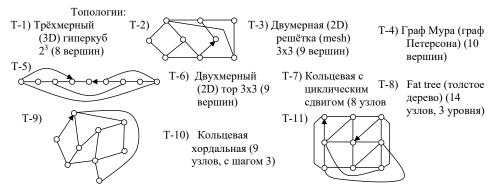
В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Лабораторная работа №1. Алгоритмы для сетевых топологий


Цель работы: применить заданный алгоритм к анализу топологии сети.

Задания представляют собой направления работ. Недостающие данные, условия, и т.п. студент выбирает на своё усмотрение (при этом задача не должна быть сильно упрощена). Информация по алгоритмам, стандартам и т.п. ищется студентом самостоятельно.

Варианты заданий:

Bap.	Задание	Топологии			
1	Используя алгоритм Форда-Фалкерсона определить пропускную способность (решить задачу о максимальном потоке) между максимально удалёнными друг от друга узлами в топологиях. Пропускные способности всех дуг должны быть различны	T-3, T-6			
2	Решить задачу поиска всех шарниров (разделяющих вершин) (точек сочленения) на указанных топологиях				
3	Решить задачу выбора местоположения узлов коммутации (задачу о размещении складов) (задачу о размещении центров графа) на указанных топологиях. При этом топологии задают лишь относительное месторасположение узлов и расстояния между ними. Дуги в топологиях отсутствуют	T-4			
4	Решить задачу о поиске максимальной клики на указанных топологиях	T-7, T-9			
5	Построить дерево Штейнера для указанных топологий. Использовать либо имеющийся алгоритм, либо придумать свой (настолько хороший, насколько сможет студент)	T-6, T-7			
6	Для топологии определить (выполнив алгоритмы на топологии), какой алгоритм (Ивена или Клейтмана) лучше по сложности. Сравнить результаты алгоритмов	T-5			
7	Используя метод рельефов построить таблицы маршрутизации во всех вершинах топологий (каждая вершина должна знать кратчайшее направление к каждой другой вершине графа через каждую свою смежную дугу/ребро). Проверить прохождение пакетов между вершинами по построенным таблицам маршрутизации	T-9, T-11			
8	Решить задачу поиска минимального разреза на указанных топологиях	T-1, T-4			
9	Для топологии определить (выполнив алгоритмы на топологии), какой алгоритм (Борувки или X-трансформаций (X-замен) Стейглица (Стайглица)) лучше по сложности. Сравнить результаты алгоритмов	T-11			
10	Определить компоненты сильной связности для указанных топологий (должны быть ориентированными)	T-3, T-2			
11	Решить задачу о раскраске графа (задача поиска хроматического числа) на указанных топологиях	T-1, T-10			

Bap.	Задание	Топологии
12	Используя Spanning Tree Algorithm создать дерево охвата минимального веса для топологий. Вершинам графа должны соответствовать коммутаторы, рёбрам графа должны соответствовать сегменты с конечными узлами	T-8, T-1
13 и все ком у не хват ило	Самостоятельно выбрать алгоритм работы с топологией сети, существенно отличающийся (по цели) от алгоритмов во всех других вариантах (включая другие варианты с самостоятельным выбором алгоритма). Поставить задачу. Выполнить её на топологиях	T-11, T-4
14	Для топологии определить (выполнив алгоритмы на топологии), какой алгоритм (Кру(а)скала или Прима) лучше по сложности. Сравнить результаты алгоритмов	T-10
15	Решить задачу коммивояжера на указанных топологиях	T-9, T-7
16	Для топологии определить (выполнив алгоритмы на топологии), какой алгоритм (Дейкстры или Флойда-Уоршелла) лучше по сложности. Длины всех дуг должны быть различны. Сравнить результаты алгоритмов	T-5, T-6

Лабораторная работа №2. Стандарты построения сетей

Цель работы: изучить указанный стандарт, спроектировать сеть.

Задания представляют собой направления работ. Недостающие данные, условия, и т.п. студент выбирает на своё усмотрение (при этом задача не должна быть сильно упрощена). Информация по алгоритмам, стандартам и т.п. ищется студентом самостоятельно.

Варианты заданий:

D	C	Диаметр	Число	Вар.	Станларт	Диаметр	Число
Bap.	Стандарт	сети (км)	абонентов			сети (км)	абонентов
1	WiMAX	15	3300	21	FireWire	1	600
2	SMDS	7	300	22	X.25	55	1000
3	DWDM	50	1800	23	DQDB	35	1050
4	Stanag 3910	14	2310	24	PON	120	5720
5	ATM	80	1320	25	ArcNet	0,7	110
6	GPRS	14	1940	26	Modbus	3,5	1280
7	SONET/SDH	20	2190	27	ZigBee	2,4	370

Вар.	Стандарт	Диаметр сети (км)	Число абонентов	Вар.	Стандарт	Диаметр сети (км)	Число абонентов
8	MIL STD 1553b	0,5	80	28	CAN	0,2	1410
9	GSM	10	2240	29	Fibre Channel	2	3110
10	Bluetooth	0,2	110	30	MPLS	4,5	330
11	OTN (optical)	60	3400	31	ISDN	38	5390
12	SpaceWire	0,1	200	32	Wi-Fi	0,4	40
13	ADSL	9	670	33	Fast Ethernet	1,5	190
14	FDDI	40	2280	34	Gigabit Ethernet	11,5	950
15	EDGE	7	250	35	Frame Relay	5	1240
16	Token Ring	2	330	36	AFDX	1	220
17	DECT	2	100	37	PDH	121	6720
18	InfiniBand	4	1670	38	Myrinet	0,5	210
19	SCI	5	3050	39	CDMA-2000	18	7260
20	ARINC-429	2	230	40	10Gigabit Ethernet	13	4180

Примечание. В случае если указанные значения выходят за пределы возможности стандарта, следует выбрать максимальное для стандарта значение.

Структура и форма отчета о лабораторной работе

Лабораторная работа №1. Алгоритмы для сетевых топологий

- 1 Задача. Вариант.
- 2 Назначение алгоритма(ов) (на каждый алгоритм не более 2 страниц).
 - 2.1 Цель алгоритма.
 - 2.2 Обоснование полезности использования алгоритма(ов) для сетей связи.
 - 2.3 Преимущества алгоритма(ов) по сравнению с другими похожими по цели алгоритмами (во всех вариантах лабораторной работы).
- 3 Описание алгоритма(ов) (на каждый алгоритм не более 2 страниц).
 - Базовая идея (неформальное объяснение) работы алгоритма (в словесной форме).
 - 3.2 Полное, детализированное (до уровня простейших операций) формальное описание (в виде блок-схемы или псевдокода или программы на языке программирования или программы на алгоритмическом языке или т.п.).
 - 3.3 Способы ускорения работы алгоритма.
- 4 Пошаговое, детализированное описание работы алгоритма(ов) при выполнении варианта задания.
- 5 Оценка алгоритма(ов).
 - 5.1 Оценка сложности. Сложность алгоритма оценивается суммарным количеством простейших операций (чтение ячейки памяти/регистра, запись ячейки памяти/регистра, сложение, вычитание, умножение, деление, сдвиг, сравнение).
 - 5.2 Сравнение по сложности двух алгоритмов (если требуется по заданию).
 - 5.3 Определение класса сложности алгоритма(ов).
 - 5.4 Приблизительный расчёт времени выполнения алгоритма(ов) для средней/большой/огромной сети на современном процессоре.
- 6 Выводы.
- 7 Список источников. В тексте отчёта должны быть проставлены ссылки на используемые источники.

Лабораторная работа №2. Стандарты построения сетей

- 1. Задача. Вариант.
- 2. Краткое описание используемого стандарта (не более 9 страниц).

- 2.1. Стандарт.
 - 2.1.1. Область применения.
 - 2.1.2. Какой организацией принят.
 - 2.1.3. В каком году.
 - 2.1.4. Название/шифр документа/стандарта.
 - 2.1.5. Прочее.
- 2.2. Стек протоколов.
 - 2.2.1. Соответствие стека протоколов уровням модели OSI.
 - 2.2.2. Описание функций уровней. По каждому пункту: определение, назначение, реализация в изучаемом стандарте.
 - 2.2.2.1. Какие типы каналов используются (радиоканал, коаксиал, витая пара, оптоволокно и др.).
 - 2.2.2.2. Скорости передачи в каналах.
 - 2.2.2.3. Максимальные расстояния передачи по каналам.
 - 2.2.2.4. Физическая кодировка бит в канале.
 - 2.2.2.5. Логическая кодировка бит в канале.
 - 2.2.2.6. Скремблирование, перемежение.
 - 2.2.2.7. Расширение спектра сигнала.
 - 2.2.2.8. Физические каналы сети.
 - 2.2.2.9. Логические каналы сети.
 - 2.2.2.10. Физическое подключение абонента к сети.
 - 2.2.2.11. Используемые топологии.
 - 2.2.2.12. Мультиплексирование линии связи.
 - 2.2.2.13. Доступ к среде (алгоритмы доступа абонента к сети).
 - 2.2.2.14. Адресация (типы адресов, алгоритмы распространения адресов по сети).
 - 2.2.2.15. Управление потоком (предотвращение перегрузки буфера приёмника).
 - 2.2.2.16. Защита от искажения информации в канале.
 - 2.2.2.17. Защита от логических ошибочных ситуаций в сети при отсутствии искажения информации в канале.
 - 2.2.2.18. Качество сервиса.
 - 2.2.2.19. Коммутация.
 - 2.2.2.20. Маршрутизация (алгоритмы, распространение таблиц маршрутизации по сети).
 - 2.2.2.21. Управление информационными потоками в сети.
 - 2.2.2.22. Защита от несанкционированного доступа.
 - 2.2.2.23. Какие типы оборудования используются (сетевые адаптеры, концентраторы, коммутаторы, маршрутизаторы и т.п.).
 - 2.2.2.24. Прочее.
- 2.3. Формат кадров, пакетов. Описание назначения полей.
- 2.4. Услуги построения сетей (доступа к существующим сетям).
 - 2.4.1. Какие фирмы (компании, операторы) предоставляют.
 - 2.4.2. Какие услуги.
 - 2.4.3. Стоимости.
 - 2.4.4. Прочее.
- 2.5. Прочее.
- 3. Выбор необходимых кабелей/антенн.
 - 3.1. Для кабельного стандарта: для каждого типа кабеля (не более 1 страницы):
 - 3.1.1. Шифр.
 - 3.1.2. Фирма изготовитель.
 - 3.1.3. Схема (рисунок, фотография) внутренней структуры.

- 3.1.4. Параметры.
 - 3.1.4.1. Диаметр кабеля.
 - 3.1.4.2. Macca.
 - 3.1.4.3. Количество проводников/волокон.
 - 3.1.4.4. Максимальная дальность передачи сигнала.
 - 3.1.4.5. Максимальная скорость в канале.
 - 3.1.4.6. Стоимость.
 - 3.1.4.7. Прочее.
- 3.1.5. Прочее.
- 3.2. Для беспроводного стандарта: для каждого типа антенн (не более 1 страницы):
 - 3.2.1. Шифр.
 - 3.2.2. Фирма изготовитель.
 - 3.2.3. Рисунок (фотография) внешнего вида.
 - 3.2.4. Параметры
 - 3.2.4.1. Габаритные размеры.
 - 3.2.4.2. Диапазон частоты радиоканала.
 - 3.2.4.3. Максимальная скорость в канале.
 - 3.2.4.4. Мощность передаваемого сигнала.
 - 3.2.4.5. Максимальная дальность передачи сигнала.
 - 3.2.4.6. Диаграмма направленности.
 - 3.2.4.7. Стоимость.
 - 3.2.4.8. Прочее.
 - 3.2.5. Прочее.
- 4. Выбор необходимого сетевого оборудования.
 - 4.1. Для каждого типа оборудования (не более 1 страницы):
 - 4.1.1. Шифр.
 - 4.1.2. Фирма изготовитель.
 - 4.1.3. Фотография внешнего вида.
 - 4.1.4. Параметры
 - 4.1.4.1. Число портов.
 - 4.1.4.2. Какие стандарты поддерживают порты.
 - 4.1.4.3. Габаритные размеры.
 - 4.1.4.4. Максимальная скорость передачи в канал.
 - 4.1.4.5. Задержка транзитной передачи.
 - 4.1.4.6. Стоимость.
 - 4.1.4.7. Поддерживаемые протоколы/алгоритмы.
 - 4.1.4.8. Прочее.
 - 4.1.5. Прочее.
- 5. Полная структурная схема спроектированной сети.
- 6. Определение стоимости спроектированной сети.
- 7. Выводы.
- Список источников. В тексте отчёта должны быть проставлены ссылки на используемые источники.

Требования к оформлению отчета о лабораторной работе

Содержание отчёта должно точно соответствовать указанному в задании. Отчёт должен быть предоставлен на бумаге.

11.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся, являются:

- учебно-методический материал по дисциплине;
- материалы лекций.
- 11.4. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— экзамен — форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой