МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего

образования "САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 14

УТВЕРЖДАЮ Руководитель образовательной программы

к.т.н.,доц. (должность, уч. степень, звание)

«19» февраля 2025 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

В.Л. Оленев

«Дискретная математика» (Наименование дисциплины)

Код направления подготовки/ специальности	09.03.01
Наименование направления подготовки/ специальности	Информатика и вычислительная техника
Наименование направленности	Программирование, аналитика данных и цифровая трансформация систем
Форма обучения	очная
Год приема	2025

Санкт-Петербург-2025

Лист согласования рабочей программы дисциплины

Программу составил (а)		
ДОЦ., К.фМ.Н. (должность, уч. степень, звание)	(подпись, дата)	- <u>Д.И. Сикерина</u> (инициалы, фамилия)
Программа одобрена на заседан	ии кафедры № 14	
«19» февраля 2025 г, протокол	ı № 6	
Заведующий кафедрой № 14		
к.т.н.,доц.	MA	В.Л. Оленев
(уч. степень, звание)	(нодпись, дата)	(инициалы, фамилия)
	/	
Заместитель директора институ	та №1 по методинеской р	работе
доц. к.т.н.	Shiff.	В.Е. Таратун
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Дискретная математика» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 09.03.01 «Информатика и вычислительная техника» направленности «Программирование, аналитика данных и цифровая трансформация систем». Дисциплина реализуется кафедрой «№14».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

УК-1 «Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач»

ПК-2 «Способен осуществлять концептуальное, функциональное и логическое проектирование систем среднего и крупного масштаба и сложности»

Содержание дисциплины охватывает круг вопросов, связанных теорией множеств, комбинаторикой, теорией графов, теорией чисел, основами теории полей Галуа и теории кодирования.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, семинары, самостоятельная работа студента, консультации.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме зачета.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы, 108 часов.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью преподавания дисциплины является формирование математической и логической культуры студента, фундаментальная подготовка по разделам дискретной математики, овладение современным математическим аппаратом, привитие навыков современных видов математического мышления. Изучение методов решения типовых задач дискретной математики существенно обогатит навыки применения методов дискретной математики при решении инженерных задач.

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Универсальные компетенции	УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	УК-1.В.2 владеть навыками системного подхода для решения поставленных задач
Профессиональные компетенции	ПК-2 Способен осуществлять концептуальное, функциональное и логическое проектирование систем среднего и крупного масштаба и сложности	ПК-2.3.1 знать методы концептуального, функционального и логического проектирования, принципы разработки технико-экономических характеристик вариантов концептуальной архитектуры ПК-2.У.1 уметь разрабатывать технико-экономическое обоснование, определять ключевые свойства системы, определять ограничения системы, варианты концептуальной архитектуры системы ПК-2.В.1 владеть навыками определения ключевых свойств и ограничений системы, навыками определения вариантов концептуальной архитектуры системы, навыками описания технико-экономического обоснования

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- Аналитическая геометрия и линейная алгебра
- Математический анализ

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- Защита информации
- При написании квалификационной работы бакалавра

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам №2
1	2	3
Общая трудоемкость дисциплины, 3E/(час)	3/ 108	3/ 108
Из них часов практической подготовки	5	5
Аудиторные занятия, всего час.	51	51
в том числе:		
лекции (Л), (час)	34	34
практические/семинарские занятия (ПЗ), (час)	17	17
лабораторные работы (ЛР), (час)		
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)		
Самостоятельная работа, всего (час)	57	57
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Зачет	Зачет

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

таолица 5 – газделы, темы дисциплины, их	грудоемкост	ь			
Разделы, темы дисциплины	Лекции	ПЗ (СЗ)	ЛР	ΚП	CPC
т азделы, темы дисциплины	исциплины (час)		(час)	(час)	(час)
	Семестр 2				
Раздел 1. Комбинаторика	6	3			7
Раздел 2. Теория графов	14	7			10
Раздел 3. Теория чисел	6	3			20
Раздел 4. Основы теории полей Галуа	8	4			20
Итого в семестре:	34	17			57
Ито	ого 34	17	0	0	57

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий.

Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Таолица 4 — Соде	ица 4 – Содержание разделов и тем лекционного цикла			
Номер раздела	Название и содержание разделов и тем лекционных занятий			
1	Комбинаторика			
	Перестановки и сочетания. Метод математической индукции. Принцип			
	включения и исключения. Производящие функции.			
2	Теория графов			
	Основные понятия теории графов (граф, степень вершины, путь, цикл,			
	связный граф, полный граф, двудольный граф, изоморфизм графов).			
	Орграфы. Матрицы инцидентности и смежности. Деревья. Планарные			
	графы. Раскраска графов. Пути и циклы Эйлера и Гамильтона.			
3	Теория чисел			
	Основные понятия теории чисел (деление с остатком, НОД, взаимно			
	простые числа, НОК, простые и составные числа). Алгоритм Евклида.			
	Линейные диофантовы уравнения. Расширенный алгоритм Евклида.			
	Сравнения. Система вычетов. Теоремы Эйлера и Ферма. Сравнения 1-й			
	степени с одним неизвестным.			
4	Основы теории полей Галуа			
	Основные понятия теории конечных полей (поле, порядок,			
	характеристика). Строение конечных полей. Минимальные			
	многочлены и их свойства. Существование и единственность поля			
	GF(). Теория Галуа как основа алгебраической и комбинаторной теории			
	кодирования.			

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

				Из них	No
$N_{\underline{0}}$	Темы практических	Формы практических	Трудоемкость,	практической	раздела
п/п	занятий	занятий	(час)	подготовки,	дисцип
				(час)	ЛИНЫ
		Семестр 2			
	Перестановки и	Решение задач.	1	1	
	сочетания.				
	Метод	Решение задач.	1	1	
	математической				
	индукции.				
	Принцип	Решение задач.	1	1	
	включения и				
	исключения.				
	Производящие	Решение задач.	1	1	
	функции.				
	Построение графов	Решение задач.	1	2	
	(орграфов) с				
	различными				

условиями.				
Деревья.	Решение задач.	1	2	
Матрицы	Решение задач.	1	2	
инцидентности и			_	
смежности.				
Планарные графы.	Решение задач.	1	2	
Раскраска графов.	Решение задач.	1	2	
Эйлеровы и	Решение задач.	1	2	
гамильтоновы				
циклы				
НОК и НОД.	Решение задач.	1	3	
Алгоритм Евклида.				
Линейные				
диофантовы				
уравнения.				
Расширенный	Решение задач.	1	3	
алгоритм Евклида.				
Система вычетов.				
Функция Эйлера.	Решение задач.	1	3	
Теоремы Эйлера и				
Ферма.				
Решение сравнений	Решение задач.	1	3	
1-й степени с одним				
неизвестным				
Неприводимые	Решение задач.	1	4	
многочлены				
Построение	Решение задач.	2	4	
конечных полей				
Bcero)	17		

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

№	Наименован	ие лабораторных работ	Трудоемкость,	Из них практической	№ раздела
п/п	Паименован	ис лаоораторных раоот	(час)	подготовки,	дисцип
				(час)	лины
		Учебным планом не п	редусмотрено		
		Всего			

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 2,
Вид самостоятельной работы	час	час
1	2	3
Изучение теоретического материала дисциплины (TO)	20	20
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю успеваемости (ТКУ)	10	10
Домашнее задание (ДЗ)	20	20
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной аттестации (ПА)	7	7
Bcero:	57	57

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

Перечень печатных и электронных учебных изданий
 Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8- Перечень печатных и электронных учебных изданий

таолица 8– перечень печатных и электронных учеоных издании				
Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных		
		экземпляров)		
519.1/.2	Андерсон, Джеймс А. Дискретная математика и	10		
A65	комбинаторика [Текст] = Discrete mathematics with			
	combinatorics : [Учебник] / Дж. А. Андерсон; Пер. М.			
	М. Белова, Ред. С. С. Шкильняк, М. Р. Саит-Аметов			
	М. и др. : Вильямс, 2004 960 с. : рис Библиогр.: с.			
	850 - 855 (118 назв.) Предмимен. указ.: с. 942 -			
	953 ISBN 5-8459-0498-6 ISBN 0-13-086998-8			
	(англ.).			
519.1/2	Гаврилов, Гарий Петрович. Сборник задач по	2		
Γ12	дискретной математике [Текст] : учебное пособие / Г.			
	П. Гаврилов, А. А. Сапоженко М.: Наука:			
	Физматлит, 1977 368 с.			
519.6./8	Дискретная математика. Основные понятия теории	78		
Д 48	чисел [Текст] : методические указания / СПетерб.			
	гос. ун-т аэрокосм. приборостроения; сост. С.			
	В. Федоренко СПб. : Изд-во ГУАП, 2011 16 с Б.			
	ц.			
519.6./8	Дискретная математика. Дополнительные главы	78		
Д 48	теории чисел [Текст] : методические указания / С			

	Петерб. гос. ун-т аэрокосм. приборостроения ; сост.	
	С. В. Федоренко СПб. : Изд-во ГУАП, 2011 15 с	
	Б. ц.	
519.6/.8	Дискретная математика. Задачи и контрольные	78
Д 48	работы по теории чисел [Текст] : методические	
	указания / СПетерб. гос. ун-т аэрокосм.	
	приборостроения ; сост. С. В. Федоренко СПб. :	
	Изд-во ГУАП, 2011 19 с.	
621.391	Мак-Вильямс, Ф. Дж. Теория кодов, исправляющих	28
M15	ошибки [Текст] = The theory of error correcting codes:	
	монография / Ф. Дж. Мак-Вильямс, Н. Дж. А. Слоэн;	
	Пер. с англ. Бассалыго и др М. : Связь, 1979 743 с.	
	: рис Библиогр.: с. 674 - 733Предм. указ.: с. 734 -	
	739.	
519.1/.2	Евстигнеев, В. А. Применение теории графов в	3
E26	программировании [Текст] : монография / В.	
	А. Евстигнеев; Ред. А. П. Ершов М.: Наука. Гл. ред.	
	физмат. лит., 1985 352 с. : рис (Библиотека	
	программиста) Библиогр.: с. 342 - 349 (163 назв.)	
	Предм. указ.: с. 350 - 352.	
51	Виноградов, И. М. Основы теории чисел [Текст]:	5
B49	учебник / И. М.Виноградов 6-е изд., испр М. :	
	Гостехиздат, 1952 180 с.	
51	Бухштаб, А. А. Теория чисел [Текст] : учеб. пособие	1
Б94	для физмат. фак. пед. ин-тов / А. А.Бухштаб 2-е	
	изд., испр М.: Просвещение, 1966 384 с.: граф	
	Б. ц.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование
Intuit.ru	Дискретная математика.
	Основы дискретной математики.

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

,	- v r r r r
№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п		Наименование
	Не предусмотрено	

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№	Наименование составной части	Номер аудитории
π/π	материально-технической базы	(при необходимости)
1	Лекционная аудитория	

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 - Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Зачет	Список вопросов;
	Задачи
	Тесты

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	Vanagramyariyya ahani ginanayyy yi yayirarayyyy		
5-балльная шкала	Характеристика сформированных компетенций		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 		

Оценка компетенции	V		
5-балльная шкала	Характеристика сформированных компетенций		
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 		
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 		
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 		

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
	Учебным планом не предусмотрено	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 — Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код
312 11/11	перечень вопросов (задач) для зачета / дифф. зачета	индикатора
	вопросы	
1	Перестановки. Сочетания. Факториал. Биномиальные и	
	полиномиальные коэффициенты. Правило суммы, правило	
	произведения.	
2	Число перестановок без повторений. Число сочетаний без	
	повторений.	
3	Число перестановок с повторениями. Число сочетаний с	
	повторениями.	
4	Обобщенные перестановки и сочетания. Теорема о	
	количестве различных размещений элементов множества,	
	содержащего объекты к различных типов.	
5	Метод математической индукции. Примеры.	
6	Принцип включений-исключений. Доказательство	УК-1.3.2
	формулы включений-исключений.	
7	Круги Эйлера. Диаграммы Венна.	УК-1.В.2

8	Задача о беспорядках. Принцип включений-исключений для конечного числа конечных множеств.	УК-2.У.3
9	Производящая функция. Сумма, произведение,	ПК-2.3.1
	подстановка производящих функций. Теорема об обратной	2.5.1
	функции.	
10	Теорема о производящей функции последовательности,	ПК-2.У.1
10	задаваемой линейным рекуррентным соотношением.	2.0 .1
	Дифференцирование и интегрирование производящих	
	функций.	
11	Производящая функция. Производящая функция	ПК-2.В.1
11	последовательности Фибоначчи.	1110 2.15.1
12	Обыкновенный граф, мультиграф, псевдограф. Подграфы.	
12	Изоморфные графы. Степень вершины. Теоремы о	
	степенях вершин графа.	
13	Маршрут, путь, простой путь, цикл, простой цикл в	
13	графе. Теорема о существовании простого пути в графе.	
	Связный граф. Компоненты. Полный граф. Двудольный	
	граф. Примеры.	
14	Ориентированные графы. Связь ориентированных графов	
14	и бинарных отношений. Ориентированный подграф.	
	Полустепени входа и выхода вершины. Изоморфные	
	орграфы. Путь в орграфе. Соотнесенный граф орграфа.	
	Связные, сильно-связные, односторонне-связные графы.	
1.5	Примеры.	
15	Матрица инцидентности графа. Свойства строк и столбцов	
	матрицы инцидентности. Матрица инцидентности для	
	графа с петлями. Восстановление графа с помощью	
1.6	матрицы инцидентности. Примеры.	
16	Булево произведение матриц. Матрица смежности графа.	
	Применение матрицы смежности для нахождения путей	
	фиксированной длины. Примеры.	
17	Теоремы о существовании пути длины k в графе, о	
	связности графа.	
18	Алгоритмы Уоршолла как эффективный способ	
	вычисления матрицы . Пример нахождения путей	
	фиксированной длины.	
19	Деревья - основные понятия. Теоремы о существовании и	
	единственности пути для произвольных 2 вершин дерева.	
	Второе определение понятия дерева.	
20	Корневое дерево. Уровень вершины, высота дерева.	
	Бинарное дерево. Теоремы о необходимом и достаточном	
	соотношении для числа ребер и вершин в произвольном	
	дереве. Остовное дерево графа.	
21	Планарные графы. Грани планарного графа. Теорема	
	(формула Эйлера).	
22	Планарный граф. Граф "три дома - три колодца". Теорема	
	(граф не является планарным).	
23	Планарный граф. Полный 5-вершинный граф. Теорема	
	(граф не является планарным).	
24	Планарный граф. Расширение графа, производный граф,	
	гомеоморфные графы. Теорема о существовании в	
	планарном графе вершины степени 5 или менее. Теорема	

	Понтрягина-Куратовского (без доказательства). Пример -	
	граф Петерсена.	
25	Правильная раскраска вершин графа. Проблема четырех	
	красок. Хроматический многочлен графа, хроматическое	
	число графа. Хроматический многочлен и хроматическое	
	число графа. Теорема о раскраске несвязного \$n\$-	
	компонентного графа.	
26	Правильная раскраска вершин графа. Специальные графы	
	и . Теорема о связи характеристических многочленов	
	графов G , и .	
27	Правильная раскраска вершин графа. Специальные графы	
	и . Теорема о степени характеристического многочлена	
	произвольного планарного графа с п вершинами.	
28	Правильная раскраска вершин графа. Специальные графы	
	и . Использование равенства $(\lambda) = (\lambda) + (\lambda)$ на примере	
	(два способа).	
29	Правильная раскраска вершин графа. Теорема (любую	
	плоскую карту можно раскрасить в 5 цветов).	
30	Эйлеров цикл. Теорема о необходимом и достаточном	
	условии существования эйлерова цикла в произвольном	
	графе. Пример - задача о кенигсбергских мостах.	
31	Эйлеров путь. Собственный эйлеров путь. Теорема о	
	необходимом и достаточном условии существования	
	эйлерова пути в произвольном графе. Примеры.	
32	Ориентированный граф. Эйлеров цикл в орграфе. Теорема	
	о необходимом и достаточном условии существования	
	эйлерова цикла в орграфе. Примеры.	
33	Гамильтонов цикл. Гамильтонов путь. Теоремы о	
	необходимом условии существовании гамильтонова цикла	
	в графе. Пример - гамильтонов цикл в графе.	
34	Теорема о достаточном условии существования	
	гамильтонова цикла в графе.	
35	Теорема о существовании гамильтонова цикла в графе = G	
36	Замыкание графа G , корректность определения замыкания.	
	Теорема о существовании гамильтонова цикла в графе	
	cl(G).	
37	НОД. Взаимно простые числа. Алгоритм Евклида.	
38	НОК. Теорема о связи НОК и НОД.	
39	Линейные диофантовы уравнения с двумя неизвестными и	
	расширенный алгоритм Евклида.	
40	Сравнения. Свойства сравнений.	
41	Полная система вычетов.	
42	Функция Эйлера.	
43	Теоремы Эйлера и Ферма. Сравнения 1-й степени с одним	
	неизвестным.	
44	Поле. Порядок поля. Характеристика поля. Конечные и	
• •	бесконечные поля. Теорема о соотношении порядка поля	
	и его характеристики.	
45	Порядок произвольного элемента конечного поля $GF()$.	
	Теорема (основное отличительное свойство конечных	
	1 (

	полей). Мультипликативная группа поля <i>GF()</i> . Теорема Ферма.	
46	Порядок произвольного элемента конечного поля $GF()$.	
	Примитивный элемент. Теорема о существовании	
	примитивного элемента в произвольном конечном поле.	
47	Неприводимые над полем многочлены. Идеал кольца.	
	Теорема об идеале кольца. Фактор-кольцо $F[x] / (s(x))$.	
	Теорема о фактор-кольце многочленов. Неприводимость	
	многочлена $f(x) = + + 1$ над полем $GF(2)$.	
48	Примитивный многочлен. Минимальный многочлен	
	элемента поля. Свойства (M1) - (M3) минимальных	
	многочленов.	
49	Минимальный многочлен элемента поля. Свойства (М4) -	
	(М5) минимальных многочленов.	
50	Изоморфизм полей. Теорема об изоморфизме конечных	
50	полей порядка . Единственность поля $GF()$. Пример	
	изоморфизма полей.	
51	Теорема о существовании конечного поля $GF()$.	
52	Циклотомические классы по модулю (- 1). Свойства	
32	(М6) - (М7) минимальных многочленов. Теоремы о	
	(MO) - (MV) минимальных многочленов. Георемы о многочленах - I и - x . Пример - поиск всех	
	неприводимых и минимальных многочленов элементов	
	неприводимых и минимальных многочленов элементов над $GF()$.	
1	Задачи	
1	Найти количество объектов, удовлетворяющих заданным	
2	условиям.	
2	Доказать соотношение для производящих функций двух	
	последовательностей, если задано соотношение на	
2	элементы данных последовательностей.	
3	Построить неизоморфные графы с заданным количеством	
	вершин и ребер, удовлетворяющие некоторым	
	дополнительным условиям (не содержащие подграфы,	
	гомеоморфные и ; состоящие из k компонент; имеющие	
	эйлеров, но не имеющие гамильтонова цикла).	
4	Раскрасить "правильно" заданный граф.	
5	Найти хроматический многочлен, хроматическое число и	
	хроматический индекс заданного графа.	
6	Найти НОК заданной системы чисел.	
7	Найти функцию Эйлера для заданного числа.	
8	Доказать, что приведенные числа составляют полную	
	систему вычетов по некоторому заданному модулю.	
9	Решить сравнение.	
10	Определить, является ли заданный многочлен	
	неприводимым над полем Галуа заданного порядка.	
11	Построить конечное поле заданного порядка с помощью	
	неприводимого многочлена.	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перече	ень тем для курсового г	проектирования/выполнения

курсовой работы
Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Перечень вопросов д	Код
312 11/11	Прочитайте текст, выберите правил	индикатора
1.	аргументы, обосновывающие выбор Биномиальным коэффициентом C_n^r на a) $n!/(n-r)!$ б) $(n+r-1)!/(r! (n-1)!)$ в) $n!/(r!(n-r)!)$ г) n^r	УК-1.3.1
2.	Прочитайте текст, выберите правил запишите аргументы, обосновываю Для правила суммы при подсчете чис выборок 2 объектов верно: а) количество объектов ≤ 3 б) объекты никогда не могут быть вы в) объекты выбираются независимо г) выбор "А или В" можно осуществи д) выбор "А или В" можно осуществи д) выбор "А или В" можно осуществи	УК-1.3.1
3.	Прочитайте текст и установите соот данной в левом столбце, подберите в правом столбце. 1. Число перестановок без повторений из п элементов по г 2. Число сочетаний без повторений из п элементов по г 3. Число перестановок с повторениями из п элементов по г 4. Число сочетаний с повторениями из п элементов по г	УК-1.3.2
4.	Прочитайте текст и установите посл соответствующую последовательно Какие слагаемые содержит формула и подсчета числа предметов из <i>N</i> имею одним из данных свойств $A_1,,A_n$? Разправильном порядке. (Через N_{i1i2is} обобладающих свойствами $A_{i1},,A_{is}$ (и, м другими свойствами).)	УК-1.У.3

			I	
	$\begin{array}{c} 6) (-1)^s \Sigma_{1 \leq i_1 < i_2 < \dots < i_s \leq n} \ N_{i_1 i_2 \dots i_s} \\ \text{B) } 2^n \\ \Gamma) P_n^k \end{array}$			
	д) <i>N</i> e) (-1) ⁿ <i>N</i> ₁₂ <i>n</i>			
	Прочитайте текст и запишите	развернутый обоснованный ответ.		
5.	Что представляет собой диаграмма Венна для n свойств, при решении задач, связанных с подсчетами числа элементов из множества $U = \{a_1,, a_n\}$, обладающих заданными n свойствами?			
6.	есть не больше 10 элементов б) Рассматривается не меньше не меньше 20 элементов в) Рассматривается любое коли которых любое количество элег Рассматривается количество натуральному числу, в каждом элементов	выбор ответа. то конечных множеств» то конечных множеств» то множеств, в каждом из которых тчество множеств, в каждом из ментов множеств, равное некоторому из которых конечное число	УК-2.У.3	
7.	Прочитайте текст, выберите п запишите аргументы, обоснов Какое из данных множеств явл: а) Множество натуральных чис б) Множество четных целых чис в) Множество натуральных чис г) Множество действительных е) Множество остатков от делег	УК-2.У.3		
	Прочитайте текст и установите соответствие. К каждой позиции, данной в левом столбце, подберите соответствующую позицию в правом столбце.			
	1. Формула включений-			
8.		$ Ai \cap Aj \cap Ak - \dots + (-1)^{n+1} A1 \cap A_2 \cap A_3 \cap \dots \cap A_n .$	УК-2.У.3	
	2.Число N(r) элементов с точно г свойствами	$\begin{array}{c} \text{6) } N - \Sigma_{i=1} \ N_i + \Sigma_{1 \leq i1 < i2 \leq n} \ N_{i1i2} - \\ \dots + (-1)^s \ \Sigma_{1 \leq i1 < i2 < \dots < is \leq n} \ N_{i1i2\dots is} + \\ \dots + (-1)^n N_{12}\dots n \end{array}$		
	3.Формула включений- исключений для конечного числа конечных множеств	$\begin{array}{c} \text{B) } \Sigma_{1 \leq i1 < < ir \leq n} \ N_{i1ir} \\ + + (-1)^{s-r} C_s! \Sigma_{1 \leq i1 < < is \leq n} \ N_{i1}i_s \\ + + (-1)^{n-r} C_n! N_{12}n. \end{array}$		

		$ U - \Sigma Ai + \Sigma i < j Ai \cap Aj -$	
		$ < j < k Ai \cap Aj \cap Ak + + -1 ^n A_1 \cap A_2 \cap A_3 \cap \cap A_n $	
9.	Прочитайте текст и установите последовательность. Запишите соответствующую последовательность букв слева направо. Какие слагаемые содержит формула включений-исключений для подсчета числа элементов, не содержащихся ни в одном из N имеющихся конечных множеств $A_1,, A_n$? Разместите нужные в правильном порядке. (Через U обозначен универсум - универсальное множество.) а) $(-1)^n A_1 \cap A_2 \cap A_3 \cap \cap A_n $ б) 2^n в) C_n^k г) P_n^k д) $(-1)^s \Sigma 1 \le i 1 < i 2 < < i s \le n i < j < k A_{i1} \cap A_{i2} \cap \cap A_{is} $ е) $ U $		
10.	Прочитайте текст и запишите раз Задача о беспорядках: сколько сущ a_n) чисел $1, 2,, n$, таких, что $a_i \neq b$ беспорядках можно решить методо терминах принципа включений-иск данном случае представляют собой также N_{ini2is} - число элементов, обл	ествует перестановок (a ₁ , a ₂ , . i для всех $i \in \{1,2,,n\}$. Задачуюм включений-исключений. В ключений поясните, что в i N элементов, свойства A_{i} , а	,
11.	Прочитайте текст, выберите прав аргументы, обосновывающие выб Производящая функция - это: а) последовательность чисел a ₀ , a ₁ , 6) формальный степенной ряд a ₀ + a ₁ , cyмма ряда a ₀ + a ₁ x + + a _n x ⁿ +	5ор ответа. a _{2,,} a _{n,} a ₁ x + a ₂ x ² + + a _n x ⁿ +	ПК-2.3.1
12.	Прочитайте текст, выберите правильные варианты ответа и запишите аргументы, обосновывающие выбор ответов. Даны две последовательности чисел $a_0, a_1, \ldots, a_n, \ldots u \ b_0, b_1, \ldots, b_n, \ldots c$ производящими функциями $A(x) = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n + \ldots u$ $B(x) = b_1x + b_2x^2 + \ldots + b_nx^n + \ldots$ Тогда над $A(x)$ и $B(x)$ можно определить следующие операции: $a_1 = a_1x + a_2x^2 + \ldots + a_nx^n + \ldots u$ определить следующие операции: $a_1 = a_1x + a_2x^2 + \ldots + a_nx^n + \ldots u$ определить следующие операции: $a_1 = a_1x + a_2x^2 + \ldots + a_nx^n + \ldots u$ в определить следующие операции: $a_1 = a_1x + a_2x^2 + \ldots + a_nx^n + \ldots u$ определить следующие операции: $a_1 = a_1x + a_2x^2 + \ldots + a_nx^n + \ldots u$ определить следующие операции: $a_1 = a_1x + a_2x^2 + \ldots + a_nx^n + \ldots u$ определить следующие операции: $a_1 = a_1x + a_2x^2 + \ldots + a_nx^n + \ldots u$ определить следующие операции: $a_1 = a_1x + a_2x^2 + \ldots + a_nx^n + \ldots u$ определить следующие операции: $a_1 = a_1x + a_2x^2 + \ldots + a_nx^n + \ldots u$ определить следующие операции: $a_1 = a_1x + a_2x^2 + \ldots + a_nx^n + \ldots u$ определить следующие операции: $a_1 = a_1x + a_2x^2 + \ldots + a_nx^n + \ldots u$ определить следующие операции: $a_1 = a_1x + a_2x^2 + \ldots + a_nx^n + \ldots u$ определить следующие операции: $a_1 = a_1x + a_2x^2 + \ldots + a_nx^n + \ldots u$ определить следующие операции: $a_1 = a_1x + a_2x^2 + \ldots + a_nx^n + \ldots u$ определить следующие операции: $a_1 = a_1x + a_2x^2 + \ldots + a_nx^n + \ldots u$ определить следующие операции: $a_1 = a_1x + a_2x^2 + \ldots + a_nx^n + \ldots u$ определить следующие операции: $a_1 = a_1x + a_2x^2 + \ldots + a_nx^n + \ldots u$ определить следующие операции: $a_1 = a_1x + a_2x^2 + \ldots + a_nx^n + \ldots u$ определить следующие операции: $a_1 = a_1x + a_2x^2 + \ldots + a_nx^n + \ldots u$ определить следующие операции: $a_1 = a_1x + a_2x^2 + \ldots + a_nx^n + \ldots u$ определить следующие операции: $a_1 = a_1x + a_2x^2 + \ldots + a_nx^n + \ldots u$ определить следующие операции: $a_1 = a_1x + a_2x + \ldots + a_nx^n + \ldots u$ определить следующие операции: $a_1 = a_1x + a_2x + \ldots + a_nx^n + \ldots u$ определить следующие операции: $a_1 = a_1x + a_1x + a_2x $		ПК-2.3.1
13.	Прочитайте текст и установите со данной в левом столбце, подбери в правом столбце.		

		исел $a_0,a_1,\ldots,a_n,\ldots$ u $b_0,b_1,\ldots,b_n,\ldots$ c	
14.	Прочитайте текст и установите соответствующую последоват Последовательность Фибоначчи последовательность, которая оп членами $f_0 = f_1 = 1$ и соотношен начальные слагаемые входят в г последовательности Фибоначчи правильном порядке. а) $2x^2$ б) $6x^4$ в) 1 г) $5x^4$ д) x е) $3x^3$ ж) x^2	ПК-2.В.1	
15.		развернутый обоснованный ответ. $^{n}+$ и $\mathrm{B}(\mathrm{y})=-y-$ производящие роизводящей функции $B=-y$ в	ПК-2.3.1

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п		Пе	еречень контрольных работ
	Не предусмотрено		

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру

проведения текущего контроля успеваемости и промежуточной аттестации обучающихся Γ УА Π .

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

11.2. Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;

обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

- Каждое практическое занятие проводится после чтения лекции, дающей теоретические основы для его выполнения;
- Выполнение задач должно осуществляться на основе методических указаний, предоставляемых преподавателем;
- Студент имеет право на выполнение практической работы по оригинальной методике с согласия преподавателя;
 - В конце практического занятия преподаватель оценивает работу студента;
- Преподаватель формирует рубежный и итоговый контроль знаний студента по результатам выполнения практических занятий путем проверки отчета и (или) его защиты (собеседования);
- Студент несет ответственность за пропуск практического занятия по неуважительной причине, неподготовленность к практическому занятию, несвоевременную сдачу отчета о практическом занятии и его защиту.
- 11.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).

Таблица 20 – Примерный перечень тем для самостоятельного изучения

1 44011111	(a 20 Tipiniopiibii nope telib telii Alii taliice telitolistici o iisj teliiii		
№ п/п	Название темы		
1.	Бинарные отношения и их связь с графами		
2.	Каноническая форма числа		
3.	Система сравнений первой степени. Китайская теорема об остатках		
4.	Группы, кольца и их взаимосвязь с полями		
5.	Двоичные линейные и циклические коды.		
6.	Решение задач из таблицы 15		

11.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

11.5. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— зачет — это форма оценки знаний, полученных обучающимся в ходе изучения учебной дисциплины в целом или промежуточная (по окончании семестра) оценка знаний обучающимся по отдельным разделам дисциплины с аттестационной оценкой «зачтено» или «не зачтено».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой