МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 31

УТВЕРЖДАЮ Руководитель образовательной программы

ДОЦ., К.Т.Н.

(должность, уч. степень, звание)

IO.В. Бакшеева

(инициалы, фамилия)

(подпись) «4» февраля 2025 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Электротехника» (Наименование дисциплины)

Код направления подготовки/ специальности	11.03.01
Наименование направления подготовки/ специальности	Радиотехника
Наименование направленности	Радиотехнические системы и их эксплуатация
Форма обучения	очная
Год приема	2025

Лист согласования рабочей программы дисциплины

Программу составил (а)	//_	
Доц., к.т.н.	04.02.2025	С.Ю. Мельников
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Программа одобрена на заседа	ании кафедры № 31	
«4»_февраля 2025 г, протоко.	n № 3_	
Заведующий кафедрой № 31		
д.т.н.,проф.	04.02.2025	В.Ф. Шишлаков
(уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Заместитель директора инстит	ута №2 по методической рабо	те
доц.,к.т.н.,доц.	04.02.2025	Н.В. Марковская
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Электротехника» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 11.03.01 «Радиотехника» направленности «Радиотехнические системы и их эксплуатация». Дисциплина реализуется кафедрой «№31».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ОПК-1 «Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности»

ОПК-2 «Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных»

Содержание дисциплины охватывает круг вопросов, связанных с изучением теоретических основ электротехники, методов расчета и экспериментального исследования электрических и магнитных цепей.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, практические занятия, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы, 108 часов.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью преподавания дисциплины является формирование у обучающихся необходимых знаний о законах и методах расчета электрических и магнитных цепей электротехнических устройств, приобретение навыков расчета и анализа параметров электрических и магнитных цепей, расчета токов и напряжений в установившихся и переходных режимах работы линейных и нелинейных схем замещения электрических предоставление возможности обучающимся получить навыки цепей. продемонстрировать умение пользоваться электроизмерительными приборами. Обучающиеся должны освоить дисциплину на уровне, позволяющем им использовать на практике методы расчета и анализа электрических цепей. Уровень освоения дисциплины должен позволять студентам проводить типовые расчеты основных электрических схем, проводить элементарные лабораторные испытания электротехнических устройств.

- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП BO).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Общепрофессиональные компетенции	ОПК-1 Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности	ОПК-1.3.1 знать фундаментальные законы природы и основные физические и математические законы ОПК-1.У.1 уметь применять физические законы и математические методы для решения задач теоретического и прикладного характера ОПК-1.В.1 владеть навыками использования знаний физики и математики для решения задач инженерной деятельности
Общепрофессиональные компетенции	ОПК-2 Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных	ОПК-2.3.1 знать основные методы и средства проведения экспериментальных исследований, системы стандартизации и сертификации ОПК-2.У.1 уметь формулировать в рамках поставленной цели проекта совокупность взаимосвязанных задач, обеспечивающих ее достижение; оценивать достоинства и недостатки возможных вариантов решения задачи; определять ожидаемые результаты решения выделенных задач; выбирать способы и средства измерений и проводить экспериментальные исследования ОПК-2.В.1 владеть способами обработки и представления полученных данных и

	оценки погрешности результатов
	измерений

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Математика. Математический анализ»,
- «Физика».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- «Основы радиоавтоматики»,
- «Помехоустойчивость радиотехнических систем»,
- «Радиотехнические цепи и сигналы»,
- «Схемотехника аналоговых электронных устройств»,
- «Теория и техника радиотехнических систем»,
- «Тестирование и отладка радиоэлектронной аппаратуры»,
- «Устройства приема и обработки сигналов»,
- «<u>Электроника</u>».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

		Трудоемкость по
Вид учебной работы	Всего	семестрам
		№3
1	2	3
Общая трудоемкость дисциплины,	3/ 108	3/ 108
3Е/ (час)	3/ 100	3/ 100
Из них часов практической подготовки		
Аудиторные занятия, всего час.	51	51
в том числе:		
лекции (Л), (час)	17	17
практические/семинарские занятия (ПЗ),	17	17
(час)	1 /	17
лабораторные работы (ЛР), (час)	17	17
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)	45	45
Самостоятельная работа, всего (час)	12	12
Вид промежуточной аттестации: зачет,		
дифф. зачет, экзамен (Зачет, Дифф. зач,	Экз.	Экз.
Экз.**)		

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции (час)	ПЗ (СЗ) (час)	ЛР (час)	КП (час)	СРС (час)
Семестр 3					
Раздел 1. Введение, основные определения и законы электрических цепей	2	-	1	-	1
Раздел 2. Общие методы анализа линейных цепей.	4	6	-	-	3
Раздел 3. Линейные цепи в гармоническом режиме	6	4	8	-	3
Раздел 4. Анализ индуктивно-связанных цепей	1	2	8	-	2
Раздел 5. Нелинейные цепи	1	1	-	-	2
Раздел 6. Классический метод анализа переходных процессов	3	4			2
Итого в семестре:	17	17	17		12
Итого	17	17	17	0	12

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер	П				
раздела	Название и содержание разделов и тем лекционных занятий				
1	Введение, основные определения и законы электрических цепей.				
	Тема 1.1. Цели и задачи курса. Электрическая цепь - электромагнитная модель				
	устройства или системы. Источники и приемники. Система величин,				
	используемая при описании цепи				
	Тема 1.2. Математическая модель и задача анализа цепи. Основные				
	топологические элементы электрической цепи - двухполюсник, узел, ветвь,				
	контур. Законы Ома, Кирхгофа, Джоуля-Ленца. Делитель напряжения и				
	делитель тока.				
	Тема 1.3. Взаимное преобразование реальных источников тока и источников				
	напряжения. Последовательное и параллельное соединение элементов цепи.				
	Соединение "звездой" и "треугольником".				
	Тема 1.4. Расчет пассивных двухполюсников со смешанным соединением				
	элементов. Входные и эквивалентные сопротивления и проводимости, связь				
	между ними.				
2	Общие методы анализа линейных цепей				
	Тема 2.1. Метод эквивалентных преобразований				
	Тема 2.2. Метод токов ветвей				
	Тема 2.3. Метод контурных токов				
	Тема 2.4. Метод узловых напряжений				
	Тема 2.5. Метод наложения.				
	Тема 2.6. Метод эквивалентного источника. Теоремы Тевенина и Нортона				
3	Линейные цепи в гармоническом режиме				
	Тема 3.1. Основные величины, характеризующие гармонический режим.				

	Амплитудное, действующее и среднее значения. Вращающиеся векторы,			
	векторные диаграммы. Пассивные элементы в гармоническом режиме.			
	Активная, реактивная и полная мощность.			
	Тема 3.2. Комплексные изображения гармонических величин. Комплексные			
	амплитуды и действующие значения. Комплексные сопротивления и			
	<u> </u>			
	проводимости. Уравнения элементов и соединений в комплексной форме.			
	Комплексная мощность, условия согласования.			
	Тема 3.3. Резонанс, условия и виды резонанса, определение резонансных			
	величин.			
4	Анализ индуктивно-связанных цепей			
	Тема 4.1. Электромагнитная индукция. Закон Фарадея. Взаимная индукция.			
5	Нелинейные цепи			
	Тема 5.1. Определение нелинейной цепи, характеристики нелинейных			
	элементов. Действия над характеристиками. Понятие о магнитной цепи.			
	Тема 5.2. Графоаналитический метод анализа нелинейных цепей.			
6	Классический метод анализа переходных процессов			
	Тема 6.1. Коммутация. Законы коммутации, переменные состояния. Начальные			
	условия и их определение. Постоянная времени цепи.			
	Тема 6.2. Порядок составления и аналитического решения уравнений состояния.			

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

№ п/п	Темы практических занятий	Формы практических занятий	Трудоемкость, (час)	Из них практической подготовки, (час)	№ раздела дисцип лины
		Семестр 3			
1	Метод преобразований	Решение задач	2		2
2	Методы токов ветвей и узловых напряжений	Решение задач	2		2
3	Метод наложения и эквивалентного источника	Решение задач	2		2
4	Метод комплексных амплитуд	Решение задач	4		3
5	Индуктивно-связанные цепи	Решение задач	2		4
6	Нелинейные цепи	Решение задач	1		5
7	Переходные процессы в цепях 1-го порядка	Решение задач	2		6
8	Переходные процессы в цепях 2-го порядка	Решение задач	2		6
	Всего		17		

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

№ п/п	Наименование лабораторных работ	Трудоемкость, (час)	Из них практической подготовки,	№ раздела дисцип
	Семестр 3	3	(час)	лины
1	Вводное занятие. Инструктаж по технике безопасности	1		1
2	Исследование линии передачи энергии от источника к приемнику	4		2
3	Разветвленная линейная электрическая цепь постоянного тока	4		2
4	Экспериментальное определение параметров элементов цепей переменного тока	4		3
5	Резонанс напряжений	4		3
	Всего	17		

- 4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено
- 4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 3,
Вид самостоятельной работы	час	час
1	2	3
Изучение теоретического материала дисциплины (TO)	4	4
Расчетно-графические задания (РГЗ)	4	4
Подготовка к текущему контролю успеваемости (ТКУ)	2	2
Подготовка к промежуточной аттестации (ПА)	2	2
Всего:	12	12

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8– Перечень печатных и электронных учебных изданий

Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)
	Электротехника: учебное пособие / С. В. Солёный	
	[и др.]; СПетерб. гос. ун-т аэрокосм.	
	приборостроения. Электрон. текстовые дан - СПб. :	
	Изд-во ГУАП, 2019 129 с.	
	Электротехника. Линейная электрическая цепь с	
	сосредоточенными параметрами в установившемся	
	режиме: учебное пособие / Б. А. Артемьев; С	
	Петерб. гос. ун-т аэрокосм. приборостроения.	
	Электрон. текстовые дан СПб. : Изд-во ГУАП,	
	2013 86 c.	
	Электротехника. Переходные процессы линейной	
	электрической цепи со сосредоточенными	
	параметрами. Нелинейные цепи: учебное пособие	
	/ Б. А. Артемьев, Н. В. Решетникова, Д. В.	
	Шишлаков; СПетерб. гос. ун-т аэрокосм.	
	приборостроения. Электрон. текстовые дан СПб.	
	: Изд-во ГУАП, 2019 130 с.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 — Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование	
https://znanium.com	ЭБС «Znanium»	
http://e.lanbook.com/	ЭБС «Лань»	

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10– Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

Таблица 11- Перечень информационно-справочных систем

№ п/п		Наименование
	Не предусмотрено	

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория общего доступа	на ул. Гастелло, 15
2	Специализированная лаборатория электротехники	ауд.14-04 и 14-06 на
		ул. Гастелло, 15
3	Стенд "Электрические цепи и основы электроники"	ауд.14-04 и 14-06 на
		ул. Гастелло, 15

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

	1 2
Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	Vanavaranyaranyara ahan ayan abayyyy ny yayaranyayy			
5-балльная шкала	Характеристика сформированных компетенций			
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 			

Оценка компетенции	Характеристика сформированных компетенций		
5-балльная шкала	<u> Дарак геристика еформированных компетенции</u>		
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 		
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 		
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 		

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора	
1	Элементы электрической цепи. Источники и приемники. Реальные и идеализированные пассивные элементы.		
2	Неуправляемые и управляемые источники. Реальные и идеализированные активные элементы.		
3	Электрический ток, напряжение и ЭДС. Мощность и энергия.	ОПК-1.3.1	
4	Топология электрических цепей. Граф, дерево графа, ветви связи. Ветвь, узел, контур, сечение. Главный контур и главное сечение.	OHK-1.5.1	
5	Последовательное, параллельное и смешанное соединение элементов электрической цепи. Делитель напряжения и делитель тока.		
6	Закон Ома для участка цепи. Законы Кирхгофа.		
7	Метод токов связей.		
8	Метод узловых напряжений.		
9	Метод эквивалентного источника. Теоремы Тевенина и Нортона.	ОПК-1.У.1	
10	Согласование сопротивления нагрузки и сопротивления источника. Условие передачи максимальной мощности. Режим холостого хода и короткого замыкания.	ОПК-2.3.1	

11	Переменный ток, напряжение, ЭДС. Основные характеристики гармонического тока (напряжения, ЭДС).	
12	Метод комплексных амплитуд.	
13	Сопротивление, индуктивность и емкость в цепях гармонического тока	
14	Последовательное и параллельное соединение сопротивления, индуктивности и емкости. Комплексное сопротивление и проводимость цепи.	ОПК-2.У.1
15	Анализ сложных цепей гармонического тока.	
16	Активная, реактивная и полная мощность в цепи гармонического тока.	
17	Явление резонанса в электрических цепях. Условие и признаки резонанса. Добротность, коэффициент затухания, полоса пропускания.	
18	Резонанс напряжений и резонанс токов.	
19	Метод преобразований.	OFFI 2 1/ 1
20	Баланс мощностей.	ОПК-2.У.1
21	Закон Фарадея. Векторная диаграмма разветвленной цепи с индуктивно-связанными катушками.	
22	Взаимная индуктивность. ЭДС взаимной индукции. Маркировка одноименных зажимов.	ОПК-2.3.1
23	Согласное и встречное включение индуктивносвязанных катушек.	
24	Переходные процессы в линейных электрических цепях. Законы коммутации. Определение порядка и постоянной времени электрической цепи.	ОПК-2.У.1
25	Определение вида переходного процесса по корням характеристического уравнения.	ОПК-1.У.1
26	Классический метод анализа переходных процессов.	
27	Нелинейные цепи. Графоаналитический метод расчета.	
28	Алгоритм расчета нелинейной цепи методом эквивалентного источника	ОПК-2.3.1

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

1 .	
№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

таолица	а 18 – Примерный перечень вопросов для тестов	
$N_{\Omega} \Pi/\Pi$	Примерный перечень вопросов для тестов	Код индикатора
	Какие законы Кирхгофа, относящиеся к электротехнике, вы знаете?	пидинатора
	1) закон токов	
1	2) закон мощностей	ОПК-1.3.1
1	3) закон напряжений	OIIK 1.5.1
	4) закон узлов и контуров.	
	Количество уравнений, составляемых по первому закону Кирхгофа,	
	равно числу	
	1) узлов схемы	
2	2) узлов схемы плюс 1	ОПК-1.3.1
	3) узлов схемы минус 1	
	4) независимых контуров.	
	Если в схеме два независимых контура и два узла, то число ветвей	
	равно	
3	1) двум	ОПК-1.У.1
	2) трем	
	3) четырем	
	4) пяти.	
	Величина мощности, выделяющаяся в нагрузочном сопротивлении	
	при протекании тока, определяется по закону	
4	1) Кирхгофа	ОПК-1.3.1
	2) Джоуля-Ленца	
	3) Фарадея	
	4) Oma.	
	Электрическая цепь представляет собой совокупность:	
_	1) источников и приемников энергии	0000
5	2) передатчиков и приемников	ОПК-1.3.1
	3) потребителей и преобразователей энергии	
	4) соединенных между собой радиоэлементов.	
	ЭДС – это работа по перемещению единицы заряда	
	1) по внешнему участку цепи	0000
6	2) по всей замкнутой цепи	ОПК-1.3.1
	3) внутри источника	
	4) по сопротивлению нагрузки.	
	Электрическое сопротивление - это скалярная величина, равная	
	отношению электрического напряжения на зажимах двухполюсника	
_	K	07774 4 7 4
7	1) проводимости двухполюсника	ОПК-1.3.1
	2) ЭДС двухполюсника	
	3) току в двухполюснике	
	4) мощности двухполюсника.	
	В электрической цепи с резистивным элементом энергия источника	
8	преобразуется в энергию	
	1) тепловую	ОПК-1.У.1
	2) магнитного поля	
	3) электрического поля	
	4) электромагнитную энергию.	
	В каком из элементов электрической цепи происходит запасание	
9	энергии источника?	ОПК-1.У.1
	1) резистивном	

	2) индуктивном	
	3) емкостном	
	4) активном.	
	Запасание энергии магнитного поля происходит:	
	1) в конденсаторе	
10	2) в резисторе	ОПК-1.У.1
10		OHK-1.9.1
	3) катушке индуктивности	
	4) в реактивных элементах.	
	Запасание энергии электрического поля происходит:	
1.1	1) в конденсаторе	OHIC 1 X/ 1
11	2) в резисторе	ОПК-1.У.1
	3) катушке индуктивности	
	4) в реактивных элементах.	
	Какая из формулировок первого закона Кирхгофа является	
	правильной? Ответ обоснуйте.	
	1) сумма токов в узле равна нулю	
12	2) сумма напряжений в контуре равна нулю	ОПК-1.3.1
	3) алгебраическая сумма токов в узле электрической цепи равна	
	нулю	
	4) алгебраическая сумма падений напряжений в узле равна нулю.	
	Какая из формулировок второго закона Кирхгофа является	
	правильной? Ответ обоснуйте.	
	1) сумма падений напряжений в контуре равна сумме ЭДС в этом	
	контуре	
12	2) сумма напряжений в контуре равна нулю	OHK 1 2 1
13	3) алгебраическая сумма напряжений в контуре электрической цепи	ОПК-1.3.1
	равна алгебраической сумме токов в узле	
	4) алгебраическая сумма падений напряжений в контуре	
	электрической цепи равна алгебраической сумме ЭДС в этом	
	контуре.	
	Напряжение на зажимах идеального источника ЭДС	
	1) не зависит от тока во внешней цепи	
14	2) уменьшается с увеличением тока нагрузки	ОПК-1.У.1
	3) увеличивается с увеличением тока нагрузки	
	4) остается неизменным при изменении тока нагрузки.	
	Активным элементом электрической цепи является	
	1) источник напряжения	
15	2) активное сопротивление	ОПК-1.3.1
	3) реактивное сопротивление	
	4) источник тока.	
	Условием передачи максимальной мощности от источника в	
	нагрузку является	
	1) равенство суммы внутреннего сопротивления источника и	
	сопротивления линии передач сопротивлению нагрузки	
16	2) равенство нулю сопротивления источника	ОПК-1.В.1
	3) равенство нулю сопротивления источника	
	4) равенство внутреннего сопротивления источника сопротивлению	
	линии передач	
	Угол ф сдвига фаз между напряжением источника и током в	
17	последовательной RLC-цепи при резонансе равен	
	1) – 90°	ОПК-1.3.1
	$(2) + 90^{\circ}$	
	(4) + 30	

	3) 0°	
	4) зависит от реактивного сопротивления.	
	В каких электрических цепях возникают переходные процессы?	
	Ответ обоснуйте.	
	1) в любых	
18	2) в цепях с реактивными элементами	ОПК-1.3.1
	3) в чисто резистивных цепях	
	4) в цепях с накопителями энергии.	
	Независимыми начальными условиями при коммутации являются	
	1) ток через емкость и напряжение на индуктивности	
19	2) напряжение на емкости и ток через индуктивность	ОПК-1.3.1
17	3) напряжения на реактивных элементах	OHK 1.5.1
	4) токи через реактивные элементы.	
	Какой параметр гармонического тока влияет на индуктивное сопротивление катушки? Ответ обоснуйте.	
20	1) начальная фаза	ОПК-2.У.1
	2) амплитуда	
	3) действующее значение	
	4) период	
	Резонанс напряжений можно получить в цепи	
	1) с последовательным соединением резистора и катушки	
21	2) с параллельным соединением резистора и конденсатора	ОПК-2.У.1
	3) с параллельным соединением резистора, катушки и конденсатора	
	4) с последовательным соединением резистора, катушки и	
	конденсатора.	
	В соответствии с законами коммутации в момент коммутации	
	мгновенно не может измениться	
22	1) ток в катушке индуктивности	ОПК-2.У.1
	2) ток в конденсаторе	01111 2.7.11
	3) напряжение на катушке индуктивности 4) напряжение на	
	конденсаторе.	
	Постоянная времени в последовательной RL-цепи при увеличении	
	сопротивления R	
23	1) увеличивается	ОПК-2.У.1
23	2) уменьшается	0111(2.3.11
	3) остается неизменной	
	4) зависит от начального тока в цепи.	
	Постоянная времени в последовательной RC-цепи при увеличении	
	сопротивления R	
24	1) увеличивается	ОПК-2.У.1
21	2) уменьшается	OTHC 2.5.1
	3) остается неизменной	
	4) зависит от начального значения напряжения на конденсаторе.	
	Дифференциальное сопротивление равно нулю в точках	
	характеристики нелинейного элемента	
25	1) максимума или минимума	ОПК-1.В.1
	2) только в точке максимума	OHR I.D.I
	3) только в точке минимума	
	4) никогда не равно нулю.	
	Нелинейной называется электрическая цепь, у которой	
26	1) вольт-амперная характеристика представляет собой прямую	ОПК-1.3.1
	линию	

	2) электрические напряжения и токи связаны друг с другом	
	линейными зависимостями	
	3) в источниках ЭДС сила тока зависит от величины этой ЭДС	
	4) электрические напряжения и токи связаны друг с другом	
	нелинейными зависимостями.	
27	Сформулируйте закон токов Кирхгофа.	ОПК-1.3.1
28	Сформулируйте закон напряжений Кирхгофа.	ОПК-1.3.1
29	Дайте определение реактивного элемента электрической цепи.	ОПК-1.3.1
30	Дайте определение идеального источника ЭДС.	ОПК-1.3.1
31	Дайте определение идеального источника тока.	ОПК-1.3.1
32	Сформулируйте принцип суперпозиции.	ОПК 1.3.1
33	Сформулируйте принцип супернозиции. Сформулируйте теорему Тевенина.	ОПК-1.3.1
34	Сформулируйте теорему Нортона.	ОПК-1.3.1
34	Чем идеальный источник ЭДС отличается от идеального источника	OHK-1.5.1
35	тока?	ОПК-1.3.1
36	Чем реальный источник отличается от идеального?	ОПК-1.3.1
37	Назовите базовые пассивные элементы электрической цепи.	ОПК-1.3.1
38	Дайте формулировку закона электромагнитной индукции М.Фарадея.	ОПК-1.3.1
39	Сформулируйте два закона коммутации.	ОПК-1.3.1
40	Назовите три параметра, определяющие гармонический сигнал.	ОПК-1.3.1
41	Какие разновидности переходного процесса могут наблюдаться в цепях второго порядка?	ОПК-1.3.1
42	Для определения эквивалентного сопротивления цепи относительно заданных зажимов необходимо 1) закоротить источники тока и разомкнуть ветви с источниками напряжения 2) закоротить источники напряжения и разомкнуть ветви с источниками тока 3) закоротить источники тока и источники напряжения 4) разомкнуть ветви с источниками напряжения и тока.	ОПК-1.У.1
43	Наличие в цепи идеального источника напряжения уменьшает количество уравнений, описывающих цепь, при использовании метода 1) токов ветвей 2) контурных токов 3) узловых напряжений 4) эквивалентного источника.	ОПК-1.У.1
44	Наличие в цепи идеального источника тока уменьшает количество уравнений, описывающих цепь, при использовании метода 1) токов ветвей 2) контурных токов 3) узловых напряжений 4) эквивалентного источника.	ОПК-1.У.1
45	При расчете электрической цепи рациональным является метод 1) токов ветвей 2) узловых напряжений 3) контурных токов 4) описывающий цепь минимальным количеством уравнений.	ОПК-1.У.1
46	Напряжение холостого хода источника измеряется на его зажимах при 1) отключенной нагрузке	ОПК-1.В.1

	2) закороченной нагрузке	
	3) подключенном сопротивлении нагрузки	
	4) сопротивлении нагрузки, стремящемся к бесконечности.	
	При расчете цепи, в которой изменяется величина только одного из	
	сопротивлений, рациональным является метод	
	1) токов ветвей	
47	2) контурных токов	ОПК-1.У.1
	3) узловых напряжений	
	4) эквивалентного источника.	
	Для расчета цепи с постоянными и гармоническими источниками	
	следует использовать метод	
	1) токов ветвей	
48	2) контурных токов	ОПК-1.У.1
	3) узловых напряжений	
	4) наложения (суперпозиции).	
	Если напряжение, приложенное к обкладкам плоского	
	конденсатора, увеличить в 2 раза, то его емкость	
	1) уменьшится в 2 раза	
49	2) увеличится в 2 раза	ОПК-2.У.1
	3) не изменится	
	4) увеличится в 4 раза	
	Если напряжение, приложенное к обкладкам плоского	
	конденсатора, увеличить в 2 раза, то запасаемая им энергия	
	1) уменьшится в 2 раза	
50	2) увеличится в 2 раза	ОПК-2.У.1
	3) не изменится	
	4) увеличится в 4 раза	
	Если ток через катушку индуктивности уменьшить в 2 раза, то	
	величина ее индуктивности	
	1) уменьшится в 2 раза	
51	2) увеличится в 2 раза	ОПК-2.У.1
	3) не изменится	
	4) увеличится в 4 раза	
	Если ток через катушку индуктивности увеличить в 2 раза, то	
	запасаемая ею энергия	
50	1) уменьшится в 2 раза	OHIC 2 XX 1
52	2) увеличится в 2 раза	ОПК-2.У.1
	3) не изменится	
	4) увеличится в 4 раза	
	В последовательной RC-цепи с увеличением частоты при	
	неизменном приложенном действующем значении напряжения	
	действующее значение тока	
53	1) остается неизменным	ОПК-2.У.1
	2) уменьшается	
	3) увеличивается	
	4) увеличивается, а затем уменьшается.	
	В последовательной RL-цепи с увеличением частоты при	
	неизменном приложенном действующем значении напряжения	
~ .	действующее значение тока	OHIC 2 XX 1
54	1) остается неизменным	ОПК-2.У.1
	2) уменьшается	
	3) увеличивается	
	1 / 4	

	4) увеличивается, а затем уменьшается.	
	Если в последовательной RL-цепи при неизменном действующем	
55	значении тока увеличить его частоту в два раза, то действующее	
	значение напряжения на резисторе	
	1) не изменится	ОПК-2.У.1
	2) уменьшится вдвое	
	3) увеличится вдвое	
	4) резко возрастет.	
	Если в последовательной RL-цепи при неизменном действующем	
	значении тока увеличить его частоту в два раза, то действующее	
	значение напряжения на катушке	
56	1) не изменится	ОПК-2.У.1
	2) уменьшится вдвое	
	3) увеличится вдвое	
	4) резко возрастет.	
	Если в последовательной RC-цепи при неизменном действующем	
	значении тока уменьшить его частоту в два раза, то действующее	
	значение напряжения на резисторе	
57	1) не изменится	ОПК-2.У.1
	2) уменьшится вдвое	
	3) увеличится вдвое	
	4) резко возрастет.	
	Если в последовательной RC-цепи при неизменном действующем	
	значении тока уменьшить его частоту в два раза, то действующее	
	значение напряжения на конденсаторе	
58	1) не изменится	ОПК-2.У.1
	2) уменьшится вдвое	
	3) увеличится вдвое	
	4) резко возрастет.	
	Мгновенные значения тока и напряжения в нагрузке заданы	
	выражениями: $i = 0.2 \sin(376.8t + 80^{\circ})$ A, $u = 250 \sin(376.8t + 170^{\circ})$ B.	
	7	
59	Определите тип нагрузки. Ответ обоснуйте. 1) активная	ОПК-1.В.1
	2) индуктивная	
	3) емкостная	
	4) активно-индуктивная Частотные свойства электрической цепи синусоидального тока	
	обусловлены зависимостью от частоты	
	1) амплитуды входного напряжения	
60	2) индуктивного и емкостного сопротивлений	ОПК-1.У.1
	3) амплитуды входного тока	
	4) активного сопротивления цепи.	
	Если ёмкостное сопротивление С – элемента XC, то комплексное	
61	сопротивление ZC этого элемента определяется как	
	1) Z _C =C	
	2) Z _C = X _C	ОПК-1.В.1
	$\begin{array}{c} 2) ZC - AC \\ 3) ZC = -iXC \end{array}$	
	$4)Z_{C}=jX_{C}$	
	+/2C-JAC. Если в параллельной RLC-цепи синусоидального тока R=XL=2XC,	
62	то угол сдвига фаз между током и напряжением на входе цепи	ОПК-1.В.1
02	равен	OHK-1.D.1
	Puben	

	1) 0°	
	2) -45°	
	3) 45°	
	4) 90°.	
	Если в последовательной RLC-цепи синусоидального тока	
	· · · · · · · · · · · · · · · · · · ·	
	R=XL=2XC, то угол сдвига фаз между током и напряжением на	
60	входе цепи равен	OHIC 1 D 1
63	1) 0°	ОПК-1.В.1
	2) -45°	
	3) 45°	
	4) 90°.	
	Полное сопротивление Z последовательной RL-цепи	
	синусоидального тока определяется выражением	
	$1) Z = \sqrt{R^2 + L^2}$	
64	$\frac{1}{2}$ $\frac{1}$	ОПК-1.В.1
	$ \begin{array}{l} 2) \ Z = R + \omega L \\ 3) \ Z = \sqrt{R^2 + (\omega L)^2} \end{array} $	
	$Z = \sqrt{R^2 + (\omega L)^2}$	
	4) Z = R + L.	
	Угол сдвига фаз arphi между напряжением и током на входе	
	последовательной RC-цепи синусоидального тока определяется	
	как	
	$\varphi = arctg \frac{-X_C}{R}$	
	$\varphi = arctg \frac{\varphi}{R}$	
65		ОПК-1.В.1
	$(2) \varphi = X_C / K$	
	$\varphi = X_C / R$ $\varphi = arctg \frac{R}{X_C}$ 3)	
	$\frac{\psi - arcig}{X_C}$	
	3) P / W	
	$\phi = -R/X_C.$	
	$i = -j\frac{\pi}{4}$	
	Если комплексное значение напряжения $\dot{U} = 10e^{-j\frac{n}{4}}$ В, то	
	мгновенное значение этого напряжения составляет	
	$u = 10 \sqrt{2} \sin \left(\cot \frac{\pi}{2} \right)$	
	$ 1) u = 10\sqrt{2}\sin\left(\omega t + \frac{\pi}{6}\right) $ B	
	'	
66		ОПК-1.В.1
	(2) (4) B	
	(a) (b) B	
	$u = 10\sqrt{2} \sin\left(\omega t - \frac{\pi}{2}\right)$	
	$u = 10\sqrt{2}\sin\left(\omega t - \frac{\pi}{4}\right)$ B.	
	Угловая частота ω при периоде T=0.01 с составит	
67	1) ω=314 1/c	
	$(2) \omega = 0.01 \text{ 1/c}$	ОПК-1.В.1
	3) $\omega = 628 \text{ 1/c}$	OHK-1.D.1
	$4) \omega = 100 \text{ 1/c}.$	
	В алгебраической форме записи комплексное действующее	
	_	ОПИ 1 В 1
	значение тока $\dot{I} = 1,41e^{-j\frac{\pi}{4}}$ A составляет	ОПК-1.В.1
	значение тока А составляет	

i 2 2):	
1) $I = 2 - 2$		
$2)^{\hat{I}=1+\hat{j}}$		
$3) \stackrel{\dot{I}}{=} 1 - j$		
$4) \dot{I} = 2 + 2$		
	$i(t) = 1.41\sin\left(314t - \frac{\pi}{2}\right)\hat{A}$	
	ное деиствующее значение тока	
составляет ; ^π		
$1) \dot{I} = 1e^{j\frac{\pi}{2}}$	A	OFFICA DA
$\vec{l} = 1.416$	$\frac{1}{2}$	ОПК-1.В.1
$ \begin{array}{c c} 69 & i = 1,41e \\ 2) & i = 1,41e \\ 3) & i = 1,41e \end{array} $	A	
$j = 1,41\epsilon$	2 ⁻⁷⁴ A	
$4) \dot{I} = 1e^{-j\frac{2}{2}}$	<u>7</u> 2 .	
Действите	льная составляющая комплексного тока $\dot{I} = 2e^{j120^{\circ}}A$	
равна 1) 1.73 A		ОПК-1.В.1
2) -1 A		OHK-1.D.1
3) 0		
4) -1.73 A.	$\dot{L} = 2 a^{j150^{o}} \Lambda$	
Мнимая со 1) 1 A	оставляющая комплексного тока $\dot{I} = 2e^{j150^o}A$ равна	
71 2) 1.73 A		ОПК-1.В.1
3) -1.73 A		
4) 2 A.	7 10 160°	
Если комп	лексное сопротивление двухполюсника $Z = 10e^{j60^{\circ}}$ Ом, то	
72 1) 5 Ом	ое сопротивление R равно	ОПК-1.В.1
2) 3,16 Om		OHK-1.D.1
3) 8,66 Om		
4) 10 Ом. Действую	щее значение напряжения u(t) через емкостной элемент	
	$(t) = 2\sqrt{2}\sin(314t)$ A и величине XC равной 50 Ом,	
составит		
73 1) 200 B		ОПК-1.У.1
2) 141 B 3) 100 B		
4) 52 B.		
_	ное значение тока i(t) в индуктивном элементе при	
напряжени составит	ии u(t)=141sin(314t) В и величине XL равной 100 Ом,	
74 1) 100 A:	•	ОПК-1.У.1
2) 1.41 A		
3) 314 A 4) 1 A.		
	ичить в 2 раза частоту f синусоидального напряжения	ОПК-1.У.1

	(0)	
	$u = U_m \sin(2\pi f t + \psi)$ при неизменных Um и ψ , то действующее	
	значение этого напряжения	
	1) не изменится	
	2) увеличится в $\sqrt{2}$ раз	
	l —	
	3) уменьшится в $\sqrt{2}$ раз	
	4) увеличится в 2 раза.	
	В индуктивном элементе L	
	1) напряжение совпадает с током по фазе	
76	2) напряжение и ток находятся в противофазе	ОПК-1.У.1
	3) напряжение отстаёт от тока по фазе на 90°	
	4) напряжение опережает ток по фазе на 90°.	
	В емкостном элементе С	
	1) напряжение совпадает с током по фазе	
77	2) напряжение и ток находятся в противофазе	ОПК-1.У.1
	3) напряжение отстаёт от тока по фазе на 90°	
	4) напряжение опережает ток по фазе на 90°.	
	В phhезистивном элементе R	
	1) напряжение совпадает с током по фазе	
78	2) напряжение и ток находятся в противофазе	ОПК-1.У.1
	3) напряжение отстаёт от тока по фазе на 90°	
	4) напряжение опережает ток по фазе на 90°.	
	Как можно оценить длительность переходного процесса в цепи	
	первого порядка? Ответ обоснуйте.	
	1) по величине индуктивности (емкости)	
79	2) по разнице между током в индуктивности (напряжения на	ОПК-1.У.1
	емкости) до и после коммутации	
	3) по величине постоянной времени	
	4) только по результатам расчета переходного процесса	
	Порядок цепи с несколькими реактивными элементами	
	определяется	
90	1) только их количеством	ОПИ 1 И 1
80	2) их типом, количеством и взаимным расположением	ОПК-1.У.1
	3) их взаимным расположением	
	4) их типом	
	Дифференциальное сопротивление в точке графика нелинейной	
	вольт-амперной характеристики определяется	
01	1) отношением напряжения к току в этой точке	ОПК-1.У.1
81	2) отношением тока к напряжению в этой точке	OHK-1.Y.1
	3) тангенсом угла наклона прямой из этой точки в начало координат	
	4) тангенсом угла наклона касательной в этой точке.	
	Графический способ расчета нелинейных цепей методом	
	построения результирующей вольт-амперной характеристики	
	применяется	
82	1) для последовательно и параллельно соединенных элементов 2)	ОПК-1.У.1
	только для последовательно соединенных элементов	
	3)только для параллельно соединенных элементов	
	4) для расчета сложных цепей.	
	Единица измерения электрической проводимости:	
02	1) ом	ОПИ 1 2 1
83	2) ампер/вольт	ОПК-1.3.1
	3) сименс	
	3) CAMICHE	

	4) генри	
	Единица измерения индуктивности:	
	1) om	
84	2) фарад	ОПК-1.3.1
	3) сименс	
	4) генри	
	Единица измерения реактивной мощности:	
	1) ватт	
85	2) вар	ОПК-1.3.1
	3) сименс	
	4) генри	
	Единица измерения взаимной индуктивности:	
	1) ом	
86	2) фарад	ОПК-1.3.1
	3) сименс	
	4) генри	
	Если величина начальной фазы синусоидального тока равна +60°, а	
	величина начальной фазы синусоидального напряжения -30°, то	
	угол сдвига фаз между напряжением и током равен	
87	$1) +90^{\circ}$	ОПК-1.3.1
	2) -90°	
	$(3) +30^{\circ}$	
	4) -30°	
	Постоянная времени переходного процесса в последовательной RC-	
	цепи при R=2 кОм и C=10 мкФ составит	
88	1) 5 нс	ОПК-1.3.1
	2) 2·10 ⁻⁸ c	
	3) 2 c	
	4) 20 mc.	
	В RLC-цепи переходный процесс. Если корни характеристического	
	уравнения вещественные отрицательные разные, то переходный	
00	процесс	OTHE 1 2 1
89	1) колебательный затухающий	ОПК-1.3.1
	2) апериодический	
	3) колебательный незатухающий	
	4) критический.	
	В RLC-цепи переходный процесс. Если корни характеристического	
	уравнения вещественные отрицательные равные, то переходный	
90	процесс 1) колебательный затухающий	ОПК-1.3.1
70	2) апериодический	OHK-1.5.1
	3) колебательный незатухающий	
	4) критический.	
	В RLC-цепи переходный процесс. Если корни характеристического	
	уравнения комплексно-сопряженные с отрицательной	
	вещественной частью, то переходный процесс	
91	1) колебательный затухающий	ОПК-1.3.1
<i>)</i> 1	2) апериодический	
	3) колебательный незатухающий	
	4) критический.	
	В RLC-цепи с идеализированными элементами переходный	
92	процесс. Если сопротивление R=0, то переходный процесс	ОПК-1.3.1
	процесс. Дели сопротивнение к о, то переходиви процесс	<u> </u>

	1) колебательный затухающий	
	2) апериодический	
	3) колебательный незатухающий	
	4) критический.	
93	Какие показания амперметра при изменении частоты источника свидетельствуют о наличии режима резонанса в последовательной RLC-цепи? Ответ обоснуйте. 1) минимум тока 2) максимум тока 3) неизменная величина тока	ОПК-1.В.1
	4) уменьшение тока с ростом частоты.	
94	Реактивная мощность Q цепи при резонансе равна 1) 0 2) 0.5 3) 1 4) 2	ОПК-1.3.1
95	Положительный знак угла сдвига фаз между напряжением и током покажет фазометр при включении его в цепь с 1) катушкой индуктивности 2) конденсатором 3) резистором 4) источником напряжения.	ОПК-1.В.1
96	Для измерения напряжения на элементе электрической цепи вольтметр подключают 1) параллельно элементу 2) последовательно с элементом 3) к выводам элемента 4) к зажимам источника.	ОПК-2.3.1
97	Для измерения тока в ветви электрической цепи амперметр подключают 1) параллельно этой ветви 2) в разрыв этой ветви 3) к узлам, примыкающим к этой ветви 4) последовательно с элементами этой ветви.	ОПК-2.3.1
98	Опыт согласного и встречного включения двух индуктивно- связанных катушек может быть использовано для определения 1) коэффициента связи 2) коэффициента взаимной индукции 3) одноименных зажимов 4) активного сопротивления катушек.	ОПК-2.3.1
99	Мощность, отдаваемая в нагрузку по линии передачи источником, принимает максимально возможное значение. При этом измеренный амперметром ток в нагрузке равен 1) току короткого замыкания источника 2) четверти тока короткого замыкания источника 3) нулю 4) половине тока короткого замыкания источника.	ОПК-2.3.1
100	В согласованном режиме измеренное вольтметром напряжение на сопротивлении нагрузки равно 1) напряжению источника 2) напряжению в линии передачи 3) нулю	ОПК-2.3.1

	4) половине напряжения источника.	
	Признаком резонанса в последовательной RLC-цепи является	
101	1) максимум тока в цепи	
	2) максимум реактивной мощности	ОПК-2.3.1
	3) равенство нулю угла сдвига фаз между напряжением и током	
	4) минимальное напряжение на активном сопротивлении.	
	Прибор для измерения электрического напряжения	
	1) амперметр	
102	2) вольтметр	ОПК-2.У.1
	3) фазометр	
	4) ваттметр	
	Прибор для измерения электрического тока	
	1) амперметр	
103	2) вольтметр	ОПК-2.У.1
	3) фазометр	
	4) ваттметр	
	Прибор для измерения фазового сдвига между напряжением и	
	током	
104	1) амперметр	ОПК-2.У.1
104	2) вольтметр	OTIK 2.3.1
	3) фазометр	
	4) ваттметр	
	Прибор для измерения активной мощности	
	1) амперметр	
105	2) вольтметр	ОПК-2.У.1
	3) фазометр	
	4) ваттметр	
	Реактивную мощность в цепи можно определить, имея показания.	
	Ответ поясните.	
106	1) амперметра, вольтметра и ваттметра	ОПК-2.У.1
	2) амперметра, вольтметра и фазометра	
	3) ваттметра и фазометра	
	4) вольтметра и ваттметра	
	Показания вольтметра при измерении напряжения элементе	
	электрической цепи будут более точными, если его внутреннее	
107	сопротивление по сравнению с сопротивлением этого элемента 1) намного меньше	ОПК-2.У.1
107		O11K-2. y . 1
	2) намного больше 3) равно	
	(a) равно (b) меньше	
	Показания амперметра при измерении тока в ветви электрической цепи будут более точными, если его внутреннее сопротивление по	
	сравнению с сопротивлением ветви	
108	1) намного меньше	ОПК-2.У.1
	2) намного больше	O11K-2.3.1
	3) равно	
	4) больше	
	При измерении напряжения на элементе электрической цепи по	
	отношению к нему вольтметр включается	
109	1) последовательно	ОПК-2.У.1
	2) параллельно	0111(2.3.1
	3) согласно	
	o, consucito	

	4) встречно	
	При измерении тока через элемент электрической цепи по	
110	отношению к нему амперметр включается	
	1) последовательно	ОПК-2.У.1
	2) параллельно	OHK-2.9.1
	3) согласно	
	4) встречно	
	В цепи синусоидального тока измеренное вольтметром напряжение	
	является его	
111	1) амплитудным значением	OHICA D.1
111	2) действующим значением	ОПК-2.В.1
	3) средним значением	
	4) среднеквадратичным значением	
	В цепи с синусоидальным источником измеренный амперметром	
	ток является его	
	1) амплитудным значением	0774.0.0.4
112	2) действующим значением	ОПК-2.В.1
	3) средним значением	
	4) среднеквадратичным значением	
	В режиме холостого хода сопротивление нагрузки, подключенное к	
	источнику равно	
	1) нулю	
113	3) бесконечности	ОПК-1.В.1
	3) внутреннему сопротивлению источника	
	4) сопротивлению линии	
	В режиме короткого замыкания сопротивление нагрузки,	
	подключенное к источнику равно	
444	1) нулю	0774 1 D 1
114	3) бесконечности	ОПК-1.В.1
	3) внутреннему сопротивлению источника	
	4) сопротивлению линии	
	Если в электрическую розетку ничего не включено, источник	
	напряжения находится в режиме	
115	1) согласованном	OTIV 1 D 1
115	2) короткого замыкания	ОПК-1.В.1
	3) холостого хода	
	4) нагруженном	
	Частота переменного напряжения (тока) измеряется в	
	1) радианах	
116	2) радианах в секунду	ОПК-2.У.1
	3) герцах	
	4) генри	
	Сигнал на экране осциллографа представляет собой	
	1) зависимость тока от времени	
117	2) зависимость напряжения от времени	ОПК-2.В.1
	3) зависимость напряжения от тока	
	4) зависимость тока от напряжения	
	Как на экране осциллографа получить изображение формы тока в	
	ветви электрической цепи с учетом его фазы? Ответ поясните.	
118	1) подключить щупы осциллографа к конденсатору в этой ветви	ОПК-2.В.1
	2) подключить щупы осциллографа к сопротивлению шунта	
	(резистору) в этой ветви	

	3) подключить щупы осциллографа к индуктивной катушке в этой ветви	
	4) подключить щупы осциллографа к узлам этой ветви	
	В идеализированной последовательной RLC-цепи при резонансе суммарное напряжение на индуктивном и емкостном элементе равно	
119	 напряжению источника нулю удвоенному напряжению на емкостном элементе разности напряжений на индуктивном и емкостном элементе 	ОПК-2.3.1
120	Какие измерительные приборы понадобятся для определения коэффициента взаимной индукции двух индуктивно-связанных катушек? Ответ поясните. 1) два амперметра 2) два вольтметра 3) вольтметр, амперметр, частотомер 4) два амперметра и вольтметр	ОПК-2.3.1
121	Как экспериментально определить сопротивление согласованной нагрузки?	ОПК-2.3.1
122	Что понимают под действующим значением напряжения (тока)?	ОПК-2.3.1
123	Как с помощью ваттметра и фазометра определить реактивную мощность цепи переменного тока?	ОПК-2.3.1
124	Как изменение взаимного расположения катушек индуктивности влияет на их индуктивную связь?	ОПК-2.3.1
125	Как экспериментально определить коэффициент взаимной индукции двух катушек?	ОПК-2.В.1
126	Как по экспериментально снятым вольт-амперным характеристикам нелинейных элементов цепи построить результирующую вольт-амперную характеристику относительно зажимов источника?	ОПК-2.В.1
127	Как подключить ваттметр для измерения активной мощности цепи?	ОПК-2.3.1
128	Должен ли вольтметр иметь большое внутреннее сопротивление? Почему?	ОПК-2.У.1
129	Должен ли амперметр иметь маленькое внутреннее сопротивление? Почему?	ОПК-2.У.1
130	Можно ли амперметр включить последовательно с вольтметром? Что он при этом будет показывать?	ОПК-2.У.1

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень ко	нтрольных работ
	Не предусмотрено	

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- Основные понятия и законы теории электрических цепей;
- Методы расчета электрических цепей постоянного тока;
- Анализ цепей гармонического тока;
- Индуктивно-связанные цепи;
- Нелинейные цепи постоянного тока;
- Классический метод анализа переходных процессов в цепях постоянного тока.
- 11.2. Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;

обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

Методические указания по прохождению практических занятий имеются в следующих источниках:

- 1. Расчет электрических цепей: методические указания к выполнению практических заданий по электротехническим курсам дисциплин. Ч. 1 Электрон. текстовые дан. СПб.: Изд-во ГУАП, 2018. 59 с.
- 2. Расчет электрических цепей: методические указания к выполнению практических заданий по электротехническим курсам дисциплин. Ч. 2. Переходные процессы. Электрон. текстовые дан. СПб.: Изд-во ГУАП, 2020. 74 с.
- 3. Расчет электрических цепей: методические указания к выполнению практических заданий по электротехническим курсам дисциплин. Ч. 4. Нелинейные и магнитные цепи. Индуктивно-связанные цепи. Трансформаторы. Электрон. текстовые дан. СПб.: Изд-во ГУАП, 2023. 80 с.
- 11.3. Методические указания для обучающихся по выполнению лабораторных работ

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задания и требования к проведению лабораторных работ приведены в следующих источниках:

- 1. Электротехника: лабораторный практикум/ В.А. Голубков, С.Ю. Мельников. Электрон. текстовые дан. СПб: Изд-во ГУАП, 2023 82 с.
- 2. Электротехника: лабораторный практикум / С.И. Бардинский [и др.]; С.-Петерб. гос. ун-т аэрокосм. приборостроения. Электрон. текстовые дан. СПб.: Изд-во ГУАП, 2017. 190 с.

Требования к оформлению отчета по лабораторной работе

Отчет должен содержать титульный лист, а его содержание должно быть оформлено согласно Γ OCT 7.32-2017.

Нормативная документация, необходимая для оформления, приведена на электронном ресурсе ГУАП: https://guap.ru/standart/doc и в приведенных выше источниках.

11.4. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическим материалом, направляющим самостоятельную работу обучающихся, является учебно-методический материал по дисциплине.

11.5. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Текущий контроль успеваемости студентов проводится путем мониторинга результатов выполнения лабораторных работ, контрольным вопросами на защите практических и лабораторных работ, путем получения обратной связи во время проведения лекций.

Своевременная сдача отчетов по лабораторным и практическим заданиям и положительный результат на защите этих работ может учитываться при проведении промежуточной аттестации.

11.6. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

– экзамен – форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Промежуточная аттестация проводится по ФОС, приведенному в п.10.3 данной рабочей программы дисциплины.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой