МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 22

УТВЕРЖДАЮ

Руководитель образовательной программы

доц.,к.т.н.

(должность, уч. степень, звание)

Ю.В. Бакшеева

KS

(подпись)

динициалы, фамилия)

«19» февраля 2025 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Математические методы в радиотехнике» (Наименование дисциплины)

Код направления подготовки/ специальности	11.03.01	
Наименование направления подготовки/ специальности	Радиотехника	
Наименование направленности	Радиотехнические системы и их эксплуатация	
Форма обучения	очная	
Год приема	2025	

Лист согласования рабочей программы дисциплины

К.т.н., доцент	11.02.2025	Ю.В.Бакшеева
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Программа одобрена на заседа	ании кафедры № 22	
«11» февраля 2025 г, протоко	л № 2	
Заведующий кафедрой № 22	09m	
	Mas 11.02.2025	Ю.В. Бакшеева
	11.02.2025 (подпись, дата)	Ю.В. Бакшеева (инициалы, фамилия)
Заведующий кафедрой № 22 к.т.н. (уч. степень, звание)		
К.Т.Н. (уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
к.т.н.	(подпись, дата)	(инициалы, фамилия)
К.Т.Н. (уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Математические методы в радиотехнике» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 11.03.01 «Радиотехника» направленности «Радиотехнические системы и их эксплуатация». Дисциплина реализуется кафедрой «№22».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-1 «Способен выполнять математическое моделирование объектов и процессов по типовым методикам, в том числе с использованием стандартных пакетов прикладных программ, а также с использованием методов искусственного интеллекта»

Содержание дисциплины охватывает круг вопросов, связанных с основными направлениями математической теории радиотехнических систем (РТС): теорией случайных величин и процессов; математическими моделями сигналов и помех в радиотехнических системах; методами теории различения, обнаружения и оценивания параметров сигналов; структурами оптимальных обнаружителей, различителей и их качественным показателями; основами статистической теории измерения параметров сигналов радиотехнических систем; разрешением сигналов; сложными сигналами.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа студента.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме дифференцированного зачета.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы, 108 часов.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Дисциплина «Математические методы в радиотехнике» должна обеспечить получение обучающимися необходимых знаний, умений и навыков в области радиотехники, а также, создавать необходимую базу для успешного овладения последующими специальными дисциплинами учебного плана. Она должна способствовать развитию творческих способностей студентов, умению формулировать и решать задачи изучаемой специальности, умению творчески применять и самостоятельно повышать уровень своих знаний.

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Профессиональные компетенции	ПК-1 Способен выполнять математическое моделирование объектов и процессов по типовым методикам, в том числе с использованием стандартных пакетов прикладных программ, а также с использованием методов искусственного интеллекта	ПК-1.3.1 знать методы и программные средства моделирования аппаратной части ПК-1.У.1 уметь строить физические и математические модели моделей, узлов, блоков радиотехнических устройств и систем ПК-1.В.1 владеть навыками компьютерного моделирования

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Физика (разделы: теория электричества и магнетизма)»;
- «Высшая математика и спецразделы математики (разделы: дифференциальное и интегральное исчисление, теория вероятностей и математическая статистика)»;
- «Информатика и программирование»;
- «Основы теории цепей»;
- «Радиотехнические цепи и сигналы».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- «Многофункциональные РЛС»,
- «Основы теории систем и комплексов радиоэлектронной борьбы»,
- «Адаптивные радиотехнические системы».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

		Трудоемкость по
Вид учебной работы	Всего	семестрам
		№5
1	2	3
Общая трудоемкость дисциплины,	3/ 108	3/ 108
3Е/ (час)	3/ 100	3/ 100
Из них часов практической подготовки	34	34
Аудиторные занятия, всего час.	51	51
в том числе:		
лекции (Л), (час)	17	17
практические/семинарские занятия (ПЗ),	34	34
(час)		
лабораторные работы (ЛР), (час)		
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)		
Самостоятельная работа, всего (час)	57	57
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Дифф. Зач.	Дифф. Зач.

Примечание: ** кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Семестр 5 Раздел 1. Методы описания сигналов и помех. Тема 1.1 Основные характеристики одномерных случайных величин. Основные модельные распределения вероятности. Характеристики детерминированных сигналов.	(час)	(час)	(час)	(час)
Тема 1.1 Основные характеристики одномерных случайных величин. Основные модельные распределения вероятности. Характеристики детерминированных				
Тема 1.2 Пространства сигналов. Скалярное произведение векторов. Представления пмерных векторов. Дискретное преобразование Фурье. Тема 1.3 Основные характеристики совокупности случайных величин. Условные распределения.	11			19

величин.				
Тема 1.4 Ортогональные разложения				
случайного процесса. Преобразование				
Карунена-Лоэва. Классификация случайных				
процессов. Тема 1.5 Динамические модели				
случайных процессов. Процессы				
авторегрессии и скользящего среднего.				
Тема 1.6 Моментно-кумулянтное описание				
случайных величин и процессов. Спектры и				
полиспектры. Кепстральный анализ.				
Тема 1.7 Модели взаимодействия сигналов и				
помех: аддитивно- мультипликативное				
взаимодействие. Динамические модели.				
Уравнения состояния и наблюдения.				
Раздел 2. Статистическая теория обнаружения				
и различения сигналов.				
Тема 2.1 Формулировка задач оптимального				
обнаружения и различения. Основные				
элементы задачи обнаружения и условно-				
экстремальные критерии обнаружения.				
Тема 2.2 Функция правдоподобия и отношение				
правдоподобия. Рабочие характеристики				
обнаружения и характеристики обнаружения				
сигналов на фоне помех. Дефлекция				
решающей статистики и отношение				
сигнал/шум на выходе.				
Тема 2.3 Обнаружение сдвига и изменения				
масштаба гауссовского распределения. Задача				
оптимального разнесения в системе связи или				
оптимальной энергии в импульсе.	5	11		19
Тема 2.4 Общая задача различения				
многомерных гауссовских распределений.				
Обнаружение изменения масштаба				
экспоненциального и релеевского				
распределений. Обнаружение изменения				
параметра распределения Пуассона.				
Тема 2.5 Различение негауссовских				
распределений: логнормального и				
экспоненциального, экспоненциального и				
релеевского. Различение двух распределений				
из семейства Вейбулла.				
Тема 2.6 Обнаружение и различение				
квазидетерминированных сигналов на фоне				
гауссовского шума.				

Раздел 3. Оценивание параметров и фильтрация сигналов радиотехнических систем. Тема 3.1 Постановка задачи оценивания и фильтрации сигналов. Основные элементы задачи оценивания. Теорема ортогонального проецирования в п-мерном пространстве. Тема 3.2 Линейная фильтрация по максимуму отношения сигнал/шум. Фильтр Норса и согласованный фильтр. Тема 3.3 Линейная фильтрация по минимуму среднего квадрата ошибки. Фильтр Винера. Рекуррентная фильтрация. Линейный фильтр Калмана. Тема 3.4 Фильтрация по методу наименьших квадратов. Оценивание и фильтрация по методу максимального правдоподобия. Тема 3.5 Байесовская фильтрация. Методы нелинейной фильтрации. Стохастическая аппроксимация.	7	12			19
Итого в семестре:	17	34			57
Итого	17	34	0	0	57

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий
Раздел 1. Методы	Тема 1.1 Основные характеристики одномерных случайных
описания сигналов и	величин. Основные модельные распределения вероятности.
помех.	Характеристики детерминированных сигналов.
	Тема 1.2 Пространства сигналов. Скалярное произведение
	векторов. Представления п-мерных векторов. Дискретное
	преобразование Фурье.
	Тема 1.3 Основные характеристики совокупности случайных
	величин. Условные распределения. Сходимость
	последовательности случайных величин.
	Тема 1.4 Ортогональные разложения случайного процесса.
	Преобразование Карунена-Лоэва. Классификация случайных
	процессов.
	Тема 1.5 Динамические модели случайных процессов.
	Процессы
	авторегрессии и скользящего среднего.
	Тема 1.6 Моментно-кумулянтное описание случайных
	величин и процессов. Спектры и полиспектры.
	Кепстральный анализ.
	Тема 1.7 Модели взаимодействия сигналов и помех:

	аддитивно- мультипликативное взаимодействие.				
	Динамические модели. Уравнения состояния и наблюдения				
Раздел 2. Статистическая	Тема 2.1 Формулировка задач оптимального обнаружения и				
теория обнаружения и	различения. Основные элементы задачи обнаружения и				
различения сигналов.	условно-экстремальные критерии обнаружения.				
	Тема 2.2 Функция правдоподобия и отношение				
	правдоподобия. Рабочие характеристики обнаружения и				
	характеристики обнаружения сигналов на фоне помех.				
	Дефлекция решающей статистики и отношение сигнал/шум на выходе.				
	Тема 2.3 Обнаружение сдвига и изменения масштаба				
	гауссовского распределения. Задача оптимального				
	разнесения в системе связи или оптимальной энергии в				
	импульсе.				
	Тема 2.4 Общая задача различения многомерных				
	гауссовских распределений. Обнаружение изменения				
	масштаба экспоненциального и релеевского распределений.				
	Обнаружение изменения параметра распределения Пуассона.				
	Тема 2.5 Различение негауссовских распределений:				
	логнормального и экспоненциального, экспоненциального и				
	релеевского. Различение двух распределений из семейства				
	Вейбулла.				
	Тема 2.6 Обнаружение и различение				
	квазидетерминированных сигналов на фоне гауссовского				
	шума.				
Раздел 3. Оценивание	Тема 3.1 Постановка задачи оценивания и фильтрации				
параметров и фильтрация	сигналов. Основные элементы задачи оценивания. Теорема				
сигналов	ортогонального проецирования в п-мерном пространстве.				
радиотехнических систем.	Тема 3.2 Линейная фильтрация по максимуму отношения				
	сигнал/шум. Фильтр Норса и согласованный фильтр.				
	Тема 3.3 Линейная фильтрация по минимуму среднего				
	квадрата ошибки. Фильтр Винера. Рекуррентная фильтрация.				
	Линейный фильтр Калмана.				
	Тема 3.4 Фильтрация по методу наименьших квадратов.				
	Оценивание и фильтрация по методу максимального				
	правдоподобия.				
	Тема 3.5 Байесовская фильтрация. Методы нелинейной				
	фильтрации. Стохастическая аппроксимация.				

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

<u> </u>	1 2		Из циу	No			
Темы практических	Формы практических	Трудоемкость,		J 1-			
занятий	занятий	(час)	подготовки,	дисцип			
		. ,	(час)	лины			
Семестр 5							
Описание сигналов	Занятия по	11	11	1			
и помех	моделированию						
Обнаружение и	Занятия по	11	11	2			
	Занятий Описание сигналов и помех	занятий занятий Семестр 5 Описание сигналов и помех моделированию	занятий занятий (час) Семестр 5 Описание сигналов и помех Занятия по моделированию 11	занятий занятий (час) подготовки, (час) Семестр 5 Описание сигналов и помех Занятия по моделированию 11 11			

	различение	моделированию			
	сигналов				
3	Оценивание	Занятия по	12	12	3
	параметров и	моделированию			
	фильтрация				
	сигналов				
	Bcer	0	34	34	·

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

	1 1						
			Из них	$N_{\underline{0}}$			
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	раздела			
Π/Π	паниснование лаоораторных раоот	(час)	подготовки,	дисцип			
			(час)	лины			
	Учебным планом не предусмотрено						
	Всего						

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 5,
Вид самостоятсльной расоты	час	час
1	2	3
Изучение теоретического материала дисциплины (TO)	20	20
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю успеваемости (ТКУ)	20	20
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной аттестации (ПА)	17	17
Всего:	57	57

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8– Перечень печатных и электронных учебных изданий

таолица о- перечень печатных и электронных ученых издании					
Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)			
УДК 621.371 ББК 32ю84я73 В67 ISBN 978-5- 8088-1273-4	Волков В.Ю. Обнаружение и различение сигналов в радиотехнических системах: учебное пособие. – СПб.: ГУАП, 2018. – 128 с.	45			
УДК 621.369 ББК 32.973.26 – 018.2я73 B72 ISBN 978-5- 8088-1273-4	Волков В.Ю. Моделирование и обработка сигналов и полей в радиотехнических задачах. – СПб.: ГУАП, 2020. – 137 с	45			
621.37(075) X 98 621.37	Худяков, Г. И. Статистическая теория радиотехнических систем: учебное пособие/ Г. И. Худяков М.: Академия, 2009400 с.: рис., табл (Высшее профессиональное образование. Радиотехника) Библиогр.: с.392 - 394 (50 назв.).	20			
621.37:519.2(075) T46 621.37	Тихонов, В. И. Статистический анализ и синтез радиотехнических устройств и систем: Учебное пособие для вузов/ В. И. Тихонов, В. Н. Харисов 2-е изд., испр М.: Радио и связь: Горячая линия - Телеком, 2004 608 с.: рис Загл. обл.: Специальность Библиогр.: с. 605 (10 назв.).	58			

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнот телекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование
http://studopedia.ru	Студопедия
http:// www. technicalvision.ru	Техническое зрение
http://ibooks.ru http://e.lanbook.com http://www.iprbookshop.ru	Литература

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

Таолица	ruomita 10 Tiepe tem iipoi painimioi 0 00eene temin		
№ п/п	Наименование		
	Не предусмотрено		

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

	<u>№</u> п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
Ī	1	Лекционная аудитория	
	2	Мультимедийная лекционная аудитория	

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Дифференцированный зачёт	Список вопросов;
	Тесты

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	Voncernon of one or
5-балльная шкала	Характеристика сформированных компетенций

Оценка компетенции	Vanageranyaryara ahan genararya ya ya grafayyayi
5-балльная шкала	Характеристика сформированных компетенций
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий.
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий.
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий.
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений.

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
	Учебным планом не предусмотрено	_

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 — Вопросы (задачи) для зачета / дифф. зачета

No	п/п	п Перечень вопросов (задач) для зачета / дифф. зачета	Код
312	11/11	ттере тепь вопросов (зада т) для за тета / дифф. за тета	индикатора
1		Задачи приема и обработки сигналов. Основные элементы	ПК-1.3.1
		анализа и синтеза алгоритмов обработки.	
2		Функция правдоподобия и отношение правдоподобия	ПК-1.У.1
3		Постановка задачи обнаружения. Основные критерии	ПК-1.В.1
		обнаружения. РХП и характеристики обнаружения	
4		Постановка задачи оценивания параметров и фильтрации	ПК-1.У.1
		сигнала на фоне помехи. Критерии качества фильтрации	

5	Задача оптимального разнесения в системе связи или	ПК-1.У.1
	оптимальной энергии в импульсе	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы		
Учебным планом не предусмотрено			

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	Код индикатора
1	Задание закрытого типа с выбором одного правильного ответа.	
1	Инструкция: Прочитайте вопрос, выберите один правильный	ПК-1
	ответ и запишите его номер. Дайте обоснование.	
	Вопрос: выберите из представленных вариантов закон,	
	определяющий способы вычисления энергии сигнала.	
	1) Закон Гиббса	
	2) Равенство Парсеваля	
	3) Закон Рэлея-Райса	
	4) Равенство Бесселя	
2	Задание закрытого типа с выбором нескольких правильных ответов.	
	Инструкция: Прочитайте вопрос, выберите несколько	
	правильных ответов и запишите их номера. Дайте обоснование.	
	Вопрос: какие из перечисленных преобразований над входными	
	сигналами можно использовать для спектрального анализа	
	сигналов:	
	1) преобразование Меллина	
	2) преобразование Фурье	
	3) преобразование Гильберта	
	4) вэйвлет-преобразование	
	5) дискретное преобразование Фурье	
3	Задание закрытого типа на сопоставление.	
	Инструкция: Прочитайте вопрос и установите соответствие. К	
	каждой позиции, данной в левом столбце, подберите	
	соответствующую позицию в правом столбце.	
	Вопрос: сопоставьте линейные преобразования над сигналами и	
	результаты этих преобразований.	
	1. Преобразование Фурье	
	2. Преобразование Лапласа	
	3. Преобразование Гильберта	
	4. Преобразование Меллина	
	а. Аналитический сигнал b. Функция, инвариантная к изменению	
	масштаба с. Спектр сигнала d. Операторная функция	
4	Задание закрытого типа на установление последовательности	
	Инструкция: Прочитайте вопрос и установите последова-	
	тельность. Запишите соответствующую последовательность	
	букв слева направо.	

Вопрос: Расположите пебречисленные временные окна в порядке
уменьшения уровня боковых лепестков в их спектрах:
 1) Окно Кайзера
• 2) Прямоугольное окно
• 3) Окно Хэмминга
• 4) Окно Ханна
• 5) Окно Бартлетта
5 Задание открытого типа.
Инструкция: Прочитайте вопрос, запишите развернутый ответ.
Вопрос: Перечислите основные свойства преобразования Фурье?

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ	
	Не предусмотрено	

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- Постановка задачи;
- Модель процесса или поля;
- Критерий обнаружения или различения;
- Метод и алгоритм обработки;
- Результаты и выводы.

11.2. Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

контроль посещаемости, который состоит в начислении баллов по следующему принципу: посещаемость менее 80% - 0 баллов, 80-85% - 3 балла, 86 – 95% - 4 балла, 96-100% - 5 баллов.

- выполнение двух практических заданий, оценки за которые по четырехбалльной шкале выставляется по следующим критериям:
 - √ «отлично» вопрос раскрыт полностью, задача решена правильно;
 - √ «хорошо» вопрос раскрыт не полностью, задача решена частично;
- ✓ «удовлетворительно» в ответе на вопрос имеются существенные ошибки; задача не решена или решена неправильно, ход решения правильный;

«неудовлетворительно» - отсутствует ответ на вопрос или содержание ответа не совпадает

11.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий

уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

- контроль посещаемости (не менее 80% занятий)
- выполнение трех лабораторных работ, оценка за которые выставляется по системе «зачет/незачет»;

Примерные вопросы для контроля знаний при выполнении лабораторных работ:

- 1. Обнаружение изменения масштаба экспоненциального распределения при неизвестной интенсивности помехи
- 2. Структура и характеристики обнаружителя с порогом по среднему в экспоненциальном шуме
- 3. Структура и характеристики обнаружителя с порогом по максимуму в экспоненциальном шуме
- 4. Обнаружение сдвига гауссовского распределения при неизвестной интенсивности помехи
- 5. Обнаружение сигнала в логарифмически нормальной помехе
- 6. Граница Крамера-Рао для дисперсии несмещенной оценки параметра
- 7. Структура измерителя временного запаздывания импульса в шуме Структура измерителя частоты радиосигнала
- 11.5. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— дифференцированный зачет — это форма оценки знаний, полученных обучающимся при изучении дисциплины, при выполнении курсовых проектов, курсовых работ, научно-исследовательских работ и прохождении практик с аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Требования к дифференцированному зачету:

- Наличие экзаменационных билетов, содержащих два вопроса.
- Предоставление студенту времени для подготовки к ответам.
- Ответы на вопросы осуществляются в устной форме с пояснениями на бумаге или на лоске.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой