МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 1

УТВЕРЖДАЮ Руководитель образовательной программы доц., к.т.н. (должность, уч. степень, звание)

Ю.В. Бакшеева

(подпись) «10» февраля 2025 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Математика. Аналитическая геометрия и линейная алгебра» (Наименование дисциплины)

Код направления подготовки/ специальности	11.03.01
Наименование направления подготовки/ специальности	Радиотехника
Наименование направленности	Радиотехнические системы и их эксплуатация
Форма обучения	очная
Год приема	2025

Санкт-Петербург- 2025

Лист согласования рабочей программы дисциплины

программу составил (а)		
к.п.н., доц.	03.02.25	И. Ю. Пироженко
(должность, уч. степень, звание)	(подпусь, дата)	(инициалы, фамилия)
Программа одобрена на засед	дании кафедры № 1	
«03» февраля 2025 г, прото	окол № 02/1	
Заведующий кафедрой № 1		
д.фм.н.,доц.	03.02.25	А.О. Смирнов
(уч. степень, звание)	(подпису дата)	(инициалы, фамилия)
	1	
Заместитель директора инсти	тута №2 по методической ра	аботе
доц.,к.т.н.,доц.	03.02.25	Н.В. Марковская
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Математика. Аналитическая геометрия и линейная алгебра» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 11.03.01 «Радиотехника» направленности «Радиотехнические системы и их эксплуатация». Дисциплина реализуется кафедрой «№1».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

УК-2 «Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений»

ОПК-1 «Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности»

Содержание дисциплины охватывает круг вопросов, связанных с теорией комплексных чисел, системами линейных уравнений, линейными пространствами, векторной алгеброй и аналитической геометрией.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 5 зачетных единиц, 180 часов.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Дисциплина «Математика. Аналитическая геометрия и линейная алгебра» является важной составной частью курса высшей математики, который лежит в основе всей системы высшего образования современного специалиста и изучает пространственные формы и количественные соотношения окружающего нас действительного мира.

Изучение данной дисциплины позволяет развить пространственное представление студента; стимулирует его воображение; развивает его счетные способности; позволяет демонстрировать целеустремленность, организованность при проведении большего объема вычислений; объединяет большинство раннее изученных понятий.

Важность указанных положений обусловлена тем, что математика является не только мощным средством решения прикладных задач и универсальным языком науки, но также и элементом общей культуры.

Математические методы исследования, моделирования, проектирования, опирающуюся на данную дисциплину, играют все большую роль в современной науке и технике. В значительной степени это вызвано все убыстряющимся развитием науки и техники, главным образом вычислительной техники и информационных систем, а также компьютеризацией практически всех областей знаний. Возможности успешного использования математики для решения конкретных задач существенно расширяются, что, в свою очередь, приводит к новым требованиям, предъявляемым к математическому образованию современных специалистов в области математических методов.

В области воспитания личности целью подготовки по данной дисциплине является формирование способности логически верно, аргументированно и ясно строить устную и письменную речь.

- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Универсальные компетенции	УК-2 Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений	УК-2.3.1 знать виды ресурсов и ограничения для решения поставленных задач УК-2.У.1 уметь проводить анализ поставленной цели и формулировать задачи, которые необходимо решить для ее достижения УК-2.У.3 уметь выдвигать альтернативные варианты действий с целью выбора оптимальных способов решения задач, в том числе с помощью цифровых средств УК-2.В.2 владеть навыками выбора оптимального способа решения задач с учетом имеющихся условий, ресурсов и

		ограничений
		ОПК-1.3.1 знать фундаментальные законы
	ОПК-1 Способен	природы и основные физические и
	использовать	математические законы
	положения,	ОПК-1.У.1 уметь применять физические
Общепрофессиональные	законы и методы	законы и математические методы для
компетенции	естественных наук	решения задач теоретического и
компетенции	и математики для	прикладного характера
	решения задач	ОПК-1.В.1 владеть навыками
	инженерной	использования знаний физики и
	деятельности	математики для решения задач
		инженерной деятельности

2. Место дисциплины в структуре ОП

Дисциплина не базируется на знаниях, ранее приобретенных студентами при изучении в вузе каких-либо дисциплин.

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- Математика. Теория вероятностей и математическая статистика.

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

	Трудоемкость по семестрам	
Всего		
	№1	
2	3	
5/190	5/ 180	
3/ 100	3/ 100	
68	68	
34	34	
34	34	
31	5.	
54	54	
58	58	
Экз.	Экз.	
	2 5/ 180 68 34 34 34 54 58	

Примечание: *** кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции (час)	П3 (С3) (час)	ЛР (час)	КП (час)	СРС (час)
	Семест	` ′	(luc)	(iuc)	(iuc)
Раздел 1. Комплексные числа и матрицы	6	8			10
Раздел 2. Системы линейных уравнений	6	9			8
Раздел 3. Линейные пространства	5	0			8
Раздел 4. Векторы	6	8			8
Раздел 5. Прямая на плоскости	4	4			8
Раздел 6. Прямая и плоскость в пространстве	4	5			8
Раздел 7. Кривые второго порядка	3	0			8
Итого в семестре:	34	34			58
Итого:	34	34	0	0	58

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий			
1.	Понятие комплексного числа. Действия над комплексными числами в			
	алгебраической форме. Действия над комплексными числами в			
	григонометрической форме. Формула Муавра. Извлечение корня из			
	комплексного числа. (2 часа)			
	Понятие матрицы. Линейные операции над матрицами. Линейная			
	зависимость и независимость матриц. Транспонирование матриц.			
	Умножение матриц. Многочлены от квадратных матриц (4 часа)			
2.	Определители и их свойства. Обратная матрица. Решение простейших			
	матричных уравнений. Матричный метод решения линейных			
	уравнений. (2 часа)			
	Метод Крамера. Метод Гаусса. (2 часа)			
	Собственные числа и собственные векторы квадратных матриц.			
	Функции от квадратных матриц (2 часа)			
3.	Линейные пространства. Определение и примеры. Базис и			
	координаты. Линейные преобразования. Матрица линейного			
	преобразования. (5 часов)			
4.	Геометрические векторы. Основные определения. Линейные операции			
	над векторами. Линейная независимость векторов. Базис. Координаты.			
	Системы координат на плоскости и в пространстве (4 часа)			
	Скалярное произведение векторов. Векторное произведение векторов.			
	Смешанное произведение векторов. (2 часа)			
5.	Уравнения прямой на плоскости. Задачи на составление уравнений			
	прямой. (2 часа)			

	Угол между прямыми на плоскости. Расстояние от точки до прямой на			
	плоскости. Расстояние между параллельными прямыми. (2 часа)			
6.	Уравнения плоскости. Задание прямой в пространстве. (2 часа)			
	Угол между плоскостями. Угол между прямыми в пространстве. Угол между прямой и плоскостью. Расстояние от точки до плоскости. Расстояние между параллельными плоскостями. Расстояние от точки до прямой в пространстве. (2 часа)			
7.	Эллипс. Гипербола. Парабола. Полярное уравнение кривой второго порядка. Канонические уравнения кривой второго порядка (3 часа)			

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

№ п/п	Темы практических занятий	Формы практических занятий	Трудоем- кость, (час)	Из них практической подготовки, (час)	№ раздела дисцип- лины
		Семестр 1			
1.	Действия над комплексными	Решение			
	числами в алгебраической	задач	2		1
	форме. Тригонометрическая		_		1
	форма комплексного числа.				
2.	Действия над комплексными	Решение			
	числами в	задач	2		1
	тригонометрической форме				
3.	Линейные операции над	Решение			
	матрицами.	задач	2		1
	Транспонирование матриц.		_		1
	Умножение матриц				
4.	Контрольная работа №1	Решение	2		1
		задач			1
5.	Вычисление определителей.	Решение			
	Обратная матрица. Решение	задач	2		2
	матричных уравнений.				
6.	Матричный метод решения	Решение			
	систем линейных уравнений.	задач	2		2
	Метод Крамера				
7.	Метод Гаусса	Решение	2		2
		задач			
8.	Контрольная работа №2	Решение	3		2
		задач	3		
9.	Разложение векторов по	Решение			
	базису. Вычисление	задач			
	координат точек в общей		2		4
	декартовой системе				
	координат.	_			
10.	Скалярное произведение	Решение	2		4
	векторов	задач			'
11.	Векторное и смешанное	Решение	2		4
	произведения векторов	задач	_		'

12.	Контрольная работа №3	Решение	2		1
		задач	2		4
13.	Уравнения прямой на	Решение	2		5
	плоскости.	задач	2	2	3
14.	Задачи на прямую на	Решение	2		5
	плоскости	задач	2		3
15.	Прямая и плоскость в	Решение	2		6
	пространстве	задач	2		U
16.	Контрольная работа №4	Решение	2		6
		задач	3		6
	Всего:		34		

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	$N_{\underline{0}}$
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	раздела
Π/Π	паименование лаоораторных раоот	(час)	подготовки,	дисцип
			(час)	лины
	Учебным планом не п	редусмотрено		
	Всего			

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

1	Daara	Carrage 1
Вид самостоятельной работы	Всего,	Семестр 1,
Bing came cross content pacetra	час	час
1	2	3
Изучение теоретического материала	14	14
дисциплины (ТО)	14	14
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю	14	14
успеваемости (ТКУ)	14	14
Домашнее задание (ДЗ)	14	14
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной	16	16
аттестации (ПА)	10	10
Всего:	58	58

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8– Перечень печатных и электронных учебных изданий

Tuomiquo Tiepe i	ень печатных и электронных учеоных издании	
Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)
УДК 514 ББК 22.151 Б 42	Беклемишева Л.А., Петрович А.Ю., Чубаров И.А. Сборник задач по аналитической геометрии и линейной алгебре: Учеб. пособие / Под ред. Д.В. Беклемишева. – 2-е изд., перераб. – М.: ФИЗМАТЛИТ, 2006. – 496 с.	200
УДК 517.521(075.8)	Казаков А.Я, Макарова М.В. Математика. Аналитическая геометрия: учеб. Пособие / СПб.: ГУАП, 2019. – 51 с.	50
http://e.lanbook.co m/book/58162	Беклемишев, Д.В. Курс аналитической геометрии и линейной алгебры. [Электронный ресурс] — Электрон. дан. — СПб. : Лань, 2015. — 448 с.	ЭБС Лань
http://e.lanbook.co m/book/72575	Беклемишева, Л.А. Сборник задач по аналитической геометрии и линейной алгебре. [Электронный ресурс] / Л.А. Беклемишева, Д.В. Беклемишев, А.Ю. Петрович, И.А. Чубаров. — Электрон. дан. — СПб. : Лань, 2016. — 496 с.	ЭБС Лань
http://e.lanbook.co m/book/71997	Новиков, А. И. Начала линейной алгебры и аналитическая геометрия: учебное пособие / А. И. Новиков. — Москва: ФИЗМАТЛИТ, 2015. — 376 с.	ЭБС Лань
https://e.lanbook.c om/book/115483	Математика. Задачи повышенной трудности для студентов вузов: учебное пособие / И. В. Иванов, О. К. Иванова, О. А. Окунева, Н. А. Толченникова; под редакцией И. В. Иванова. — Санкт-Петербург: Лань, 2019. — 156 с	ЭБС Лань
https://e.lanbook.c om/book/152265	Ивлева, А. М. Линейная алгебра. Аналитическая геометрия: учебное пособие / А. М. Ивлева, П. И. Прилуцкая, И. Д. Черных. — 5-е изд-е, испр. и доп. — Новосибирск: НГТУ, 2019. — 183 с	ЭБС Лань
https://e.lanbook.c om/book/58162	Беклемишев, Д. В. Курс аналитической геометрии и линейной алгебры: учебник / Д. В. Беклемишев. — 13-е изд., испр. — Санкт-Петербург: Лань, 2015. — 448 с.	ЭБС Лань
https://e.lanbook.c om/book/48192	Геворкян, П. С. Высшая математика. Линейная алгебра и аналитическая геометрия : учебное пособие / П. С. Геворкян. — Москва : ФИЗМАТЛИТ, 2011. — 208 с.	ЭБС Лань
https://urait.ru/bcode/436467	Линейная алгебра и аналитическая геометрия: учебник и практикум для вузов / Е. Г. Плотникова, А. П. Иванов, В. В. Логинова, А. В. Морозова; под редакцией Е. Г. Плотниковой. — Москва: Издательство Юрайт, 2019. — 340 с	

https://urait.ru/bc	Сабитов, И. Х. Линейная алгебра и	
ode/493221	аналитическая геометрия: учебное пособие для	
	вузов / И. Х. Сабитов, А. А. Михалев 2-е изд.,	
	испр. и доп Москва: Издательство Юрайт, 2022.	
	— 258 c.	
https://urait.ru/bc	Пахомова, Е. Г. Линейная алгебра и	
ode/434042	аналитическая геометрия. Сборник заданий:	
	учебное пособие для бакалавриата и специалитета	
	/ Е. Г. Пахомова, С. В. Рожкова Москва:	
	Издательство Юрайт, 2019 110 с.	
https://urait.ru/bc	Лубягина, Е. Н. Линейная алгебра: учебное	
ode/430892	пособие для вузов / Е. Н. Лубягина, Е. М.	
	Вечтомов 2-е изд Москва: Издательство	
	Юрайт, 2019 150 с	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование
http://www.math-net.ru	Общероссийский математический портал
http://e.lanbook.com/view	ЭБС «Лань»

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование	
	Не предусмотрено	

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ π/π	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Учебная аудитория для занятий лекционного типа, занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Оснащение: Специализированная мебель; технические средства обучения, служащие для представления учебной информации большой аудитории; набор демонстрационного оборудования	ул. Гастелло, д. 15, аудитория №31-02
2	Учебная аудитория для практических занятий, занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Оснащение: Специализированная мебель; технические средства обучения, служащие для представления учебной информации большой аудитории; переносной набор демонстрационного оборудования	ул. Гастелло, д. 15, аудитория №24-16

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	Vanagranyaryura adamarunanayur waxay granayuriy		
5-балльная шкала	Характеристика сформированных компетенций		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 		
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; 		

Оценка компетенции 5-балльная шкала	Характеристика сформированных компетенций — владеет системой специализированных понятий.
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий.
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений.

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код
	Задание 1. 1) Вычислить произведение комплексных чисел в алгебраической форме записи (5 + 2i) * (6 + 5i)	индикатора УК-2.3.1
1.	Ответ: 20+37i 2) Верно ли утверждение: «Действительная часть произведения комплексных чисел в алгебраической форме записи равна произведению действительных частей сомножителей». Ответ аргументируйте. Ответ: Неверно (верным ответом является утверждение: «Действительная часть произведения комплексных чисел в алгебраической форме записи вычисляется как разность произведения действительных частей и произведения мнимых частей	
	 сомножителей»). Задание 2. Вычислить произведение комплексных чисел в алгебраической форме записи (7 – 4i) * (1 + 3i) 	
	Ответ: 19+17і	

2) Верно ли утверждение: «Действительная часть произведения комплексных чисел в алгебраической форме записи вычисляется как разность произведения действительных частей и произведения мнимых частей сомножителей». Ответ аргументируйте.

Ответ: Верно (верным ответом является утверждение: «Действительная часть произведения комплексных чисел в алгебраической форме записи вычисляется как разность произведения действительных частей и произведения мнимых частей сомножителей»).

Залание 3.

1) Вычислить произведение комплексных чисел в алгебраической форме записи (7+4i)*(4-3i)

Ответ: 40-5і

2) Верно ли утверждение: «Действительная часть произведения комплексных чисел в алгебраической форме записи вычисляется как сумма произведения действительных частей и произведения мнимых частей сомножителей». Ответ аргументируйте.

Ответ: Неверно (верным ответом является утверждение: «Действительная часть произведения комплексных чисел в алгебраической форме записи вычисляется как разность произведения действительных частей и произведения мнимых частей сомножителей»).

Задание 4.

1) Вычислить произведение комплексных чисел в алгебраической форме записи (9-4i)*(8-5i)

Ответ: 52-77і

2) Верно ли утверждение: «Действительная часть произведения комплексных чисел в алгебраической форме записи вычисляется как произведения мнимых частей сомножителей». Ответ аргументируйте.

Ответ: Неверно (верным ответом является утверждение: «Действительная часть произведения комплексных чисел в алгебраической форме записи вычисляется как разность произведения действительных частей и произведения мнимых частей сомножителей»).

Задание 5.

1) Вычислить произведение комплексных чисел в алгебраической форме записи

	(9+6i)*(2-7i)	
	Ответ: 60-51i 2) Верно ли утверждение: «Произведение комплексных чисел в алгебраической форме записи может быть вычислено по правилу вычисления произведения многочленов» Ответ аргументируйте. Ответ: Верно (при этом нужно учитывать, что i²= - 1)	
2.	Задание. 1) Вычислить произведение комплексных чисел. $Z_1 = 5(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$ и $Z_2 = 7(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2})$ Ответ: $35\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right) = 35i$ 2) Верно ли утверждение: «Для вычисления произведения комплексных чисел необходимо записать их в алгебраическом виде». Ответ аргументируйте. Ответ: Неверно (верным ответом является утверждение: «При вычислении произведения комплексных чисел в тригонометрической форме модуль результата вычисляется как произведение модулей множителей, а аргумент числа равен сумме аргументов сомножителей»).	УК-2.У.1
3.	Задание. 1) Вычислить частное комплексных чисел в тригонометрической форме записи. $ \frac{Z_1}{Z_2} = \frac{10(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})}{5(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})} = \sqrt{3} + i $ 2) Верно ли утверждение: «При вычислении частного комплексных чисел модуль и аргумент результата являются результатами деления модуля делимого на модуль делителя и аргумента делимого на аргумент делителя». Ответ обоснуйте. Ответ: Неверно (верным ответом является утверждение: «При вычислении частного комплексных чисел модуль результата является результатам деления модуля делимого на модуль делителя, а аргументом - разность аргумента делителя и аргумента делимого»).	УК-2.У.3
4.	Как называется форма записи комплексного числа, имеющая вид z= z ·(cosφ+isinφ), как называются в этой записи z и φ? Ответ: Форма записи комплексного числа, имеющая вид z= z ·(cosφ+isinφ), называется тригонометрической, где z –	УК-2.В.2

	модуль комплексного числа, φ – аргумент комплексного числа	
5.	Результат какой операции над комплексными числами может быть записан в виде $ z_1 \cdot z_2 \ (\cos(\phi_1+\phi_2)+i\sin(\phi_1+\phi_2))\ ?$ Ответ: В таком виде может быть записана операция умножения комплексных чисел z_1 и z_2 .	ОПК-1.3.1
6.	Результат какой операции над комплексными числами может быть записан в виде $ z_1 : z_2 \cdot(\cos(\phi_1-\phi_2)+i\sin(\phi_1-\phi_2))$? Ответ: В таком виде может быть записана операция деления комплексных чисел z_1 и z_2 .	ОПК-1.У.1
7.	 Задание 1. 1) Комплексное число Z записано в алгебраической и в тригонометрической формах: Z = √2 + i √2 = 1 (cos π/6 + i sin π/6) Найдите 12-ю степень числа Z Ответ: При возведении комплексных чисел в степень более рационально использовать тригонометрическую форму записи и действовать по следующему правилу: при возведении комплексного числа в степень модуль числа возводится в эту степень, аргумент умножается на показатель степени. Если же использовать алгебраическую форму записи, то необходимо в данном случае 12 раз умножить число само на себя. Задание 2. 1) Комплексное число Z записано в алгебраической и в тригонометрической формах: Z = 5 + i 5√3 = 10 (cos π/3 + i sin π/3) Найдите 3-ю степень числа Z Ответ: -1000 2) Какую форму записи числа вы использовали? Обоснуйте свой выбор Ответ: При возведении комплексных чисел в степень более рационально использовать тригонометрическую форму записи и действовать по следующему правилу: при возведении комплексного числа в степень модуль числа возводится в эту степень, аргумент умножается на 	ОПК-1.В.1
	показатель степени. Если же использовать алгебраическую форму записи, то необходимо в данном случае 3 раза умножить число само на себя (или использовать формулу сокращенного умножения)	

1) Найти матрицу $C = 4A + 3B^{t}$, где

$$A = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 3 & -3 \end{pmatrix} B = \begin{pmatrix} 2 & -2 \\ -1 & 3 \\ 3 & -3 \end{pmatrix}$$

Otbet:
$$c = \begin{pmatrix} 10 & -3 & 17 \\ -10 & 21 & -21 \end{pmatrix}$$

- 2) Выберите из списка цифровые средства, которые могут быть применены для решения данной задачи.
 - a) Microsoft Access
 - b) Wolfram Mathematica
 - c) Microsoft PowerPoint

Wolfram Mathematica Ответ: b)

Задание 2.

1. Найти матрицу $C = 4A - 5B^{t}$, где

$$A = \begin{pmatrix} 1 & 4 & 2 \\ -1 & 3 & -4 \end{pmatrix} B = \begin{pmatrix} 2 & -2 \\ -1 & 4 \\ 3 & -3 \end{pmatrix}$$

Ответ:

8.

$$c = \begin{pmatrix} -6 & 21 & -7 \\ 6 & -8 & -1 \end{pmatrix}$$

- 2. Выберите из списка цифровые средства, которые могут быть применены для решения данной задачи.
 - a) Microsoft Access
 - b) Wolfram Mathematica
 - c) Microsoft PowerPoint

Ответ: b) **Wolfram Mathematica**

Задание 3.

1. Найти матрицу $C = 2A + 3B^{t}$, где

$$A = \begin{pmatrix} 1 & 4 & 2 \\ -2 & 3 & -3 \end{pmatrix} B = \begin{pmatrix} 2 & -2 \\ -1 & 4 \\ -4 & -3 \end{pmatrix}$$

Ответ:

$$c = \begin{pmatrix} 8 & 5 & -8 \\ -10 & 18 & -15 \end{pmatrix}$$

- Выберите из списка цифровые средства, которые могут быть применены для решения данной задачи.
 - Microsoft Access a)
 - **Wolfram Mathematica** b)
 - Microsoft PowerPoint c)

Wolfram Mathematica Ответ: b)

Задание 4.

	1. Найти матрицу $C = 3A - 5B^t$, где	
	/ 1 _2\	
	$A = \begin{pmatrix} 1 & 0 & 2 \\ -2 & 3 & -3 \end{pmatrix} B = \begin{pmatrix} 1 & -2 \\ -1 & 3 \\ 3 & -3 \end{pmatrix}$	
	Ответ: с = (-2 5 -9) 4 -6 6 2. Выберите из списка цифровые средства, которые могут быть применены для решения данной задачи. а) Microsoft Access b) Wolfram Mathematica c) Microsoft PowerPoint Ответ: b) Wolfram Mathematica	
	Задание 5. 1. Найти матрицу $C = 4A + 3B^t$, где	
	$A = \begin{pmatrix} 1 & 4 & 2 \\ -2 & 3 & -4 \end{pmatrix} B = \begin{pmatrix} 1 & -2 \\ -1 & 4 \\ 3 & -3 \end{pmatrix}$	
	Otbet: $c = \begin{pmatrix} 7 & 13 & 17 \\ -14 & 24 & -25 \end{pmatrix}$	
	 2. Выберите из списка цифровые средства, которые могут быть применены для решения данной задачи. a) Microsoft Access b) Wolfram Mathematica c) Microsoft PowerPoint Ответ: b) Wolfram Mathematica 	
	 Запишите результат действий над матрицами. A+0= Ответ: А Запишите результат действий над матрицами 	УК-2.У.1
9.	A + (-A) = Ответ: 0 3. Продолжите формулу	
<i>y</i> .	7(A+B)= Ответ: 7A+7B 4. Продолжите формулу	
	5A-5B= Ответ: 5(A-B) 5. Продолжите формулу	
	2 ×(4A)= Ответ: 8A	
1 1 1	Задание 1.1) Найти произведение матриц <i>A</i> * <i>B</i>, где	УК-2.У.3

$$A = \begin{pmatrix} 0 & -2 & -4 \\ 2 & -4 & 5 \end{pmatrix} B = \begin{pmatrix} 2 & 5 \\ 0 & -2 \\ 2 & 0 \end{pmatrix}$$

Ответ:

$$AB = \begin{pmatrix} -8 & 4 \\ 14 & 18 \end{pmatrix}$$

- 2) Выберите из списка цифровые средства, которые могут быть применены для решения данной задачи. Обоснуйте выбор цифрового средства
 - a) Microsoft Access
 - b) Microsoft PowerPoint
 - c) Wolfram Mathematica

Ответ: К цифровым средствам, которые могут быть применены для решения данной задачи относится Wolfram Mathematica- программное обеспечение, включающее большой набор математических функций в том числе систему компьютерной алгебры, ориентированную на подготовку интерактивных документов с вычислениями и визуальным сопровождением.

Задание 2.

1) Найти произведение матриц A * B, где

$$A = \begin{pmatrix} 0 & -2 & -3 \\ 1 & 3 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 4 & 3 \\ 1 & -2 \\ 3 & 0 \end{pmatrix}$$

Ответ:

$$AB = \begin{pmatrix} -11 & 4 \\ 7 & -3 \end{pmatrix}$$

- 2) Выберите из списка цифровые средства, которые могут быть применены для решения данной задачи.
- a) Microsoft Access
- b) Microsoft PowerPoint
- c) Wolfram Mathematica

Ответ: К цифровым средствам, которые могут быть применены для решения данной задачи относится Wolfram Mathematica- программное обеспечение, включающее большой набор математических функций в том числе систему компьютерной алгебры, ориентированную на подготовку интерактивных документов с вычислениями и визуальным сопровождением.

Задание 3.

1) Найти произведение матриц A * B, где

$$A = \begin{pmatrix} 0 & -2 & -3 \\ 2 & 3 & 5 \end{pmatrix} \quad B = \begin{pmatrix} 4 & 3 \\ 0 & -3 \\ 2 & 0 \end{pmatrix}$$

Ответ:

$$AB = \begin{pmatrix} -6 & 6 \\ 18 & -3 \end{pmatrix}$$

- 2) Выберите из списка цифровые средства, которые могут быть применены для решения данной задачи.
- Microsoft Access a)
- Microsoft PowerPoint b)
- c) **Wolfram Mathematica**

Ответ: К цифровым средствам, которые могут быть применены для решения данной задачи относится Wolfram Mathematica- программное обеспечение, включающее большой набор математических функций в том числе систему компьютерной алгебры, ориентированную на подготовку интерактивных документов с вычислениями и визуальным сопровождением.

Задание 4.

1) Найти произведение матриц A * B, где

$$A = \begin{pmatrix} 0 & -2 & -3 \\ 2 & -4 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 4 & 5 \\ 1 & -3 \\ 3 & 0 \end{pmatrix}$$

OTBET:
$$AB = \begin{pmatrix} -11 & 6 \\ 4 & 22 \end{pmatrix}$$

- 2) Выберите из списка цифровые средства, которые могут быть применены для решения данной задачи.
- Microsoft Access
- Microsoft PowerPoint b)
- **Wolfram Mathematica** c)

Ответ: К цифровым средствам, которые могут быть применены для решения данной задачи относится Wolfram Mathematica- программное обеспечение, включающее большой набор математических функций в том числе систему компьютерной алгебры, ориентированную на подготовку интерактивных документов с вычислениями и визуальным сопровождением.

Задание 5.

Найти произведение матриц A * B, где

$$A = \begin{pmatrix} 4 & -1 & -4 \\ 1 & -4 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 3 \\ 1 & -2 \\ 2 & 0 \end{pmatrix}$$

Ответ:

$$AB = \begin{pmatrix} -1 & 14 \\ -2 & 11 \end{pmatrix}$$

- 2. Выберите из списка цифровые средства, которые могут быть применены для решения данной задачи.
- Microsoft Access a)
- Microsoft PowerPoint b)
- c) **Wolfram Mathematica**

Ответ: К цифровым средствам, которые могут быть

	применены для решения данной задачи относится Wolfram Mathematica- программное обеспечение, включающее большой набор математических функций в том числе систему компьютерной алгебры, ориентированную на подготовку интерактивных документов с вычислениями и визуальным сопровождением.	
	Задание 1. 1) Найти определитель 2-го порядка матрицы 2 5 3 7 Ответ:29	УК-2.В.2
	2) Обоснуйте как вычислить определитель второго порядка.	
	Ответ: Для того чтобы вычислить определитель второго порядка необходимо из произведения элементов главной диагонали вычесть произведение элементов второй (побочной) диагонали	
	Задание 2. 1) Найти определитель 2-го порядка матрицы 2 3 4 -5 Ответ: -22	
	2) Обоснуйте как вычислить определитель второго порядка.	
11.	Ответ: Для того чтобы вычислить определитель второго порядка необходимо из произведения элементов главной диагонали вычесть произведение элементов второй (побочной) диагонали	
	Задание 3. 1) Найти определитель 2-го порядка матрицы 1 -3 5 8 Ответ: 23	
	2) Обоснуйте как вычислить определитель второго порядка.	
	Ответ: Для того чтобы вычислить определитель второго порядка необходимо из произведения элементов главной диагонали вычесть произведение элементов второй (побочной) диагонали	
	Задание 4. 1) Найти определитель 2-го порядка матрицы 7 4 1-14 -8	

	Ответ: 0	
	2) Обоснуйте как вычислить определитель второго порядка.	
	Ответ: Для того чтобы вычислить определитель второго порядка необходимо из произведения элементов главной диагонали вычесть произведение элементов второй (побочной) диагонали	
	Задание 5. 1) Найти определитель 2-го порядка матрицы 5	
	2) Обоснуйте как вычислить определитель второго порядка.	
	Ответ: Для того чтобы вычислить определитель второго порядка необходимо из произведения элементов главной диагонали вычесть произведение элементов второй (побочной) диагонали	
	Задание: дана матрица $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ 4 & -2 & 5 \end{pmatrix}$ Найдите алгебраические дополнения:	ОПК-1.3.1
	Ответ: 9	
	2. A ₁₂	
12.	Ответ: -7	
	3. A ₃₂	
	Ответ: -5	
	4. A ₂₃	
	Ответ: 10	
	5. A_{33}	
	Ответ: -5	
13.	Чему равен определитель треугольной матрицы? Ответ: определитель треугольной матрицы равен произведению элементов главной диагонали.	ОПК-1.У.1
14.	Обозначим A_1, A_2, \dots, A_m — строки матрицы и $a_1; a_2; \dots; a_m$ - действительные числа. Если существует такой набор чисел, среди которых есть хотя-	ОПК-1.В.1

	бы одно число отличное от нуля, и при этом линейная				
	комбинация строк матрицы с этими числами равна нулевой				
	строке:				
	$a_1A_1 + a_2A_2 + \dots + a_mA_m \equiv 0,$ где $0 = (0,0,\dots,0).$				
	Как в этом случае называются строки матрицы?				
	Ответ: Такие строки матрицы называются линейно зависимыми				
	Пусть матрицы А и А-1 удовлетворяют условию	УК-2.3.1			
	$A \cdot A^{-1} = A^{-1} \cdot A = E$, где E — единичная матрица n -го порядка.	3 K 2.3.1			
15.	Как называются такие матрицы?				
13.	Ответ: Такие матрицы называются обратными матрицами				
	по отношению друг к другу (А-1 – обратная к А, и А –				
	обратная к А-1).				
	Задание 1. Найти матрицу X из уравнения $A * X = B$, где $A = \begin{pmatrix} -1 & 2 \\ -2 & 5 \end{pmatrix}$ $B = \begin{pmatrix} -7 & -4 \\ -17 & -9 \end{pmatrix}$ Ответ: $X = \begin{pmatrix} 1 & 2 \\ -3 & -1 \end{pmatrix}$	УК-2.У.1			
	Задание 2. Найти матрицу X из уравнения $A * X = B$, где $A = \begin{pmatrix} -1 & 2 \\ 3 & -4 \end{pmatrix}$ $B = \begin{pmatrix} -9 & -4 \\ 23 & 10 \end{pmatrix}$ Ответ: $X = \begin{pmatrix} 5 & 2 \\ -2 & -1 \end{pmatrix}$				
16.	Задание 3. Найти матрицу X из уравнения $A * X = B$, где $A = \begin{pmatrix} -1 & 3 \\ 2 & -4 \end{pmatrix}$ $B = \begin{pmatrix} -10 & -7 \\ 14 & 12 \end{pmatrix}$ Ответ: $X = \begin{pmatrix} 1 & 4 \\ -3 & -1 \end{pmatrix}$				
	Задание 4. Найти матрицу X из уравнения $A * X = B$, где $A = \begin{pmatrix} 1 & -2 \\ 3 & -7 \end{pmatrix}$ $B = \begin{pmatrix} 9 & 6 \\ 29 & 19 \end{pmatrix}$ Ответ: $X = \begin{pmatrix} 5 & 4 \\ -2 & -1 \end{pmatrix}$				
	Задание 5. Найти матрицу X из уравнения $A * X = B$, где $A = \begin{pmatrix} 1 & -3 \\ 2 & -8 \end{pmatrix}$ $B = \begin{pmatrix} 14 & 5 \\ 34 & 12 \end{pmatrix}$ Ответ: $X = \begin{pmatrix} 5 & 2 \\ -3 & -1 \end{pmatrix}$				
17.	Как называется система алгебраических уравнений, каждое из которых является линейным? Ответ: Такая система уравнений называется системой линейных алгебраических уравнений	УК-2.У.3			

		T
	Какие методы решения систем линейных алгебраических	УК-2.В.2
18.	уравнений вам известны?	
10.	Ответ: Методы решения систем линейных алгебраических	
	уравнений: метод Крамера, метод Гаусса, метод матричных	
	уравнений (с использованием обратной матрицы).	
	Сравните условия применения методов решения систем	ОПК-1.3.1
	линейных уравнений. Какой метод решения системы линейных	
	алгебраических уравнений применяются в том случае, если	
	определитель матрицы системы равен нулю?	
19.	Ответ: Если определитель матрицы системы равен нулю,	
	то применяется только метод исследования системы	
	линейных уравнений Гаусса, другие методы (метод	
	Крамера и метод матричных уравнений) могут	
	применяться при условии, что матрица системы	
	квадратная и определитель ее не равен нулю.	
	Сравните условия применения методов решения систем	ОПК-1.У.1
	линейных уравнений. Какой метод решения системы линейных	01110 1.7.1
	алгебраических уравнений применяются в том случае, если	
	матрица системы не является квадратной?	
	матрица системы не является квадратной!	
20	OTROTA FORM MOTIVAGE OMOTOMA MO MINOTING (T. O.	
20.	Ответ: Если матрица системы не квадратная (т.е.	
	количество неизвестных и количество уравнений не	
	совпадают), то применяется только метод исследования	
	системы линейных уравнений Гаусса, другие методы	
	(метод Крамера и метод матричных уравнений) могут	
	применяться при условии, что матрица системы	
	квадратная и определитель ее не равен нулю.	OHK 1 D 1
	При каком условии однородная система линейных уравнений	ОПК-1.В.1
21.	имеет ненулевое решение?	
21.	Ответ: Однородная система линейных уравнений имеет	
	ненулевое решение тогда и только тогда, когда её ранг	
	меньше числа неизвестных.	
	Как называется двумерная система координат, в которой	УК-2.3.1
22.	каждая точка на плоскости определяется двумя числами -	
22.	полярным углом и полярным радиусом?	
	Ответ: Такая система координат называется полярной	
	системой координат.	
	Как называется система координат, в которой каждая точка в	УК-2.У.1
	пространстве определяется тремя числами - (r, θ, ϕ) , где r	
23.	радиус-вектор точки, θ и ϕ – зенитный и азимутальный углы	
	соответственно?	
	Ответ: Такая система координат называется сферической	
	системой координат.	
24.	Что такое вектор?	УК-2.У.3
-	Ответ: Вектором называется направленный отрезок.	
	Как называется вектор, начало которого совпадает с его	УК-2.В.2
25.	концом?	
	Ответ: Вектор, начало которого совпадает с его концом,	
	называется нулевым вектором.	
26.	По какой формуле определяется скалярное произведение	ОПК-1.3.1
20.	векторов?	
	bearopon.	l .

Ответ: Скалярное произведение векторов определяется по			
формуле $ \vec{a} * \vec{b} *\cos\alpha$			
По какой формуле вычисляется скалярное произведение векторов \vec{a} и \vec{b} , если известны координаты векторов в декартовой системе (в системе : 0x, 0y, 0z) Ответ: Скалярное произведение векторов определяется по формуле $a_x b_x + a_y b_y + a_z b_z$			
По какой формуле вычисляется векторное произведение векторов, если известны их координаты в декартовой системе координат (x, y, z) ? Ответ: Векторное произведение векторов определяется по формуле $\begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$	ОПК-1.В.1		
По какой формуле определяется модуль векторного произведения векторов? Ответ: Величина модуля векторного произведения векторов определяется по формуле $ \vec{a} * \vec{b} *\sin(\vec{a}\vec{b})$	УК-2.3.1		
Чему равно расстояние от точки до прямой? Ответ: Расстояние от точки до прямой равно длине	УК-2.У.1		
Задание 1. Составить уравнение прямой проходящей через точку $M(2,4)$ и перпендикулярной прямой $\frac{x+2}{-5} = \frac{y-9}{-4}$. Ответ записать в виде уравнения прямой с угловым коэффициентом O твет: $y = -1, 25x + 6, 5$ Задание 2. Составить уравнение прямой проходящей через точку $M(1,-4)$ и перпендикулярной прямой $-4x - 5y + 14 = 0$. Ответ записать в виде уравнения прямой с угловым коэффициентом O твет: $y = 1, 25x - 5, 25$ Задание 3. Составить уравнение прямой проходящей через точку $M(-1,-3)$ и параллельной прямой $\frac{x+16}{-4} = \frac{y-9}{-5}$. Ответ записать в виде уравнения прямой с угловым коэффициентом O твет: $y = 1, 25x - 1, 75$	УК-2.У.3		
	формуле $ \vec{a} * \vec{b} *\cos \alpha$ По какой формуле вычисляется скалярное произведение векторов \vec{a} и \vec{b} , если известны координаты векторов в декартовой системе (в системе : $0x$, $0y$, $0z$) Ответ: Скалярное произведение векторов определяется по формуле $a_xb_x + a_yb_y + a_zb_z$ По какой формуле вычисляется векторное произведение векторов, если известны их координаты в декартовой системе координат (x, y, z) ? Ответ: Векторное произведение векторов определяется по формуле $\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$ По какой формуле определяется модуль векторного произведения векторов? Ответ: Величина модуля векторного произведения векторов определяется по формуле $ \vec{a} * \vec{b} *\sin(\vec{a}\vec{b})$ Чему равно расстояние от точки до прямой равно длине перпендикуляра, опущенного из данной точки на прямую. Задание 1. Составить уравнение прямой проходящей через точку $M(2,4)$ и перпендикулярной прямой $\frac{x+2}{-5} = \frac{y-9}{-4}$. Ответ: записать в виде уравнения прямой с угловым коэффициентом Ответ: $y = -1,25x+6,5$ Задание 2. Составить уравнение прямой проходящей через точку $M(1,-4)$ и перпендикулярной прямой $-4x-5y+14=0$. Ответ записать в виде уравнения прямой с угловым коэффициентом Ответ: $y = 1,25x-5,25$		

	точку $M(1,-1)$ и перпендикулярной прямой $y = -5x + 2$. Ответ записать в виде уравнения прямой с угловым коэффициентом Ответ: $y = 0,2x - 1,2$ Задание 5. Составить уравнение прямой проходящей через	
	точку $M(3,1)$ и перпендикулярной прямой $\frac{x+1}{-5} = \frac{y-6}{-4}$.	
	Ответ записать в виде уравнения прямой с угловым коэффициентом Ответ: $y = -1,25x+4,75$	
32.	Каким уравнением описывается плоскость в декартовых координатах (x, y, z) ? Ответ: В декартовых координатах уравнение плоскости (каноническое уравнение плоскости) $Ax + By + Cz + D = 0$	УК-2.В.2
33.	Сформулируйте необходимое и достаточное условие параллельности прямой и плоскости. Ответ: Для того, чтобы прямая и плоскость были параллельны, необходимо и достаточно, чтобы вектор нормали к плоскости и направляющий вектор прямой были перпендикулярны.	ОПК-1.3.1
	Каким уравнением описывается прямая, проходящая через точку (x_0, y_0, z_0) и имеющая направляющий вектор с координатами (l, m, n) ?	ОПК-1.У.1
34.	Ответ: Уравнение прямой, проходящей через точку (x_0 , y_0 , z_0) и имеющая направляющий вектор с координатамив (l , m , n) имеет вид $\frac{x-x_0}{l}=\frac{y-y_0}{m}=\frac{z-z_0}{n}$	
35.	Каким уравнением описывается прямая, проходящая через две точки (x_1, y_1, z_1) и (x_2, y_2, z_2) ? Ответ: Уравнение прямой, проходящей через две точки $(x_1, y_2, y_3, y_4, y_5)$	ОПК-1.В.1
	y_1, z_1) и (x_2, y_2, z_2) имеет вид $\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$	
36.	Каким образом можно задать прямую с помощью двух плоскостей? Ответ: Уравнение двух пересекающихся плоскостей – это уравнение прямой в пространстве	УК-2.3.1
37.	С помощью какой формулы можно найти угол между прямыми? Ответ: угол между прямыми можно найти из формулы $\cos \varphi = \frac{\overrightarrow{a_1} * \overrightarrow{a_2}}{ \overrightarrow{a_1} * \overrightarrow{a_2} }$, где $\overrightarrow{a_1}$ и $\overrightarrow{a_2}$ – направляющие векторы прямых	УК-2.У.1

38.	Нормаль к плоскости имеет координаты (A, B, C) ; координаты направляющего вектора прямой $(l,m,n)/$ С помощью какой формулы можно найти угол между прямой и плоскостью? Ответ: угол между прямой и плоскостью можно найти из формулы $\sin \varphi = \frac{ Al + Bm + Cn }{\sqrt{A^2 + B^2 + C^2} \sqrt{l^2 + m^2 + n^2}}$	УК-2.У.3
	По какой формуле можно определить расстояние от точки до плоскости?	УК-2.В.2
39.	Ответ: Расстояние от точки до плоскости равно $\frac{ Ax_0+By_0+Cz_0+D }{\sqrt{A^2+B^2+C^2}}, \text{ где } (A, B, C)\text{- координаты нормали к плоскости;} (x_0, y_0, z_0) координаты точки.$	
40.	Напишите каноническое уравнение эллипса. Ответ: Каноническое уравнение эллипса имеет вид $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	ОПК-1.3.1
41.	Напишите каноническое уравнение гиперборы. Ответ: Каноническое уравнение гиперболы имеет вид $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	ОПК-1.У.1
42.	Напишите каноническое уравнение параболы. Ответ: Каноническое уравнение параболы имеет вид $y^2 = 2px$	ОПК-1.В.1

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

1 40311	тиолици то ттримериви перелень вопросов для тестов				
No.		Примерный перечень вопросов для тестов	Код		
Π/Π		Tipiniophism nope ions sompoods Avin 100105	индикатора		
Типовой вариант тестов					
1 семестр					

1	Дана матрица	1) a ₂₂	УК-2.3.1
	$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$. Её алгебраическое	2) -a ₁₂ 3) a ₁₁	
	дополнение A_{22}	4) $-a_{22}$	
	равно	Ответ: 3)	
		(Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа)	
2	Из приведённых матриц обратные	$ \begin{array}{ccc} $	УК-2.У.1
	существуют у матриц	$ \begin{array}{cccc} 0 & 0 & a_{13} \\ 0 & 0 & a_{23} \\ 0 & 0 & a_{33} \end{array} $	
		$3) \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix}$	
		4) $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 0 \end{pmatrix}$	
		Ответ: 3)	
		(Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа)	
3	Каким методом можно	 Г. Крамера 	УК-2.У.3
	решить систему, определитель основной	2) К. Ф. Гаусса	
	матрицы которой равен	3) с помощью обратной матрицы	
	нулю	4) любым способом	
		Ответ: 2)	
		(Инструкция: Прочитайте текст,	
		выберите правильный ответ и запишите	
		аргументы, обосновывающие выбор	
		ответа)	

4	Система совместна	1) больше 1	УК-2.В.2
	тогда и только тогда,	2) ранг матрицы системы равен	
	когда	рангу расширенной матрицы	
		системы	
		3) ранг равен 0	
		4) ранг равен 1	
		Ответ: 2)	
		(Инструкция: Прочитайте текст,	
		выберите правильный ответ и запишите	
		аргументы, обосновывающие выбор	
		ответа)	
5	Для векторов \vec{a} и \vec{b}	1) векторы перпендикулярны	ОПК-1.3.1
	выполняются условия:	2) векторы параллельны	
		3) векторы параллельны и не могут	
	$\frac{b_x}{b_x} = \frac{b_y}{b_z} = \frac{b_z}{b_z}$	лежать на одной прямой	
	$a_x a_y a_z$	4) векторы лежат на одной прямой	
	тогда	Ответ: 2)4)	
		(Инструкция: Прочитайте текст,	
		выберите правильные ответы и	
		запишите аргументы, обосновывающие	
		выбор ответов)	
6	Векторное	1) коллинеарной плоскости, в	ОПК-1.У.1
	произведение векторов	которой лежат перемножаемые	
	\vec{a} и \vec{b} — это вектор	вектора	
		2) перпендикулярный плоскости, в которой лежат	
		перемножаемые векторы	
		3) нулевой	
		4) совпадающий с одним из	
		перемножаемых векторов	
		Ответ: 2)	
		(Инструкция: Прочитайте текст,	
		выберите правильный ответ и запишите	
		аргументы, обосновывающие выбор	

		ответа)	
7	Расстояние от точки до плоскости можно вычислить по формуле		ОПК-1.В.1
8	Геометрическое место точек плоскости, сумма расстояний от каждой из которых до двух данных точек этой плоскости есть величина постоянная, называется	1) гиперболой 2) параболой 3) окружностью 4) эллипсом Ответ: 4) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа)	УК-2.3.1
9	Найтиуравнениепрямой,проходящейчерезточку	1) $\frac{x+1}{-3} = \frac{y-2}{2} = \frac{z-4}{4}$	УК-2.У.1

	A(-1; 2; 4), перпендикулярно плоскости 3x-2y-4z+1=0	2) $\frac{x+1}{3} = \frac{y+2}{2} = \frac{z+4}{4}$ 3) $\frac{x-1}{-3} = \frac{y-2}{-2} = \frac{z-4}{-4}$ 4) $\frac{x+1}{-3} = \frac{y+2}{-2} = \frac{z+4}{-4}$ Ответ: 1) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа)	
10	Решить систему линейных уравнений методом Гаусса $x + y + z = -2$ $2x - y + 3z = -10$ $-x + 2y - z = 5$	1) x=0, y=1, z= - 3 2) x=0, y=1, z= - 2 3) x=0, y= - 1, z=2 4) x=0, y= - 1, z= - 2 Ответ: 1) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа)	УК-2.У.3
11	Вычислить $ \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & -2 \\ 3 & 2 \end{pmatrix} $	1) $\begin{pmatrix} -1 & -6 \\ 7 & 2 \end{pmatrix}$ 2) $\begin{pmatrix} 7 & 2 \\ 1 & 0 \end{pmatrix}$ 3) $\begin{pmatrix} 0 & 0 \\ 1 & -2 \end{pmatrix}$ 4) $\begin{pmatrix} 7 & 2 \\ -6 & -1 \end{pmatrix}$ Ответ: 1) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор	УК-2.В.2

		ответа)	
10	7		OFFIC 1 D 1
12	Дана матрица	1) a_{22}	ОПК-1.3.1
	$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}.$	$-a_{12}$	
	$(a_{21} a_{22})$	3) a ₁₁	
	Её алгебраическое	4) $-a_{11}$	
	дополнение A_{21} равно	Ответ: 2)	
	pasiio	(Инструкция: Прочитайте текст,	
		выберите правильный ответ и запишите аргументы, обосновывающие выбор	
		ответа)	
13	Матрица A^{-1}	$1) A^{-1} \cdot A \neq A \cdot A^{-1}$	ОПК-1.У.1
	называется обратной матрице А, если	$2) A^{-1} \cdot A \neq 1$	
	выполняется условие	$3) A^{-1} \cdot A = A \cdot A^{-1} = E$	
		$4) A^{-1} \cdot A = 0$	
		Ответ: 3)	
		(Инструкция: Прочитайте текст,	
		выберите правильный ответ и запишите аргументы, обосновывающие выбор	
		ответа)	
14	Скалярным	1) $ \vec{a} \vec{b} $ arccos α	ОПК-1.В.1
	произведением двух ненулевых векторов \vec{a}	2) $ \vec{a} \vec{b} \operatorname{ctg} \alpha$	
	и \vec{b} называется число,	3) $ \vec{a} \vec{b} \cos\alpha$	
	равное	4) $ \vec{a} \vec{b} \operatorname{tg} \alpha$	

		Ответ: 3)	
		(Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа)	
15	Чему равно смешанное произведение векторов $\vec{a}\vec{b}\vec{a}$	 1) 0 2) 1 3) -2 4) 2 Ответ: 1) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа) 	УК-2.3.1
16	Уравнение прямой, проходящей через две точки можно составить по формуле	1) $(x-a)+(y-b)=0$ 2) $\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}$ 3) $A(x-x_0)+B(y-y_0)=0$ 4) $y-y_0=k(x-x_0)$ Ответ: 2) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа)	УК-2.У.1
17	Геометрическое место точек, которые характеризуют эксцентриситет ε >1 представляет собой	 Параболу окружность гиперболу эллипс Ответ: 3) 	УК-2.У.3

18	Отношение — а называется	(Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа) 1) действительной осью 2) асимптотой 3) эксцентриситетом 4) фокальным радиусом Ответ: 3) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа)	УК-2.В.2
19	Найти уравнение прямой, проходящей через точку A(-1;2;4), перпендикулярно плоскости 3x-2y-4z+1=0	1) $\frac{x+1}{3} = \frac{y-2}{-2} = \frac{z-4}{-4}$ 2) $\frac{x+1}{3} = \frac{y+2}{2} = \frac{z+4}{4}$ 3) $\frac{x-1}{-3} = \frac{y-2}{-2} = \frac{z-4}{-4}$ 4) $\frac{x+1}{-3} = \frac{y+2}{-2} = \frac{z+4}{-4}$ Ответ: 1) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа)	ОПК-1.3.1
20	Определить какое уравнение линии соответствует параболе	1) $x^2+y^2-8x=0$ 2) $x=-\frac{1}{3}\sqrt{25-y^2}$ 3) $-2x^2+3y^2-4x+15y+4=0$ 4) $x+4y-2y^2-5=0$	ОПК-1.У.1

		Ответ: 4)	
21	D	(Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа)	OTIV 1 D 1
21	Решить систему линейных уравнений методом Гаусса	1) x=0, y=1, z=-2 2) x=0, y= - 1, z=2 3) x=0, y=1, z=2 4) x=0, y= - 1, z=3 Ответ: 4) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа)	ОПК-1.В.1
22	Вычислить $\begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 & -2 \\ 3 & 2 \end{pmatrix}$	1) (7 1) (-7 0) 2) (-7 0) 3) (1 0) 4) (0 1) -7 7) Ответ: 2) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа)	УК-2.3.1
23	Какая из точек лежит на прямой $y = -2x + 1$?	1) (0; 3) 2) (-1; 3) 3) (2; 3)	УК-2.У.1

		4) (-2; 5)	
		Ответ: 2)4)	
		(Инструкция: Прочитайте текст,	
		выберите правильные ответы и	
		запишите аргументы, обосновывающие	
		выбор)	
24	Прямая $y = 2x + 5$	1) tg (5)	УК-2.У.3
	образует с	2) tg(-2)	
	положительным	3) arctg(2)	
	направлением оси ОХ	4) tg (2)	
	угол α , равный	Ответ: 3)	
		(Инструкция: Прочитайте текст,	
		выберите правильный ответ и запишите	
		аргументы, обосновывающие выбор	
		ответа)	
25	Угол между прямыми	1) $\operatorname{tg} \varphi = \left \frac{1-5}{1+1*5} \right $	УК-2.В.2
	y = x + 1, y = 5x + 3		
	определяется по	2) $\operatorname{tg} \varphi = \left \frac{3-1}{1+2*5} \right $	
	формуле:	3-(-5)	
		3) $\operatorname{tg} \varphi = \left \frac{3 - (-5)}{1 + 1 * (-5)} \right $	
		4) $\operatorname{tg} \varphi = \left \frac{3-5}{1+1*5} \right $	
		11+1*5	
		Ответ: 1)	
		(Инструкция: Прочитайте текст,	
		выберите правильный ответ и запишите	
		аргументы, обосновывающие выбор	
		ответа)	
26	При решении системы	1) 5 3 8 7	ОПК-1.3.1
	линейных уравнений	1 18 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	$\begin{cases} x_1 + 3x_2 = 5 \\ 4x_1 - 7x_2 = 8 \end{cases}$ no	$2) \begin{vmatrix} 1 & 3 \\ 4 & -7 \end{vmatrix}$	
	правилу Крамера	3) $\begin{vmatrix} 5 & 3 \\ 8 & -7 \end{vmatrix}$	
	определитель Δ имеет	³⁾ 8 –7	
	вид:		

		4) 1 5 4 8	
		Ответ: 2)	
		(Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа)	
27	При решении системы линейных уравнений $\begin{cases} x_1 + 2x_2 = 0 \\ 4x_1 + 8x_2 = 1 \end{cases}$ методом Крамера получен ответ	3) (1; 2) 4) (2; 1) Ответ: 2) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите	ОПК-1.У.1
		аргументы, обосновывающие выбор ответа)	
28	Решить систему линейных уравнений методом Крамера:	1) (1; 0; 0) 2) (0; 1; 0) 3) (0; 0; 1) 4) (1; 0; 1) Ответ: 4) Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа)	ОПК-1.В.1
29	Показательная форма комплексного числа $z = -1 + i$ имеет вид:	1) $\sqrt{2}e^{i\frac{-3\pi}{2}}$ 2) $\sqrt{2}e^{i\frac{3\pi}{4}}$ 3) $\sqrt{2}e^{i\frac{\pi}{2}}$ 4) $\sqrt{2}e^{i\frac{\pi}{2}}$ Ответ: 2) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа)	УК-2.3.1

30	Модуль комплексного	1) 0	УК-2.У.1
	числа $z = -i$ равен:	2) 1	
		3) 2	
		4) 5	
		Ответ: 2)	
		(Инструкция: Прочитайте текст,	
		выберите правильный ответ и запишите	
		аргументы, обосновывающие выбор	
		ответа)	
31	Какой метод решения	1)определитель 2) Крамера	УК-2.У.3
	системы линейных алгебраических	системы равен 6	
	уравнений	3) определитель 4) Гаусса	
	применяются в том случае, если	системы равен	
	city fac, coin	нулю	
		5) матрица не 6) Обратной	
		квадратная матрицы	
		квадратная матрицы	
		Ответ	
		1) 2)	
		1) 4)	
		1) 6)	
		3) 4)	
		5) 4)	
		Инструкция: Прочитайте текст и	
		установите соответствие. К каждой	
		позиции, данной в левом столбце,	
		подберите соответствующую	
		позицию (или несколько	
		соответствующих) в правом	
		столбце)	
32	Решите матричное	Найти матрицу X из уравнения	УК-2.В.2
	уравнение. Выполните проверку.	А*Х=В, где	
	выполните проверку.	$A = A = \begin{pmatrix} -1 & 2 \\ 3 & -4 \end{pmatrix}, B = \begin{pmatrix} -9 & -4 \\ 23 & 10 \end{pmatrix}$	
		Ответ	

$X = \begin{pmatrix} 5 & 2 \\ -2 & -1 \end{pmatrix}$	
Инструкция:	
Прочитайте текст и запишите	
развернутый обоснованный ответ.	

Система оценивания тестовых заданий:

- 1 тип) Задание комбинированного типа с выбором одного верного ответа из четырех предложенных и обоснованием выбора считается верным, если правильно указана цифра и приведены конкретные аргументы, используемые при выборе ответа. Полное совпадение с верным ответом оценивается 1 баллом, неверный ответ или его отсутствие 0 баллов.
- 2 тип) Задание комбинированного типа с выбором нескольких вариантов ответа из предложенных и развернутым обоснованием выбора считается верным, если правильно указаны цифры и приведены конкретные аргументы, используемые при выборе ответов. Полное совпадение с верным ответом оценивается 1 баллом, если допущены ошибки или ответ отсутствует 0 баллов.
- 3 тип) Задание закрытого типа на установление соответствия считается верным, если установлены все соответствия (позиции из одного столбца верно сопоставлены с позициями другого столбца). Полное совпадение с верным ответом оценивается 1 баллом, неверный ответ или его отсутствие 0 баллов
- 4 тип) Задание закрытого типа на установление последовательности считается верным, если правильно указана вся последовательность цифр. Полное совпадение с верным ответом оценивается 1 баллом, если допущены ошибки или ответ отсутствует 0 баллов.
- 5 тип) Задание открытого типа с развернутым ответом считается верным, если ответ совпадает с эталонным по содержанию и полноте. Правильный ответ за задание оценивается в 3 балла, если допущена одна ошибка \ неточность \ ответ правильный, но не полный 1 балл, если допущено более 1 ошибки \ ответ неправильный \ ответ отсутствует -0 баллов.

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п		Пе	еречень контрольных работ
	Не предусмотрено		

- 10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.
 - 11. Методические указания для обучающихся по освоению дисциплины (Ниже приводятся рекомендации по составлению данного раздела)
- 11.1. Методические указания для обучающихся по освоению лекционного материала (если предусмотрено учебным планом по данной дисциплине).

Основное назначение лекционного материала – логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших

достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- Определения математических терминов.
- Формулировка теоремы.
- Доказательство теоремы.
- Иллюстрирующие примеры.

11.2. Методические указания для обучающихся по прохождению практических занятий (если предусмотрено учебным планом по данной дисциплине)

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

Практические занятия начинаются с записи в журнал преподавателя присутствующих студентов. Затем объявляется тема практических занятий.

Преподаватель читает условие задачи и предлагает студентам самостоятельно решить задачу, используя знания, полученные студентом на лекции. Студент, который первым решил задачу, вызывается к доске. В случае если студент правильно решил задачу, он получает 5 баллов. Если студент решает задачу с помощью преподавателя, то получает 4 балла. Затем, в конце семестра, оценки студентов (включая оценку посещаемости) переводятся в бонусы (качество) от 0 до 5 баллов. Эти бонусы добавляются к общей сумме баллов в рамках модульно-рейтинговой системы.

Студентам выдается домашнее задание в виде задач, которые они сдают в установленные сроки.

•

11.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- 11.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

В течение семестра в системе дистанционного обучения ГУАП в форме тестирования проводятся две проверочные работы по решению задач и один теоретический опрос (перечень вопросов для тестов размещен в «Банке вопросов» в системе дистанционного обучения ГУАП).

Результаты текущего контроля успеваемости будут учитываться при проведении промежуточной аттестации (при использовании балльно-рейтинговой системы оценивания, каждый вид контроля оценивается в баллах, из которых формируется итоговый результат).

11.5. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— экзамен — форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

 Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программам высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой