МИНИСТЕРСТВО НА УКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

образования "САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 23

УТВЕРЖДАЮ

Руководитель образовательной программы

доц.,к.т.н.

(должность, уч. степень, знание)

Ю.В. Бакшеева

Mons

(подпись)

«20» февраля 2025 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Электроника» (Наименование дисциплины)

Код направления подготовки/ специальности	11.03.01	
Наименование направления подготовки/ специальности	Радиотехника	
Наименование направленности	Радиотехнические технологии и аппаратный интерфейс нейронных сетей	
Форма обучения	очная	
Год приема	2025	

Санкт-Петербург- 2025

Лист согласования рабочей программы дисциплины

Программу составил (а)	10
ст. преподаватель	А.С. Параскун
(должность, уч. степень, звание) (постес	дата) (инициалы, фамилия)
Программа одобрена на заседании кафедры №	23
« <u>17</u> » февраля <u>2025</u> г, протокол № <u>6/25</u>	
Заведующий кафедрой № 23	X
д.т.н.,проф.	А.Р. Бестугин
(уч. степень, звание)	дата) (ниициалы, фамилия)
Заместитель директора института №2 пожето	инеской работе
доц.,к.т.н.,доц.	Н.В. Марковская
(должность, уч. степень, звание)	дата) (инициалы, фамилия)

Аннотация

Дисциплина «Электроника» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 11.03.01 «Радиотехника» направленности «Радиотехнические технологии и аппаратный интерфейс нейронных сетей». Дисциплина реализуется кафедрой «№23».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ОПК-1 «Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности»

ОПК-2 «Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных»

Содержание дисциплины охватывает круг вопросов, связанных с изучением физических принципов действия, характеристик, моделей и особенностей в радиотехнических цепях основных типов активных приборов, принципов их построения и механизмов влияния условий эксплуатации на работу активных приборов.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 часа.

Язык обучения по дисциплине «русский»

Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью преподавания дисциплины «Электроника» является изучение студентами физических принципов действия, характеристик, моделей и особенностей использования в радиотехнических цепях основных типов активных приборов, принципов построения и основ технологии микроэлектронных цепей, механизмов влияния условий эксплуатации на работу активных приборов и микроэлектронных цепей. При изучении этой дисциплины закладываются основы знаний, позволяющих умело использовать современную элементную базу радиоэлектроники и понимать тенденции и перспективы ее развития и практического использования; приобретаются навыки расчета режимов активных приборов в электронных цепях, экспериментального исследования их характеристик, измерения параметров и построения базовых ячеек электронных цепей, содержащих такие приборы.

- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП BO).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Общепрофессиональные компетенции	ОПК-1 Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности	ОПК-1.3.1 знать фундаментальные законы природы и основные физические и математические законы ОПК-1.У.1 уметь применять физические законы и математические методы для решения задач теоретического и прикладного характера ОПК-1.В.1 владеть навыками использования знаний физики и математики для решения задач инженерной деятельности
Общепрофессиональные компетенции	ОПК-2 Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных	ОПК-2.3.1 знать основные методы и средства проведения экспериментальных исследований, системы стандартизации и сертификации ОПК-2.У.1 уметь формулировать в рамках поставленной цели проекта совокупность взаимосвязанных задач, обеспечивающих ее достижение; оценивать достоинства и недостатки возможных вариантов решения задачи; определять ожидаемые результаты решения выделенных задач; выбирать способы и средства измерений и проводить экспериментальные исследования ОПК-2.В.1 владеть способами обработки и представления полученных данных и

(оценки погрешности результатов
I	измерений

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Математика-1 (Аналитическая геометрия и линейная алгебра)»,
- «Математика-1 (Математический анализ)»,
- «Физика»,
- «Химия».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- «Цифровая обработка сигналов»,
- «Интегральные устройства микроэлектроники»,
- «Интеллектуальные электронные датчики и устройства индикации»,
- «Электронные промышленные устройства»,
- «Схемотехника аналоговых электронных устройств»,
- «Схемотехника цифровых и импульсных устройств».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам №4
1	2	3
Общая трудоемкость дисциплины, 3E/ (час)	4/ 144	4/ 144
Из них часов практической подготовки		
Аудиторные занятия, всего час.	68	68
в том числе:		
лекции (Л), (час)	34	34
практические/семинарские занятия (ПЗ), (час)		
лабораторные работы (ЛР), (час)	34	34
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)	45	45
Самостоятельная работа, всего (час)	31	31
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.	Экз.

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции (час)	ПЗ (СЗ) (час)	ЛР (час)	КП (час)	СРС (час)
Сем	естр 4				
Раздел 1. Элементы физики твердого тела.					6
Тема 1.1. Физические основы полупроводниковых приборов.	5		5		
Тема 1.2. Контактные явления.	5		5		
Раздел 2. Полупроводниковые приборы.					8
Тема 2.1. Полупроводниковые диоды.	6		6		
Раздел 3. Полупроводниковые приборы.					11
Тема 3.1. Полевые транзисторы.	6		6		
Тема 3.2. Биполярные транзисторы.	6		6		
Раздел 4. Оптоэлектроника.					6
Тема 4.1. Фотоэлектрические и излучательные приборы.	6		6		
Итого в семестре:	34		34		31
Итого	34	0	34	0	31

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий		
Раздел 1	Элементы физики твердого тела.		
	1.1. Физические основы полупроводниковых приборов.		
	Основные понятия зонной теории полупроводников. Статистика электронов и дырок в полупроводниках. Вырожденные и невырожденные полупроводники. Концентрация носителей заряда в собственных и примесных полупроводниках в условиях термодинамического равновесия. Неравновесное состояние полупроводника. Процессы переноса носителей заряда в полупроводниках. Генерация и рекомбинация носителей заряда. Влияние электрического поля на объемную и поверхностную электропроводность полупроводников. Температурные зависимости концентрации, подвижности и удельной электропроводности полупроводников. Возникновение объемных неустойчивостей. Оптические и тепловые свойства полупроводников. Фотоэлектрические и		
	термоэлектрические явления.		
	1.2. Контактные явления.		
	Понятие о р-п-переходе, типы р-п-переходов. Физические		

процессы в р-п-переходе при отсутствии и при наличии		
внешнего напряжения. Вольтамперная характеристика p-n-		
перехода. Контакт «металл-полупроводник», зависимость		
его свойств от работы выхода полупроводника и металла.		
Гетеропереходы.		
Полупроводниковые приборы.		
2.1. Полупроводниковые диоды.		
Полупроводниковый диод, его характеристики и параметры.		
Основные виды пробоя р-п-перехода. Переходные процессы		
в полупроводниковом диоде, накопление и рассасывание		
избыточного заряда, диффузионная емкость. Эквивалентная		
схема полупроводникового диода. Основные типы		
полупроводниковых диодов, их конструкции, параметры и		
области применения.		
Полупроводниковые приборы.		
3.1. Полевые транзисторы.		
Полевые транзисторы с затвором в виде р-п-перехода. Их устройство, принцип действия, схемы включения, характеристики и параметры. Зависимость характеристик от температуры. Нагрузочный режим полевого транзистора, нагрузочные характеристики. Физические явления на поверхности полупроводника. Полевые транзисторы с изолированным затвором (МОП- или МДП-тразисторы), их принцип действия, характеристики и параметры. Особенности мощных МДП-транзисторов. Область применения полевых транзисторов.		
3.2. Биполярные транзисторы.		
Транзистор как система двух взаимодействующих р-п-переходов. Возможные режимы работы транзистора: активный (усилительный), отсечки, насыщения, инверсный. Физические процессы в бездрейфовом транзисторе в активном усилительном режиме. Токи в транзисторе. Коэффициент передачи эмиттерного тока и его составляющие. Три схемы включения транзистора: с общим эмиттером, с общей базой и общим коллектором. Характеристики транзистора в схемах с общей базой и с общим эмиттером. Влияние температуры на характеристики транзистора. Транзистор как линейный четырехполюсник. Системы малосигнальных (дифференциальных) параметров		

транзистора. Определение малосигнальных параметров по характеристикам транзистора. Работа транзистора при наличии нагрузки в коллекторной цепи. Нагрузочные характеристики транзистора. Параметры, характеризующие режим усиления, определение их по характеристикам. Выбор рабочей точки транзистора В режиме усиления. Схемотехнические способы задания рабочей точки. Влияние нелинейности входных характеристик на работу транзистора в режиме усиления. Работа транзистора на высоких частотах. Дрейфовые транзисторы. Параметра, характеризующие высокочастотные свойства транзистора. Эквивалентные схемы транзистора (формальные и физические). Модели используемые транзистора, при компьютерном проектировании электронных схем. Работа транзистора в режиме переключения. Условия отсечки и насыщения. Переходные процессы в транзисторе при переключении. Параметра транзисторов импульсном режиме. Транзисторный ключ, построенный по схеме с общим эмиттером. Предельно допустимые параметры транзистора.

Раздел 4

Оптоэлектроника.

4.1. Фотоэлектрические и излучательные приборы.

Фоторезисторы, ИХ конструкция, характеристики параметры. Физические процессы в р-п-переходе при воздействии света. Фото ЭДС. Фотогальванические элементы. Фотодиоды, основные режимы их работы. Характеристики и параметры фотодиодов. Основные типы фотодиодов. Фототранзисторы: принцип действия, характеристики, параметры. Области применения различных типов полупроводниковых фотоэлектрических приборов. Излучающие полупроводниковые приборы и их применение.

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

№ п/п	Темы практических занятий	Формы практических занятий	Трудоемкость, (час)	Из них практической подготовки, (час)	№ раздела дисцип лины
	Учебным планом не предусмотрено				
	Всег				

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

№	Наименование лабораторных работ	Трудоемкость,	Из них практической	№ раздела
п/п	панменование засораторных расст	(час)	подготовки,	дисцип
			(час)	ЛИНЫ
	Семестр	4		
1	Определение ширины запрещенной зоны	2		1
	полупроводников			
2	Исследование выпрямительных диодов	4		2
3	Исследование полевых транзисторов с	6		3
	управляемым (p-n) переходом			
4	Исследование полевых транзисторов с	6		3
	изолированным затвором			
5	Исследование биполярных транзисторов,	6		3
	включенных по схеме с общей базой			
6	Исследование биполярных транзисторов,	6		3
	включенных по схеме с общим эмиттером			
7	Исследование фототранзисторов	4		4
	Всего	34		

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

	Всего,	Семестр 4,
Вид самостоятельной работы	час	час
1	2	3
Изучение теоретического материала дисциплины (TO)	15	15
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю успеваемости (ТКУ)	10	10
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной аттестации (ПА)	6	6
Всего:	31	31

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8– Перечень печатных и электронных учебных изданий

таолица о тт	ере тень не ватных и электронных у теоных из	Aumm
Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)
621.38	Булычев, Анатолий	3
Б 90	Леонидович. Электронные	
	приборы: учебное	
	пособие / А Л. Булычев, В. А.	
	Прохоренко Минск : Высш.	
	шк., 1987 315 с.	
621.315.5/.61	Петров, К. С. Радиоматериалы,	4
ПЗО	радиокомпоненты и электроника: учебное	
	пособие / К. С.	
	Петров СПб.: ПИТЕР, 2006	
	522 c.	
	ISBN 5-94723-378-9	
621.38	Шишкин, Г. Г. Электроника:	4
Ш65	учебник/Г. Г. Шишкин, А. Г.	
	Шишкин М.: Дрофа, 2009	
	703 c.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

образовательных Перечень электронных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование	
	Не предусмотрено	

8.2. Перечень информационно-справочных систем,используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	24-02 (ул. Гастелло, 15)
2	Лаборатория Электроники	22-09 (ул. Гастелло, 15)

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Экзаменационные билеты;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	Характеристика сформированных компетенций	
5-балльная шкала		
«отлично» «зачтено»	 – обучающийся глубоко и всесторонне усвоил программный материал; – уверенно, логично, последовательно и грамотно его излагает; – опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; – умело обосновывает и аргументирует выдвигаемые им идеи; – делает выводы и обобщения; – свободно владеет системой специализированных понятий. 	
- свооодно владест системой специализированных понятии. - обучающийся твердо усвоил программный материал, грамот по существу излагает его, опираясь на знания основ литературы; - не допускает существенных неточностей; - увязывает усвоенные знания с практической деятельнос направления; - аргументирует научные положения; - делает выводы и обобщения; - владеет системой специализированных понятий.		

Оценка компетенции	Характеристика сформированных компетенций	
5-балльная шкала		
- обучающийся усвоил только основной программный матер по существу излагает его, опираясь на знания только основ литературы; - допускает несущественные ошибки и неточности; - испытывает затруднения в практическом применении зна направления; - слабо аргументирует научные положения; - затрудняется в формулировании выводов и обобщений; - частично владеет системой специализированных понятий.		
— обучающийся не усвоил значительной части программ материала; — допускает существенные ошибки и неточности рассмотрении проблем в конкретном направлении; — испытывает трудности в практическом применении знаний; — не может аргументировать научные положения; — не формулирует выводов и обобщений.		

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
1	Полупроводники с собственной электропроводностью.	ОПК-1.3.1
2	Полупроводники с электронной электропроводностью	ОПК-1.У.1
3	Полупроводники с дырочной электропроводностью.	ОПК-1.В.1
4	Дрейфовый и диффузионный ток в полупроводниках.	ОПК-2.3.1
5	Электронно-дырочный переход в состоянии равновесия.	ОПК-2.У.1
6	Прямое и обратное включение р-п-перехода.	ОПК-2.В.1
7	Теоретическая и реальная вольтамперная	ОПК-1.3.1
	характеристика р-п-перехода.	
8	Виды пробоев р-п-перехода и их особенности.	ОПК-1.У.1
9	Емкости р-п-перехода.	ОПК-1.В.1
10	Выпрямительные диоды.	ОПК-2.3.1
11	Однополупериодный выпрямитель – принцип его действия.	ОПК-2.У.1
12	Влияние температуры на вольтамперные	ОПК-2.В.1
12	характеристики полупроводниковых диодов.	OHK 2.B.1
13	Графический метод определения параметров рабочего	ОПК-1.3.1
	режима полупроводниковых диодов.	
14	Полупроводниковые стабилитроны, специальные	ОПК-1.У.1
	параметры полупроводниковых стабилитронов.	
15	Анализ работы полупроводникового стабилизатора	ОПК-1.В.1
	напряжения с помощью линии нагрузки.	
16	Варикапы, схемы включения в электрическую цепь,	ОПК-2.3.1
	эквивалентная схема варикапа и его основные	
	параметры.	
17	Туннельные диоды, основные параметры туннельных	ОПК-2.У.1
	диодов, анализ вольт-амперной характеристики	
	туннельного диода с помощью энергетических	
	диаграмм.	
18	Структура полевого транзистора с управляющим р-п	ОПК-2.В.1

		1
	переходом и принцип его работы.	
19	Электрические схемы включения полевых транзисторов	ОПК-1.3.1
	с управляющим р-п переходом и их особенности.	
20	Семейство стоково-затворных характеристик полевых	ОПК-1.У.1
	транзисторов с управляющим р-п переходом и их	
	особенности.	
21	Семейство выходных характеристик полевых	ОПК-1.В.1
	транзисторов с управляющим р-п переходом и их	
	особенности.	
22	Зависимость конфигурации «канала» полевых	ОПК-2.3.1
	транзисторов с управляющим р- п переходом от	
	изменения напряжения «сток-исток» при постоянном	
	напряжении «затвор-исток».	
23	Графический способ построения стоково-затворных	ОПК-2.У.1
	характеристик по выходным характеристикам полевых	
	транзисторов с управляющим р-п переходом.	
24	Структура МДП полевого транзистора с	ОПК-2.В.1
	«индуцированным» каналом и принцип его работы.	
25	Электрические схемы включения МДП полевых	ОПК-1.3.1
23	транзисторов с «индуцированным» каналом и их	01110 1.5.1
	особенности.	
26	Семейство стоково-затворных характеристик МДП	ОПК-1.У.1
20	полевых транзисторов с «индуцированным» каналом и	OIIK-1.5.1
	их особенности.	
27	Семейство выходных характеристик МДП полевых	ОПК-1.В.1
21		OHK-1.D.1
	транзисторов с «индуцированным» каналом и их особенности.	
28		ОПК-2.3.1
28	Структура МДП полевого транзистора со «встроенным»	O11K-2.5.1
20	каналом и принцип его работы.	ОПК-2.У.1
29	Электрические схемы включения МДП полевых	OHK-2. y.1
	транзисторов со «встроенным» каналом и их	
20	особенности.	OTHE 2 D 1
30	Семейство стоково-затворных характеристик МДП	ОПК-2.В.1
	полевых транзисторов со «встроенным» каналом и их	
21	особенности.	ОПИ 1 2 1
31	Семейство выходных характеристик МДП полевых	ОПК-1.3.1
	транзисторов со «встроенным» каналом и их	
22	особенности.	OFFICA VA
32	Дифференциальные или малосигнальные параметры	ОПК-1.У.1
	полевых транзисторов.	
33	Работа полевых транзисторов в динамическом режиме.	ОПК-1.В.1
34	Отличие определения дифференциальных параметров в	ОПК-2.3.1
	динамическом режиме от их определения в статическом	
	режиме.	
35	Устройство и конструктивные особенности биполярных	ОПК-2.У.1
	транзисторов.	
36	Электрические схемы включения биполярных	ОПК-2.В.1
	транзисторов и их особенности.	
37	Работа биполярного транзистора, включенного по схеме	ОПК-1.3.1
	с общей базой, в режимах «отсечки» и «насыщения».	
38	Работа биполярного транзистора, включенного по схеме	ОПК-1.У.1

	с общей базой, в «активном» режиме.	
39	Семейство статических входных характеристик	ОПК-1.В.1
	биполярного транзистора, включенного по схеме с	
	общей базой, и их особенности.	
40	Семейство статических выходных характеристик	ОПК-2.3.1
	биполярного транзистора, включенного по схеме с	
	общей базой, и их особенности.	
41	Работа биполярного транзистора, включенного по схеме	ОПК-2.У.1
	с общим эмиттером, в режимах «отсечки» и	
	«насыщения».	
42	Работа биполярного транзистора, включенного по схеме	ОПК-2.В.1
	с общим эмиттером, в «активном» режиме.	
43	Семейство статических входных характеристик	ОПК-1.3.1
	биполярного транзистора, включенного по схеме с	
	общим эмиттером, и их особенности.	
44	Семейство статических выходных характеристик	ОПК-1.У.1
	биполярного транзистора, включенного по схеме с	
	общим эмиттером, и их особенности.	
45	Схема включения биполярного транзистора с общим	ОПК-1.В.1
	коллектором в «активном» режиме и ее особенности.	
46	Система Н параметров биполярных транзисторов.	ОПК-2.3.1
47	Фототранзистор, устройство и принцип действия.	ОПК-2.У.1

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	Код индикатора
1	Какой основной элемент лежит в основе работы большинства аналоговых электронных схем?	ОПК-1
	А) Индуктивность В) Диод С) Транзистор D) Резистор	
2	Какие законы используются при анализе простейших электрических цепей постоянного тока?	ОПК-1

	A) 2 O	1
	А) Закон Ома	
	В) Закон Фарадея	
	С) Первый закон Кирхгофа	
	D) Закон Кулона	07774.1
3	Расположите этапы анализа линейной электрической цепи в	ОПК-1
	правильной последовательности:	
	А) Определение структуры схемы и параметров элементов	
	В) Составление уравнений по законам Кирхгофа	
	С) Решение уравнений и нахождение токов и напряжений	
	 D) Проверка правильности расчётов и интерпретация результатов 	
4	Установите соответствие между электронными	ОПК-1
	компонентами и их функциями:	
	A) Диод \rightarrow 1) Пропускает ток в одном направлении	
	В) Конденсатор \rightarrow 2) Накопление и хранение электрического	
	заряда	
	С) Резистор \rightarrow 3) Ограничение тока	
	D) Катушка индуктивности \rightarrow 4) Преобразует ток в магнитное	
	поле и наоборот	
5	Объясните, как знание физических законов помогает при	ОПК-1
	проектировании электронных схем.	
6	Какой из приборов используется для измерения напряжения	ОПК-2
	на элементах электронных схем?	
	А) Омметр	
	В) Вольтметр	
	С) Амперметр	
	D) Генератор	
7	Какие действия входят в стандартную процедуру обработки	ОПК-2
	результатов эксперимента?	
	A) G5	
	А) Сбор экспериментальных данных	
	В) Расчёт средних значений	
	С) Игнорирование аномальных точек	
	D) Построение графиков и таблиц	0.777.4
8	Расположите этапы экспериментального исследования в	ОПК-2
	логической последовательности:	
	А) Потополу ободительных и ополу	
	А) Подготовка оборудования и схемы	
	В) Проведение измерений	
	С) Обработка результатов	
	D) Формирование заключения по результатам эксперимента	OHIC 2
9	Установите соответствие между этапами обработки данных и	ОПК-2
	их описанием:	
	1) 0	
	A) Среднее арифметическое \rightarrow 1) Оценка типичного значения	
	измеренной величины	
	В) Погрешность → 2) Характеристика точности измерений	
	С) График зависимости \rightarrow 3) Визуальное представление	
	результатов эксперимента	
10	Почему важно представлять экспериментальные данные в виде	ОПК-2

таблиц и графиков?	

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п		Пе	еречень контрольных работ
	Не предусмотрено		

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- Лекции;
- Демонстрация промышленных образцов полупроводниковых приборов;
- Демонстрация электрических схем включения полупроводниковых приборов.

11.2. Методические указания для обучающихся по участию в семинарах

Основной целью для обучающегося является систематизация и обобщение знаний по изучаемой теме, разделу, формирование умения работать с дополнительными источниками информации, сопоставлять и сравнивать точки зрения, конспектировать

прочитанное, высказывать свою точку зрения и т.п. В соответствии с ведущей дидактической целью содержанием семинарских занятий являются узловые, наиболее трудные для понимания и усвоения темы, разделы дисциплины. Спецификой данной формы занятий является совместная работа преподавателя и обучающегося над решением поставленной проблемы, а поиск верного ответа строится на основе чередования индивидуальной и коллективной деятельности.

При подготовке к семинарскому занятию по теме прослушанной лекции необходимо ознакомиться с планом его проведения, с литературой и научными публикациями по теме семинара.

Требования к проведению семинаров

11.3. Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

11.4. Методические указания для обучающихся по выполнению лабораторных работ

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Исследование характеристик полупроводниковых приборов. Лабораторная работа выполняется бригадой из двух-трех студентов на универсальных измерительных стендах. Проведение исследований осуществляется в соответствии с заданием и в указанной последовательности. Результаты измерений заносятся в протокол испытаний, который по окончании исследований должен быть представлен для проверки преподавателю.

Структура и форма отчета о лабораторной работе

Отчет должен содержать: наименование и цель работы; схемы измерений; таблицы измеренных данных; графики характеристик исследуемых объектов; рассчитанные значения параметров исследуемых объектов; краткие выводы. Отчет выполняется на белой бумаге формата 297 х 210 кв. мм.

Требования к оформлению отчета о лабораторной работе

Образец оформления титульного листа приведен на сайте: https://guap.ru/standart/ Графики строятся на отдельных листах формата отчета. Иллюстрации малых размеров размещаются на одном листе. Все графики и рисунки должны иметь нумерацию и поясняющие подписи с указанием типа исследуемого объекта. Принципиальные схемы вычерчиваются в соответствии с требованиями ЕСКД.

- 1. Абрамов, А. П. Электроника. Методические указания к выполнению лабораторных работ по исследованию полевых транзисторов / А. П. Абрамов, В. В. Опарин. СПб: ГУАП, 2009. 42 с.: ил.
- 2. Абрамов, А. П. Электроника. Методические указания к выполнению лабораторных работ по исследованию полупроводниковых диодов/ А. П. Абрамов, В. В. Опарин. СПб: ГУАП, 2008. 41 с.: ил.
- 3. Абрамов, А. П. Основы полупроводниковой электроники. Методические указания к выполнению лабораторных работ./ А. П. Абрамов. СПб: ГУАП, 2020. 54 с.: ил.
- 4. Абрамов, А. П. Биполярные и полевые транзисторы. Методические указания к выполнению лабораторных работ./ А. П. Абрамов, В. Г. Нефедов, А. С. Параскун. СПб: ГУАП, 2020. 30 с.: ил.
- 11.5. Методические указания для обучающихся по прохождению курсового проектирования/выполнения курсовой работы

Курсовой проект/ работа проводится с целью формирования у обучающихся опыта комплексного решения конкретных задач профессиональной деятельности.

Курсовой проект/ работа позволяет обучающемуся:

Структура пояснительной записки курсового проекта/ работы

Требования к оформлению пояснительной записки курсового проекта/ работы

11.6. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий

уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.7. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

11.8. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

- экзамен форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».
- зачет это форма оценки знаний, полученных обучающимся в ходе изучения учебной дисциплины в целом или промежуточная (по окончании семестра) оценка знаний обучающимся по отдельным разделам дисциплины с аттестационной оценкой «зачтено» или «не зачтено».
- дифференцированный зачет это форма оценки знаний, полученных обучающимся при изучении дисциплины, при выполнении курсовых проектов, курсовых работ, научно-исследовательских работ и прохождении практик с аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

12. Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой