МИНИСТЕРСТВО НА УКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 22

	УТВЕРЖДАЮ	
Руководитель	образовательной	программы

доц.,к.т.н.

(должность, уч. степень, звание)

Ю.В. Бакшеева

инициары, фамилия) СеЛ

(подпись) « 19 » февраля 2025 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Основы искусственного интеллекта в радиотехнических системах» (Наименование дисциплины)

Код направления подготовки/ специальности	11.03.01
Наименование направления подготовки/ специальности	Радиотехника
Наименование направленности	Радиотехнические технологии и аппаратный интерфейс нейронных сетей
Форма обучения	ранью
Год приема	2025

Лист согласования рабочей программы дисциплины

Лист согласования рабочей программы дисциплины

программу составил (а)		
проф., д.т.н., проф.	11.02.2025	В.Ю.Волков
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Программа одобрена на заседани «11» февраля 2025 г, протокол .		
Заведующий кафедрой № 22 к.т.н.	11.02.2025	Ю.В. Бакшеева
(уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Заместитель директора институт доц.,к.т.н.,доц.	та №2 по Ленодической рабо 11.02.2025	оте Н.В. Марковская
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Основы искусственного интеллекта в радиотехнических системах» входит в образовательную программу высшего образования – программу бакалавриата по направлению подготовки/ специальности 11.03.01 «Радиотехника» направленности «Радиотехнические технологии и аппаратный интерфейс нейронных сетей». Дисциплина реализуется кафедрой «№22».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-1 «Способен выполнять математическое моделирование объектов и процессов по типовым методикам, в том числе с использованием стандартных пакетов прикладных программ, а также с использованием методов искусственного интеллекта»

Содержание дисциплины охватывает круг вопросов, связанных с методами обучения радиотехнических систем, реализацией алгоритмов обучения в задачах обнаружения и различения сигналов, а также с применением их в системах технического зрения.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, практические занятия, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме зачета.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы, 108 часов.

Язык обучения по дисциплине «русский».

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Изучение основ реализации искусственного интеллекта при решении радиотехнических задач, изучение методов и алгоритмов обучения и адаптации при обработке сигналов и изображений в радиотехнических системах наблюдения и технического зрения. Получение знаний по теории, программированию и моделированию процессов в системах технического зрения.

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Профессиональные компетенции	ПК-1 Способен выполнять математическое моделирование объектов и процессов по типовым методикам, в том числе с использованием стандартных пакетов прикладных программ, а также с использованием методов искусственного интеллекта	ПК-1.3.2 знать основные методы искусственного интеллекта ПК-1.У.2 уметь применять методы искусственного интеллекта при моделировании объектов и процессов ПК-1.В.2 владеть навыками применения методов искусственного интеллекта

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Физика (разделы: теория электричества и магнетизма)»;
- «Высшая математика и спецразделы математики (разделы: дифференциальное и интегральное исчисление, теория вероятностей и математическая статистика)»;
- «Информатика и программирование»;
- «Основы теории цепей»;
- «Радиотехнические цепи и сигналы».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- 1. «Многофункциональные РЛС»,
- 2. «Основы теории систем и комплексов радиоэлектронной борьбы».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

T v		Трудоемкость по
Вид учебной работы	Всего	семестрам
		№8
1	2	3
Общая трудоемкость дисциплины,	3/ 108	3/ 108
3Е/ (час)	3/ 108	3/ 100
Из них часов практической подготовки	40	40
Аудиторные занятия, всего час.	50	50
в том числе:		
лекции (Л), (час)	10	10
практические/семинарские занятия (ПЗ),	20	20
(час)	20	20
лабораторные работы (ЛР), (час)	20	20
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)		
Самостоятельная работа, всего (час)	58	58
Вид промежуточной аттестации: зачет,		
дифф. зачет, экзамен (Зачет, Дифф. зач,	Зачет	Зачет
Экз.**)		

Примечание: ** кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции	П3 (С3)	ЛР	КП	CPC
т азделы, темы дисциплины	(час)	(час)	(час)	(час)	(час)
Семестр 8					
Раздел 1. Области применения искусственного					
интеллекта					
Тема 1.1. Робототехника	2				10
Тема 1.2. Техническое зрение					
Тема 1.3. Машинное обучение					
Раздел 2. Задачи и алгоритмы распознавания					
образов в радиотехнических задачах					
Тема 2.1. Алгоритмы адаптивной классификации					
сигналов	4	10	10		20
Тема 2.2. Адаптивная селекция объектов на					
изображениях					
Тема 2.3. Нейронные сети и глубокое обучение					

Раздел 3. Моделирование алгоритмов адаптации и обучения в радиотехнических системах Тема 3.1. Адаптивное выделение геометрических примитивов на изображениях Тема 3.2. Выделение контуров объектов на изображениях Тема 3.3. Селекция объектов интереса	4	10	10		28
Итого в семестре:	10	20	20		58
Итого	10	20	20	0	58

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий
Раздел 1.	Области применения искусственного интеллекта Тема 1.1. Робототехника. Примеры использования искусственного интеллекта при создании роботов. Тема 1.2. Техническое зрение. Решение радиотехнических задач в системах технического зрения.
	Тема 1.3. Машинное обучение.
D 2	Методы машинного обучения и нейронные сети.
Раздел 2.	Задачи и алгоритмы адаптивной обработки в радиотехнических задачах
	Тема 2.1. Адаптивное выделение геометрических примитивов на изображениях.
	Выделение прямолинейных сегментов и углов.
	Тема 2.2. Выделение контуров объектов на изображениях.
	Градиентные методы. Алгоритм Кэнни.
	Тема 2.3. Адаптивное обнаружение объектов интереса.
	Адаптивные пороговые методы сегментации. Методы Отсу и
	Брэдли-Рота. Многопороговые методы сегментации.
Раздел 3.	Тема 3.1. Алгоритмы адаптивной классификации и обучения для селекции объектов и распознавания образов. Алгоритмы адаптивной классификации сигналов
	Описание сигналов и изображений. Системы признаков. Эффективность классификаторов.
	Тема 3.2. Адаптивная селекция объектов на изображениях.
	Пороговые методы сегментации объектов. Многопороговые
	адаптивные алгоритмы. Селекция объектов по площади и по
	форме. Качественные показатели селекции.
	Тема 3.3. Нейронные сети и глубокое обучение
	Виды нейронных сетей. Реализация глубокого обучения.

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

№ п/п	Темы практических занятий	Формы практических занятий	Трудоемкость, (час)	Из них практической подготовки, (час)	№ раздела дисцип лины
		Семестр 8			
1	Алгоритмы	Решение	6	6	2
	адаптивного	ситуационных			
	обнаружения и	задач; занятия по			
	различения	моделированию			
		реальных условий			
2	Алгоритмы	Решение	2	2	3
	адаптивной	ситуационных			
	селекции объектов	задач; занятия по			
		моделированию			
		реальных условий			

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

№ π/π	Наименование лабораторных работ	Трудоемкость, (час)	Из них практической подготовки, (час)	№ раздела дисцип лины
	Семестр	8		
1	Моделирование алгоритма выделения	12	12	2
	геометрических признаков на			
	изображении			
2	Моделирование алгоритма	8	8	3
	многопороговой селекции объектов			
	Всего	20	20	

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7. Таблица 7 — Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 8,
Вид самостоятсявной расоты	час	час
1	2	3

Изучение теоретического материала дисциплины (TO)	18	18
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю успеваемости (ТКУ)	15	15
Домашнее задание (ДЗ)	15	15
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной аттестации (ПА)	10	10
Всего:	58	58

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8– Перечень печатных и электронных учебных изданий

Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)
УДК 621.371 ББК 32ю84я73 В67 ISBN 978-5- 8088-1273-4	Волков В.Ю. Обнаружение и различение сигналов в радиотехнических системах: учебное пособие. – СПб.: ГУАП, 2018. – 128 с.	45
УДК 621.369 ББК 32.973.26 – 018.2я73 B72 ISBN 978-5-	Волков В.Ю. Моделирование и обработка сигналов и полей в радиотехнических задачах. – СПб.: ГУАП, 2020. – 137 с	45
8088-1273-4		
621.37(075) X 98 621.37	Худяков Г. И. Статистическая теория радиотехнических систем: учебное пособие/ Г. И. Худяков М.: Академия, 2009400 с.: рис., табл (Высшее профессиональное образование. Радиотехника) Библиогр.: с.392 - 394 (50 назв.).	20
621.37:519.2(075) T46 621.37	Тихонов В. И. Статистический анализ и синтез радиотехнических устройств и систем: Учебное пособие для вузов/ В. И. Тихонов, В. Н.	58

Харисов 2-е изд., испр М.: связь: Горячая линия - Телеком	
608 с.: рис Загл. обл.: Специа	
- Библиогр.: c. 605 (10 назв.).	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационнот телекоммуникационной сети «Интернет»

URL адрес	Наименование
http://studopedia.ru	Студопедия
http:// www. technicalvision.ru	Техническое зрение
http://ibooks.ru	Литература
http://e.lanbook.com	
http://www.iprbookshop.ru	

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

	· · · · · · · · · · · · · · · · · ·
№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование	
	Не предусмотрено	

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

$N_{\underline{0}}$	Наименование составной части	Номер аудитории
Π/Π	материально-технической базы	(при необходимости)

1	Лекционная аудитория	
2	Мультимедийная лекционная аудитория	

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств	
Зачет	Список вопросов;	
	Тесты	

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	Vanastanisatista ahansunananisti iy kasutatasisti		
5-балльная шкала	Характеристика сформированных компетенций		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 		
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 		
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; 		

Оценка компетенции	Характеристика сформированных компетенций		
5-балльная шкала	ларактеристика сформированных компетенции		
	– затрудняется в формулировании выводов и обобщений;		
	– частично владеет системой специализированных понятий.		
	- обучающийся не усвоил значительной части программного		
	материала;		
«неудовлетворительно»	– допускает существенные ошибки и неточности при		
«не зачтено»	рассмотрении проблем в конкретном направлении;		
WHC 3a41CHOW	 испытывает трудности в практическом применении знаний; 		
	– не может аргументировать научные положения;		
	– не формулирует выводов и обобщений.		

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
	Учебным планом не предусмотрено	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 – Вопросы (задачи) для зачета / дифф. Зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
1	Адаптивное пороговое обнаружение объектов	ПК-1.3.2
2	Выделение прямолинейных сегментов.	ПК-1.У.2
3	Многопороговый метод выделения объектов	ПК-1.У.2
4	Адаптивная селекция объектов по площади и по форме	ПК-1.В.2
5	Эффективность классификатора. Полнота и точность	ПК-1.В.2
6	Основные принципы глубокого обучения нейронной сети	ПК-1.В.2

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	Код
		индикатора
1	Активное изучение ИИ в разные периоды жизни общества	ПК-1.3.2
	относятся к	
	1) 1-й промышленной революции	
	2) 2-й промышленной революции	
	3) 3-й промышленной революции	
	4) 4-й промышленной революции	

	Правильный ответ: 4 - 4-й промышленной революции	
2	Что из перечисленного не является ИИ	ПК-1.3.2
	1) Компьютерное зрение	
	2) Экспертная система	
	3) Обработка текста на естественном языке	
	Правильный ответ: 2 - Экспертная система	
3	Какой тип нейронной сети чаще всего используется для обработки	ПК-1.3.2
	изображений?	
	1) Полносвязная нейронная сеть	
	2) Сверточная нейронная сеть (CNN)	
	3) Рекуррентная нейронная сеть (RNN)	
	4) Байесовская сеть	
	Ответ: 2) Сверточная нейронная сеть (CNN)	
4	Как называется функция активации, часто используемая в скрытых	ПК-1.3.2
•	слоях нейронных сетей?	1111 1.0.2
	1) Softmax	
	1) Solumux	
	2) ReLU	
	3) Sigmoid	
	4) Линейная функция	
	Ответ: 2) ReLU	
5	Какой алгоритм обучения нейронных сетей наиболее	ПК-1.3.2
3	распространен?	11K-1.3.2
	1) Градиентный спуск	
	2) Метод Монте-Карло	
	3) Динамическое программирование	
	4) Жадный алгоритм	
	Ответ: 1) Градиентный спуск	THE 1 X/ 2
6	Как называется процесс изменения весов нейросети в процессе	ПК-1.У.2
	обучения?	
	1) Регуляризация	
	2) Обратное распространение ошибки	
	3) Нормализация	
	4) Декодирование	
	Ответ: 2) Обратное распространение ошибки	
7	Какие из перечисленных параметров влияют на точность	ПК-1.У.2
	нейросети?	
	1) Количество слоев	
	2) Размер обучающей выборки	
	3) Скорость обучения	
	4) Тип процессора, на котором выполняется обучение	
	5) Используемая функция активации	
	Ответ: 1;2;3;5	
8	Какие из следующих подходов используются для предотвращения	ПК-1.У.2
	переобучения нейросетей?	
	1) Dropout	
	2) L1/L2-регуляризация	
	3) Увеличение обучающей выборки (Data Augmentation)	

	4) Использование большего количества слоев	
	5) Ранняя остановка (Early Stopping)	
	Ответ: 1;2;3;5	
9	Расположите этапы обучения нейросети в правильном порядке:	ПК-1.У.2
	1) Выбор функции потерь	
	2) Инициализация весов	
	2) 05	
	3) Обучение с обратным распространением ошибки	
	4) Оценка точности модели	
10	Ответ: 2;1;3;4	
10	Расположите этапы обработки изображения в сверточной нейросети в правильном порядке:	ПК-1.У.2
	в правильном порядке.	
	1) Применение сверточных фильтров	
	2) Применение функции активации	
	2) Применение функции активации	
	3) Выполнение подвыборки (Pooling)	
	4) Передача данных в полносвязный слой	
	, - -	
11	Ответ: 1;2;3;4 Установите соответствие между архитектурами нейросетей и их	ПК-1.В.2
11	основными характеристиками:	11K-1.D.2
	a) CNN	
	б) RNN в) GAN	
	r) Autoencoder	
	1) H	
	1) Используется для обработки изображений 2) Хорошо подходит для обработки последовательных данных	
	3) Используется для генерации изображений	
	4) Применяется для уменьшения размерности данных	
	Ответ: a1; б2; в3; г4;	
12	Установите соответствие между типами функций активации и их	ПК-1.В.2
	особенностями	
	a) ReLU	
	6) Sigmoid	
	B) Softmax	
	r) Tanh	
	1) Устраняет проблему затухающих градиентов	
	2) Подходит для бинарной классификации	
	3) Используется для многоклассовой классификации	

	A D		
	4) Выходные значения находятся в диапазоне [-1, 1]		
	Ответ: a1; б2; в3; г4;		
13		ПК-1.В.2	
13			
	нейронной сети?		
	1) 70		
	1) Количество входных данных		
	2) Количество скрытых слоёв и нейронов в них		
	3) Размер обучающей выборки		
	4) Количество эпох обучения		
- 1.4	Ответ: 2) Количество скрытых слоёв и нейронов в них	HI 1 D 0	
14	Какой метод чаще всего используется для предотвращения	ПК-1.В.2	
	переобучения нейросетей?		
	1) Увеличение количества эпох		
	2) Уменьшение размера обучающей выборки		
	2) D		
	3) Dropout		
	A) II		
	4) Использование только полносвязных слоев		
	Ответ: 3) Dropout		
15	Какие техники могут ускорить обучение нейронной сети?	ПК-1.В.2	
13	какие техники могут ускорить обучение неиронной сети!	11K-1.D.2	
	1) Использование пакетной (mini-batch) градиентной оптимизации		
	т) использование пакстной (пппп-оассп) градиентной оптимизации		
	2) Увеличение количества параметров сети без изменения данных		
	2) з величение количества нараметров ести осз изменения данных		
	3) Применение нормализации данных		
	э) применение нормализации данных		
	4) Использование предобученных моделей (Transfer Learning)		
	TICHOLOSOBATHIC HPCGOOYTCHHOLA MODELICH (TTAIISICI LEAHIIIIg)		
	5) Исключение функции активации в скрытых слоях		
	эл поключение функции активации в скрытых слоях		
	Orpor: 1:3:4		
	Ответ: 1;3;4.		

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

	1 1
№ п/п	Перечень контрольных работ
	Не предусмотрено

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру

проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- Постановка задачи;
- Модель процесса или поля;
- Критерий обнаружения или различения;
- Метод и алгоритм обработки;
- Результаты и выводы.

11.2. Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;

- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

В ходе выполнения задания на практических занятиях студент получает необходимый навык расчетов характеристик и проведения моделирования алгоритма обработки сигнала. Результаты работы студента оформляются в виде отчета.

В ходе проведения практических занятий целесообразно привлечение студентов к как можно более активному участию в дискуссиях, решении задач, обсуждениях и т. д. При этом активность студентов также может учитываться преподавателем, как один из способов текущего контроля на практических занятиях.

Варианты заданий на практических занятиях:

- 1. Рассчитать пороговые константы для задачи обнаружения объекта на изображении.
- 2. Построить характеристику обнаружения для этой задачи, и проверить моделированием несколько характерных точек.
 - 3. Выделить контуры объекта различными способами и сравнить с эталоном.
 - 4. Выделить компактные объекты на изображении и сравнить с эталоном.
- 11.3. Методические указания для обучающихся по выполнению лабораторных работ

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Структура и форма отчета о лабораторной работе

Отчет по лабораторной работе оформляется индивидуально каждым студентом.

Титульный лист должен содержать название лабораторной работы,

Фамилию, имя, отчество (полностью) и номер группы студента,

дату выполнения работы и дату представления к защите.

Отчет должен содержать следующие обязательные части:

- 1. Цель работы.
- 2. Постановку задачи (в развернутом виде с указанием частных задач).
- 3. Теоретические исследования.
- 4. Результаты моделирования.

5. Выводы.

Требования к оформлению отчета о лабораторной работе

Отчет выполняется с соблюдением нормативных требований к оформлению согласно действующих стандартов. Отчет о выполнении лабораторной работы оформляется в соответствии с ГОСТ 7.32-2001 издания 2008 года.

Отчет печатается на листах бумаги формата А4, а также представляется в электронном виде и размещается на сайте университета.

11.4. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.5. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Текущий контроль успеваемости осуществляется на практических и лабораторных занятиях путем защиты студентом отчетов в ходе ответов на вопросы преподавателя.

Результаты учитываются при проведении промежуточной аттестации следующим образом: студент должен успешно защитить отчеты, в противном случае он не получает зачет.

Текущий контроль включает в себя:

- контроль посещаемости (не менее 80% занятий)
- выполнение 2 практических заданий (для получения зачета по тесту необходимо дать правильные ответы на более чем 50% тестовых вопросов).
- выполнение 2 лабораторных работ (для получения зачета по лабораторной работе необходимо дать правильные ответы на более чем 50% вопросов).
- 11.6. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

 зачет – это форма оценки знаний, полученных обучающимся в ходе изучения учебной дисциплины в целом или промежуточная (по окончании семестра) оценка знаний обучающимся по отдельным разделам дисциплины с аттестационной оценкой «зачтено» или «не зачтено».

Требования к зачету:

- 1. Наличие списка вопросов и задач для зачета, доступного студентам за неделю до зачета.
- 2. Предоставление студенту времени для подготовки к ответам.
- 3. Ответы на вопросы осуществляются в устной форме с пояснениями на бумаге или на доске.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой