МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 22

УТВЕРЖДАЮ

Руководитель образовательной программы

доц.,к.т.н.

(должность, уч. степень, звание)

Ю.В. Бакшеева

ринциалы, фамилия)

(подпись)

«19» февраля 2025г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Теория и техника СВЧ-тракта» (Наименование дисциплины)

Код направления подготовки/ специальности	11.03.01	
Наименование направления подготовки/ специальности	Радиотехника	
Наименование направленности	Радиотехнические технологии и аппаратный интерфейс нейронных сетей	
Форма обучения	очная	
Год приема	2025	

Лист согласования рабочей программы дисциплины

Программу составил (а)	121.1	
доц., к.т.н., доц.	11.02.2025r.	С.В. Кузьмин
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Программа одобрена на засе	дании кафедры № 22	
«11» февраля 2025 г, протог	кол №2	
Заведующий кафедрой № 22 к.т.н.	That 11.02.2025r.	Ю.В. Бакшеева
(уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Заместитель директора инст	итута №2 по петодической рабо	оте
доц.,к.т.н.,доц.	11.02.2025г.	Н.В. Марковская
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
	01	

Аннотация

Дисциплина «Теория и техника СВЧ-тракта» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 11.03.01 «Радиотехника» направленности «Радиотехнические технологии и аппаратный интерфейс нейронных сетей». Дисциплина реализуется кафедрой «№22».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-2 «Способен реализовывать программы экспериментальных исследований, включая выбор технических средств и обработку результатов исследований»

ПК-3 «Способен осуществлять сбор и анализ исходных данных для расчета и проектирования деталей, узлов и устройств радиотехнических систем, аппаратного интерфейса нейронных сетей»

Содержание дисциплины охватывает круг вопросов, связанных с теорией и практикой разработки антенных и фидерных устройств радиотехнических систем.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, практические занятия, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме дифференцированного зачета.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 часа

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью преподавания дисциплины подготовка бакалавров направления «Радиотехника» в области разработки и обеспечения функционирования устройств СВЧ и антенн в радиотехнических системах.

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа)	Код и наименование	Код и наименование индикатора достижения
компетенции	компетенции	компетенции
	ПК-2 Способен	ПК-2.3.1 знать методики проведения
	реализовывать	исследований параметров и характеристик
	программы	узлов, блоков радиотехнических устройств и
	экспериментальных	систем, апппаратного интерфейса нейронных
Профессиональные	исследований,	сетей
компетенции	включая выбор	ПК-2.У.1 уметь проводить исследования
	технических	характеристик радиотехнических устройств и
	средств и обработку	систем
	результатов	ПК-2.В.1 владеть методами обработки
	исследований	результатов эксперимента
	ПК-3 Способен	
	осуществлять сбор	
	и анализ исходных	
	данных для расчета	ПК-3.У.1 уметь осуществлять сбор и анализ
Профессиональные	и проектирования	исходных данных для расчета и
компетенции	деталей, узлов и	проектирования деталей, узлов и устройств
компетенции	устройств	радиотехнических систем
	радиотехнических	радиотелнических систем
	систем, аппаратного	
	интерфейса	
	нейронных сетей	

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- Радиотехнические цепи и сигналы,
- Электродинамика и распространение радиоволн.

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- Теория и техника РТС
- Основы теории радиосистем и комплексов управления
- Особенности приема и обработки сигналов в РТС различного назначения
- Пространственно-временная обработка сигналов
- Многофункциональные РЛС
- Спутниковые радионавигационные системы
- Основы вторичной радиолокации

- Перспективные методы обработки информации в РТС
- Адаптивные радиотехнические системы

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам №6	
1	2	3	
Общая трудоемкость дисциплины, 3E/ (час)	4/ 144	4/ 144	
Из них часов практической подготовки	51	51	
Аудиторные занятия, всего час.	68	68	
в том числе:			
лекции (Л), (час)	17	17	
практические/семинарские занятия (ПЗ), (час)	34	34	
лабораторные работы (ЛР), (час)	17	17	
курсовой проект (работа) (КП, КР), (час)			
экзамен, (час)			
Самостоятельная работа, всего (час)	76	76	
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Дифф. Зач.	Дифф. Зач.	

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины		П3 (С3)	ЛР	КП	CPC
таздолы, темы диециплины	(час)	(час)	(час)	(час)	(час)
Сем	естр 6				
Раздел 1. Введение					
Тема 1.1. Основные положения и характеристики	1	2.	1		8
Тема 1.2. Теория цепей СВЧ	1	2	4		0
Тема 1.3. Направляемые и излучаемые волны					
Раздел 2. Измерение характеристик устройств СВЧ					
диапазона и САПР устройств СВЧ диапазона					
Тема 2.1. Измерение характеристик устройств СВЧ	2				8
диапазона					
Тема 2.2. САПР устройств СВЧ диапазона					
Раздел 3. "Проволочные" антенны.					
Тема 3.1. Вибраторные антенны, логопериодическая					
антенна, антенна волновой канал.	2	4	6		8
Тема 3.2. Паразитное излучение электромагнитных					
волн устройствами СВЧ диапазона					

Раздел 4. Апертурные антенны Тема 4.1. Принцип Гюйгенса-Френеля, приближение Кирхгоффа. Тема 4.2. Рупорные антенны Тема 4.3. Зеркальные антенны Тема 4.4. Линзовые антенны	2	4	2		8
Раздел 5. Элементная база СВЧ. Пассивные компоненты тракта СВЧ. Печатные платы СВЧ. Тема 5.1. Элементная база СВЧ Тема 5.2. Пассивные компоненты тракта СВЧ Тема 5.3. Печатные платы СВЧ	2	4			8
Раздел 6. Антенные решётки	2	4	2		8
Раздел 7. Коаксиальные кабели. Конструирование переходов Тема 7.1. Коаксиальные кабели Тема 7.2. Конструирование переходов	2	4			8
Раздел 8. Волноводы. Диаграммообразующие схемы Тема 8.1. Волноводы Тема 8.2. Диаграммообразующие схемы	2	6	3		8
Раздел 9. Ферритовые устройства СВЧ. Технологии Тема 9.1. Ферритовые устройства СВЧ Тема 9.2. Технологии	1				6
Раздел 10. Проблема согласования и фильтры. Антенно-мачтовые сооружения Тема 10.1. Проблема согласования и фильтры. Тема 10.2. Антенно-мачтовые сооружения	1	6			6
Итого в семестре:	17	34	17		76
Итого	17	34	17	0	76

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий		
1	Раздел 1. Введение		
	Тема 1.1. Основные положения и характеристики		
	Тема 1.2. Теория цепей СВЧ		
	Тема 1.3. Направляемые и излучаемые волны		
	Раздел 2. Измерение характеристик устройств СВЧ диапазона и		
2	САПР устройств СВЧ диапазона		
2	Тема 2.1. Измерение характеристик устройств СВЧ диапазона		
	Тема 2.2. САПР устройств СВЧ диапазона		
	Раздел 3. "Проволочные" антенны.		
	Тема 3.1. Вибраторные антенны, логопериодическая антенна,		
3	антенна волновой канал.		
	Тема 3.2. Паразитное излучение электромагнитных волн		
устройствами СВЧ диапазона			

	Раздел 4. Апертурные антенны	
	Тема 4.1. Принцип Гюйгенса-Френеля, приближение Кирхгоффа.	
4	Тема 4.2. Рупорные антенны	
	Тема 4.3. Зеркальные антенны	
	Тема 4.4. Линзовые антенны	
	Раздел 5. Элементная база СВЧ. Пассивные компоненты тракта	
	СВЧ. Печатные платы СВЧ.	
5	Тема 5.1. Элементная база СВЧ	
	Тема 5.2. Пассивные компоненты тракта СВЧ	
	Тема 5.3. Печатные платы СВЧ	
6	Раздел 6. Антенные решётки	
	Раздел 7. Коаксиальные кабели. Конструирование переходов	
7	Тема 7.1. Коаксиальные кабели	
	Тема 7.2. Конструирование переходов	
	Раздел 8. Волноводы. Диаграммообразующие схемы	
8	Тема 8.1. Волноводы	
	Тема 8.2. Диаграммообразующие схемы	
	Раздел 9. Ферритовые устройства СВЧ. Технологии	
9	Тема 9.1. Ферритовые устройства СВЧ	
	Тема 9.2. Технологии	
	Раздел 10. Проблема согласования и фильтры. Антенно-мачтовые	
10	сооружения	
10	Тема 10.1. Проблема согласования и фильтры.	
	Тема 10.2. Антенно-мачтовые сооружения	

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

	пис тракти теские	заплин их грудосикос		Из них	$N_{\underline{0}}$
<u>No</u>	Темы практических	Формы практических	Трудоемкость,	практической	раздела
п/п	занятий	занятий	(час)	подготовки,	дисцип
				(час)	ЛИНЫ
		Семестр 6			
1	Волновое	решение задач	2		1
	сопротивление				
	микрополосковой				
	линии				
2	Т-образный	решение задач	2		8
	делитель на два				
	неразвязанный				
3	Т-образный	решение задач	2		8
	делитель на два				
	развязанный				
4	Делители на 8, 16,	решение задач	2		8
	32, 64 развязанные	_			
5	Зависимость	решение задач	2		6
	коэффициента	_			
	усиления антенны				
	от количества				
	излучателей при				
	постоянном шаге				
6	Зависимость	решение задач	2		6

	коэффициента			
	усиления антенны			
	от количества			
	излучателей при			
	переменном шаге			
7	Вибраторная	решение задач	2	3
	антенна			
8	Антенна волновой	решение задач	2	3
	канал			
9	Рупорная антенна	решение задач	2	4
10	Зеркальная антенна	решение задач	2	4
11	Элементная база	решение задач	2	5
	СВЧ			
12	Печатные платы	решение задач	2	5
	СВЧ			
13	Коаксиально-	решение задач	2	7
	микрополосковый			
	переход			
14	Коаксиально-	решение задач	2	7
	волноводный			
	переход			
15	ФНЧ	решение задач	2	10
16	ФВЧ	решение задач	2	10
17	ФВЧ и ФНЧ на	решение задач	2	10
	основе	•		
	сосредоточенных			
	компонентов			
	Bcero	0	34	

4.4. Лабораторные занятия Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	$N_{\underline{0}}$
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	раздела
Π/Π	паименование лаоораторных раоот	(час)	подготовки,	дисцип
			(час)	лины
	Семестр	6		
	Исследование матрицы рассеяния	2		1
	Измерение матрицы рассеяния антенны	2		3
	Исследование характеристик рупорных	2		4
	антенн			
	Исследование характеристик антенной	2		6
	решётки			
	Исследование антенны «волновой канал»	4		3
	Исследование характеристик СВЧ	3		8
	устройств			
	Исследование поляризационных свойств	2		1
	антенн			
	Всего	17		

- 4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено
- 4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 6,
вид самостоятельной работы	час	час
1	2	3
Изучение теоретического материала	76	76
дисциплины (ТО)	70	70
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю		
успеваемости (ТКУ)		
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной		
аттестации (ПА)		
Всего:	76	76

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8- Перечень печатных и электронных учебных изданий

Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)
	Устройства СВЧ и антенны. Проектирование фазированных антенных решеток/ под ред. Д.И. Воскресенского. – М.: Радиотехника, 2012. – 744с.	
	Устройства СВЧ и антенны. Проектирование фазированных антенных решеток/ под ред. Д.И. Воскресенского. – М.: Радиотехника, 2003. – 632с.	

ББК 32 848 A 72 УДК 621.396.67	Воскресенский Д.И., Гостюхин В.Л., Максимов В.М., Пономарев Л.И. Устройства СВЧ и антенны М: Радиотехника, 2006 г с.376	30
621.396.67 K 85	Крячко, А. Ф. Антенны и устройства сверхвысоких частот: учеб. пособие / А. Ф. Крячко, Л. А. Федорова—СПб.: ГУАП, 2017. – 238 с.	20
6Ф2 12 Д 72 УДК 621.396.67	Драбкин А.Л., Зузенко В.Л., Кислов А.Г. Антеннофидерные устройства. М.: Сов.радио, 1974г 586с.	33
6Ф2.02. 396.67 M-26	Марков Г.Т., Сазонов Д.М. Антенны. М.: Энергия, 1975г528c	5
621.396.67 Ф 33	Федорова, Л. А. Ф33 Расчет и проектирование авиационных антенн сверхвысоких частот: учеб. пособие / Л. А. Федорова, Н. А. Гладкий, Б. А. Аюков. —С-Пб.: ГУАП, 2019. — 145 с. https://lms.guap.ru/new/pluginfile.php/122487/mod_resource/content/0/%D0%A4%D0%B5%D0%B4%D0%BE%D1%80%D0%BE%D0%B2%D0%B0%D0%93%D0%BB%D0%B0%D0%B0%D0%BB%D0%B0%D0%B0%D0%B0%D0%B0%D0%90%D0%B0%D0%B4%D0%BA%D0%B8%D0%B8%D0%B9%D0%90%D1%8E%D0%BA%D0%BE%D0%B22019.pdf	5 Электронная версия
УДК 621.396.67	Антенны и устройства сверхвысоких частот. Федорова Л.А., Данилов Ю.Н. Программы, контрольные вопросы и методические указания к выполнению контрольных работ .ГУАП., СПб., 2005г. 22с.	100
УДК 621.396.67(07 5) ББК 32.845 Б 43	Белоцерковский Г.Б., Красюк В.Н. Задачи и расчеты по курсу «Устройства СВЧ и антенны» С.Пб.,2002г.177с	20
(537(ЛИАП) Т-38)	Ю.Н.Данилов, В.Н.Красюк, Б.Т.Никитин, Л.А.Федорова Техническая электродинамика и антенны. Ч.1.Электродинамика. Учебное пособие. ЛИАП, Л., 1991г165с.	150
621.37(СПИА П) Т-38	Ю.Н.Данилов, В.Н.Красюк, Б.Т.Никитин, Л.А.Федорова Техническая электродинамика и антенны. Ч.2.Антенны. Учебное пособие. ЛИАП, Л., 1992г196с	150
621.396.67 (ЛИАП) H-62	Никитин Б.Т. Теория и техника фазированных антенных решеток. Учебное пособие. ЛИАП. Л., 1988г64с.	3

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»
Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

телекоммуникационной сети «интернет»			
URL адрес	Наименование		
http://e.	Григорьев И.Н. Практические конструкции антенн/ ISBN 5-		
lanbook.com/books/element.php?pl	89818-061-3		
1_ cid=25&pl1_ id=82			
http://e.	Ротхаммель К., Кришке А. Антенны.		
lanbook.com/books/element.php?pl 1_ cid=25&pl1_ id=818	Том 1,11-е изд416 с. ISBN 5-85648-715-X		
http://e.	Ротхаммель К., Кришке А. Антенны.		
lanbook.com/books/element.php?pl 1_ cid=25&pl1_ id=81	Том 2 DMK , ISBN 5-85648-716-8		
http://e. lanbook.com/books/element.php?pl 1_ cid=25&pl1_ id=2689	Кравченко В.Ф., Сиренко Ю.К., Сиренко Преломление электромагнитных волн открытыми резонансными . Моделирование и анализ переходных и установившихся процессов. Физматлит; 2011320c. ISBN		
http://e. lanbook.com/books/element.php?pl 1_ cid=25&pl1_ id=403	Фальковский О.И. Техническая электродинамика 2009 432c.ISBN 978-5-8114-0980-8		
http://lib.aanet.ru/index.php?option=com_irbis<emid=300&12 1DBN=BOOKS&121DBNAM=B OOKS&C21COM=S&521ALL=(<>MFN=47038<>)	Антенно-фидерные устройства и распространение радиоволн. Учебник /Г.А.Ерохин,Н.Д.Козырев,Черных / Ред.Г.А.Ерохин, 2007491с.		

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование	
	Не предусмотрено	

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование	
	Не предусмотрено	

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ π/π	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	
2	Специализированная лаборатория «Лаборатория теории и техники РТС»	

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Дифференцированный зачёт	Список вопросов;
	Тесты

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	Vanaranyanyan adam amanayan ya ararayya			
5-балльная шкала	Характеристика сформированных компетенций			
	– обучающийся глубоко и всесторонне усвоил программный материал;			
«отлично» «зачтено»	 уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; 			
	делает выводы и обобщения;свободно владеет системой специализированных понятий.			
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 			
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 			

Оценка компетенции	Характеристика сформированных компетенций		
5-балльная шкала	ларактеристика сформированных компетенции		
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 		

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
	Учебным планом не предусмотрено	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
1	Какой коэффициент передачи со входа на выход имеет идеальный Тобразный равноамплитудный делитель мощности	ПК-1.У.1
2	Четвертьволновый трансформатор сопротивлений	ПК-2.3.1
3	Волновое сопротивление линии передачи	ПК-4.3.1
4	Волновое сопротивление микрополосковой линии	ПК-4.У.1
5	Какое измерительное оборудование применяется для измерения коэффициента стоячей волны	
6	Какое измерительное оборудование применяется при измерении диаграммы направленности антенны	
7	Какое измерительное оборудование применяется при измерении диаграммы направленности зеркальной антенны	
8	Измерение коэффициента отражения	
9	Антенна «волновой канал», известная также как антенна Яги – Уда	
10	Распределение поля на апертуре рупорной антенны	
11	Измерение диаграммы направленности антенны	
12	Минимальное расстояние до дальней зоны антенны с максимальным линейным размером d при длине волны lambda	
13	Материальные уравнения	
14	Характеристики СВЧ устройства	
15	АФАР	
16	Коэффициент направленного действия антенны	
17	Коэффициент усиления антенны	
18	Дифракция электромагнитных волн	
19	Интерференция электромагнитных волн	
20	Направляемые волны	
21	Совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которой могут быть описаны с помощью понятий об ЭДС, токе и напряжении	
22	Сопротивление на СВЧ	
23	Ёмкость на СВЧ	
24	Индуктивность на СВЧ	
25	Добротность последовательного колебательного контура	
26	Волновое сопротивление	

27	Волновое сопротивление коаксиальной линии
28	Соотношение отражённой и падающей волн
29	Соотношение прошедшей и падающей волн
30	Распределение тока в длинной линии, нагруженной на согласованную нагрузку
31	Проведение измерений с помощью векторного анализатора цепей
32	Виды калибров
33	Дальняя зона
34	Теорема взаимности
35	Диаграмма направленности электрического диполя в Н плоскости
36	Что необходимо с точки зрения приближённой теории цепей СВЧ для согласования антенны с фидерным трактом
37	Несимметричность питания плеч вибраторной антенны
38	Принцип Гюйгенса
39	Когерентность колебаний и волн
40	Амплитудное распределение на раскрыве рупора
41	Антенная решетка
42	Излучающий элемент антенной решетки
43	Какие изменения происходят в ДН антенной решётки, если расстояние между излучающими элементами становится больше двух длин волн?

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Γ	Примерный перечень вопросов для тестов						
1	Идеальный Тобразный равноамплиту дный делитель мощности имеет коэффициент передачи совхода на выход	Минус 3.5 дБ	Минус 5.0 Вт	Минус 3.0 дБ	0.5 B			

2	Четвертьволн овый трансформато р сопротивлени й это	устройство, необходимо е для увеличения тока в приёмной антенне.	устройст во, обеспечи вающие согласова ние линии передачи с одним волновы м сопротив лением с линией, имеющей другое сопротив ление.	устройство, необходимое для увеличения напряжения в приёмной антенне.	пассивный компонент, который передает электрическую энергию от одной электрической цепи к другой цепи посредством электромагнит ной индукции	
3	Волновое сопротивлени е линии передачи зависит от	конструкци и линии передачи	электроф изически х параметр ов применяе мых материал ов (ε, μ, σ)	типа волны	протекающего тока	
4	Волновое сопротивлени е микрополоск овой линии зависит от	высоты подложки	диэлектр ической проницае мости материал а	Волнового сопротивлени я подводящей линии	Длинны области связи	
5	Для измерения коэффициент а стоячей волны применяется	длинная линия	векторны й анализат ор цепей	анализатор отражений	скалярный анализатор цепей	
6	При измерении диаграммы направленнос ти антенны нам понадобится	Векторный анализатор цепей	вольтмет р	осциллограф	опорно- поворотное устройство	
7	При измерении диаграммы направленнос ти антенны нам необходимы	генератор	вольтмет р	анализатор спектра	опорно- поворотное устройство	

8	Для измерения коэффициент а отражения нам необходимы	векторный анализатор цепей	опорно- поворотн ое устройст во	осциллограф	скалярный анализатор цепей	
9	Антенна «волновой канал», известная также как антенна Яги – Уда состоит из	активных и пассивных вибраторов	активног о вибратор а, директор а и контрреф лектора	активного вибратора, директора, рефлектора и контррефлект ора	активного вибратора, директора и рефлекторов	
10	Распределени е поля на апертуре рупорной антенны связано с	интерферен цией полей от источника и приёмника	дифракц ией поля в дальней зоне антенны	распределени ем поля в питающем волноводе	дифракцией поля приёмника и поля в ближней зоне антенны	
11	При измерении диаграммы направленнос ти антенны должны совпадать	интерферен ции измерительн ой и измеряемой антенн	размеры измерите льной и измеряем ой антенн	поляризации измерительно й и и измеряемой антенн	длина кабелей измерительной и измеряемой антенн	
12	Минимальное расстояние до дальней зоны антенны с максимальны м линейным размером d при длине волны lambda равно	4*d/lambda	2*d*d/la mbda	2*d*d/(lambda * lambda)	2*(lambda* lambda)/d	
13	Материальны е уравнения	устанавлива ют связь между векторами электромагн итного поля	устанавл ивают связь векторов электром агнитног о поля при переходе из одной среды в другую	характеризую т зависимость свойств материала от интерференци и	характеризуют среду распространен ия электромагнит ных волн	
14	Характеристи ки СВЧ устройства зависят от	его размеров	материал ов, из которых оно изготовл ено	положения в пространстве	интерференции	

15	АФАР	Автономная Фазированн ая Апертурная Решётка	Автоном ная Фазирова нная Антенная Решётка	Активная Фазированная Апертурная Решётка	Активная Фазированная Антенная Решётка	
16	Коэффициент направленног о действия антенны это	отношение плотности потока мощности, излучаемой антенной в направлени и максимума излучения к плотности потока мощности, излучаемой изотропной антенной при равенстве расстояний между точкой наблюдения и антеннами и равенстве подведенны х мощностей.	отношен ие плотност и потока мощност и, излучаем ой антенной в направле нии максиму ма излучени я к плотност и потока мощност и, излучаем ой изотропн ой антенной при равенств е расстоян ий между точкой наблюде ния и антеннам и и равенств е излучаем ых мощност ей.	отношение плотности потока мощности, излучаемой антенной в направлении максимума излучения к плотности потока мощности, излучаемой изотропной антенной при равенстве расстояний между точкой наблюдения и антеннами и равенстве отражённых мощностей.	отношение плотности потока мощности, излучаемой антенной в направлении максимума излучения к плотности потока мощности, излучаемой эталонной антенной в дальней зоне и равенстве отражённых мощностей.	

17	Коэффициент усиления антенны	отношение плотности потока мощности, излучаемой антенной в направлени и максимума излучения к плотности потока мощности, излучаемой эталонной антенной в дальней зоне и равенстве отражённых мощностей.	отношен ие плотност и потока мощност и, излучаем ой антенной в направле нии максиму ма излучени я к плотност и потока мощност и, излучаем ой изотропн ой антенной при равенств е расстоян ий между точкой наблюде ния и антеннам и и равенств е излучаем ых мощност ей.	отношение плотности потока мощности, излучаемой антенной в направлении максимума излучения к плотности потока мощности, излучаемой изотропной антенной при равенстве расстояний между точкой наблюдения и антеннами и равенстве отражённых мощностей.	отношение плотности потока мощности, излучаемой антенной в направлении максимума излучения к плотности потока мощности, излучаемой изотропной антенной при равенстве расстояний между точкой наблюдения и антеннами и равенстве подведенных мощностей.	
18	Дифракция электромагни тных волн это	взаимодейст вие поля с материальн ыми объектами	любые нарушен ия первонач альной формы волновог о фронта при распрост ранении волны в среде с неодноро дностями	интерференци я падающей и отражённой волны на границе раздела тени и полутени	процесс перемещения электромагнит ных волн из области с их высокой концентрацией в область с низкой концентрацией	

19	Интерференц ия электромагни тных волн это	любые нарушения первоначаль ной формы волнового фронта при распростран ении волны в среде с неоднородн остями	огибание препятст вий волнами различны х частот с последу ющим процессо м их перемещ ения за горизонт	дифракция падающей и отражённой волны на границе раздела тени и полутени	взаимное увеличение или уменьшение результирующе й амплитуды д вух или нескольких ког ерентных волн при их наложении друг на друга	
20	Направляемы е волны распространя ются в	свободном пространств е	микропо лосковой линии	коаксиальном кабеле	двухпроводной линии	
21	Совокупность устройств и объектов, образующих путь для электрическо го тока, электромагни тные процессы в которой могут быть описаны с помощью понятий об ЭДС, токе и напряжении это	Граф линии	Длинная линия	Электрическа я цепь	Электрическая схема	

22	Сопротивлен ие	идеализиров анный двухполюсн ый элемент, в котором происходит только процесс поглощения электрическ ой энергии	идеальны й двухпол юсный элемент, в котором происход ит только накоплен ие энергии электрич еского поля, а необрати мые потери энергии и ее накоплен ие магнитн ым полем отсутству ют	идеальный двухполюсный элемент, в котором происходит накопление энергии электрическо го поля, а также потери энергии и ее накопление магнитным полем	идеальный двухполюсный элемент (модель индуктивной катушки), в которой накапливается энергия магнитного поля	
23	Ёмкость	идеализиров анный двухполюсн ый элемент, в котором происходит только процесс поглощения электрическ ой энергии	идеальны й двухпол юсный элемент, в котором происход ит только накоплен ие энергии электрич еского поля, а необрати мые потери энергии и ее накоплен ие магнитн ым полем отсутству ют	идеальный двухполюсны й элемент (модель индуктивной катушки), в которой накапливаетс я энергия магнитного поля	идеальный двухполюсный элемент, в котором происходит накопление энергии электрического поля, а также потери энергии и ее накопление магнитным полем	

			идеальны			
24	Индуктивнос ть	идеальный двухполюсный элемент, в котором происходит накопление энергии электрическ ого поля, а также потери энергии и ее накопление магнитным полем	идеальны й двухпол юсный элемент, в котором происход ит только накоплен ие энергии электрич еского поля, а необрати мые потери энергии и ее накоплен ие магнитн ым полем отсутству ют	идеальный двухполюсны й элемент (модель индуктивной катушки), в которой накапливаетс я энергия магнитного поля	идеализирован ный двухполюсный элемент, в котором происходит только процесс поглощения электрической энергии	
25	Добротность последовател ьного колебательно го контура это	отношение напряжения на выходе контура к напряжению на входе контура при дифракции	отношен ие напряжен ия на индуктив ности или емкости к напряжен ию на входе контура при резонанс е	отношение напряжения на индуктивност и или емкости к напряжению на входе контура при интерференци и	отношение напряжения на входе контура к напряжению на выходе контура при дифракции	
26	Волновое сопротивлени е вводится	в режиме стоячей волны	в режиме дифракц ии	в режиме интерференци и	в режиме бегущей волны	
27	Волновое сопротивлени е коаксиальной линии зависит от	диэлектриче ской проницаемо сти	соотноше ния диаметро в проводни ков	магнитной проницаемост и	диаметра внутреннего проводника	
28	Из соотношения отражённой и падающей волн можно получить	Коэффицие нт передачи	КСВН	Коэффициент отражения	S11	

		Т	T			T
29	Из соотношения прошедшей и падающей волн можно получить	Коэффицие нт передачи	КСВН	Коэффициент отражения	S32	
30	Распределени е тока в длинной линии, нагруженной на согласованну ю нагрузку	эллиптическ ое	косинусн	синусное	постоянное	
31	Перед проведением измерений с помощью векторного анализатора цепей необходимо провести	калибровку	поверку	оцифровку	замыкание	
32	Виды калибров	Короткое замыкание	Согласов анная нагрузка	Холостой ход	Толщиномер	
33	Дальняя зона это	область пространств а, для которой произведени е волнового числа на расстояние много больше единицы	область простран ства, располож енная за пределам и дифракц ионных максиму мов диаграмм ы направле нности	область пространства, в которой разность фаз поля излучения от отдельных элементов апертуры антенны становится несущественн ой	область пространства, расположенная за линией горизонта в пределах прямой видимости от антенны	

34	Теорема взаимности Диаграмма направленнос	Коэффицие нты передачи линейного устройства, нагруженно го на согласованн ые нагрузки, взаимны.	Взаимосв язь переменн ого напряжен ия и порождё нного им электрич еского поля меняется взаимно при смене мест точки наблюде ния и измерени я.	Любая антенна может быть эквивалентно заменена на взаимную изотропную антенну с сохранением входного сопротивлени я.	Характеристик и направленност и антенны, измеренные в режиме передачи и приема посредством перемещения измерительной антенны, вокруг измеряемой по окружности радиуса г, полностью идентичны.	
35	ти электрическо го диполя в Н плоскости	Окружность	Эллипс	Тор	Луч	
36	С точки зрения приближённо й теории цепей СВЧ для согласования антенны с фидерным трактом	необходимо совпадение размеров волновода с размерами апертуры антенны на выходном конце согласующе го устройства	но добиться занулени я реактивн ой части входного сопротив ления антенны и совпаден ия активных частей выходног о сопротив ления генерато ра и входного сопротив ления антенны активных частей выходного о сопротив ления генерато ра и входного сопротив ления антенны	необходимо установить в антенне сопротивлени е равное характеристи ческому сопротивлени ю генератора или приёмника	нужно максимизирова ть реактивную часть входного сопротивления антенны и минимизироват ь активную часть выходного сопротивления генератора	

37	Несимметрич ность питания плеч вибраторной антенны приводит к	искажению формы ДН антенны	уменьше нию ДН антенны	изменению ее входного сопротивлени я	уменьшению излучаемой мощности	
38	Принцип Гюйгенса	затухание радиоволн происходит по квадратично му закону	взаимосв язь переменн ого напряжен ия и порождё нного им электрич еского поля меняется интерфер енционно при смене мест точки наблюде ния и измерени я	огибание препятствий радиоволнам и происходит за счёт неоднороднос ти среды распростране ния и зависит от плотности почвы	каждая точка поверхности, достигнутой в момент времени t световой волной, распространяю щейся от источника, становится источником элементарных вторичных сферических волн	
39	Когерентност ь колебаний и волн это	совпадение амплитуд колебаний или волн при прохождени и через ионосферу при различных углах места	коррелир ованност ь колебани й или волн, в том числе случайны х, протекаю щих в различны х точках и в различны е моменты времени, позволяю щая наблюдат ь при их сложени и интерфер енционну ю картину	совпадение фаз колебаний или волн при прохождении через ионосферу при различных углах места	интерференция амплитуд и фаз колебаний или волн при рефракции на сферической поверхности земли в зависимости от времени суток и времени года	

40	Амплитудное распределени е на раскрыве рупора определяется	типом волны в волноводе, к которому присоединё н рупор	расстоян ием от фазового центра рупора до дальней зоны	дифракцией на апертуре рупора	интерференцие й на апертуре рупора	
41	Антенная решетка это	антенна, состоящая из пересечения антенных элементов, расположен ных в узлах сетки, ориентирова нных и возбуждаем ых так, чтобы получить усиление поля в заданном направлени и	антенна, содержа щая совокупн ость излучаю щих элементо в, располож енных в определе нном порядке, ориентир ованных и возбужда емых так, чтобы получить заданную диаграмм у направле нности	пересечение антенных элементов в шахматном порядке на апертуре вспомогатель ной антенны	расположение антенных элементов в узлах сетки с целью увеличения направленных свойств апертуры и формирования диаграммы направленност и	
42	Излучающий элемент антенной решетки это	составная часть антенной решётки, являющаяся частью апертуры вспомогател ьной антенны	антенна или группа антенн, располож енная за пределам и дальней зоны апертуры антенной решётки	антенна или группа антенн с заданным относительны м возбуждение м, являющаяся составной частью антенной решетки	составная часть антенной решётки, необходимая для формирования амплитуднофазового распределения	

43	Какие изменения происходят в ДН антенной решётки, если расстояние между излучающими элементами становится больше двух длин волн?	Возникают боковые лепестки	Возника ют дифракц ионные максиму мы	Возникают интерференци онные максимумы	Возникают отклонения луча от нормали	
----	--	----------------------------------	---	---	---	--

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ	
	Не предусмотрено	

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала – логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- Формулировка задачи лекции.
- Разделы и параграфы излагаемого материала с соответствующими математическими выкладками.
- Графические материалы необходимых теоретических зависимостей.
- Выводы по каждому разделу.

11.2. Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

- Формулировка задачи практического занятия.
- Изложение методики решения задач практического занятия.
- Разбор контрольной задачи преподавателем.
- Самостоятельное решение предлагаемой преподавателем задачи.

11.3. Методические указания для обучающихся по выполнению лабораторных работ

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;

приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

- Ознакомиться с методической разработкой к лабораторной работе.
- Проработать самостоятельно теоретический материал, поддерживающий тематику лабораторной работы.
 - Ознакомиться с аппаратурой, входящей в лабораторную установку.
- Рассчитать и построить необходимые теоретические зависимости по заданию преподавателя.
- Ответить на контрольные вопросы, имеющиеся в методической разработке к лабораторной работе.
- Ответить на вопросы коллоквиума, проводимого преподавателем перед выполнением лабораторной работы.

Структура и форма отчета о лабораторной работе

Отчет должен содержать:

- Титульный лист.
- Краткую формулировку задачи исследования.
- Структурную схему измерительной установки лабораторной работы.
- Таблицы экспериментальных исследований.
- Графические зависимости от заданных параметров исследуемых величин.
- Расчетные данные и графические материалы необходимых теоретических зависимостей.
 - Сравнительный анализ данных теории и эксперимента.
 - Выводы по работе.
- 11.4. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.5. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

11.6. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— дифференцированный зачет — это форма оценки знаний, полученных обучающимся при изучении дисциплины, при выполнении курсовых проектов, курсовых работ, научно-исследовательских работ и прохождении практик с аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой