МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 32

УТВЕРЖДАЮ

Руководитель образовательной программы

к.т.н.,доц.

(должность, уч. степень, звание)

С.В. Солёный

(подпись)

«17» февраля 2025 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Специальные электромеханические системы» (Наименование дисциплины)

Код направления подготовки/ специальности	13.05.02	
Наименование направления подготовки/ специальности	Специальные электромеханические системы	
Наименование направленности	Электромеханические системы специальных устройств и изделий	
Форма обучения	очная	
Год приема	2025	

Лист согласования рабочей программы дисциплины

Программу составил (а)		
доц., к.т.н.		П.Н. Калачиков
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Программа одобрена на заседан	ии кафедры № 32	
«17» февраля 2025 г, протокол 3	Nº 5	
Заведующий кафедрой № 32	Cer	
к.т.н. доц.		С.В. Солёный
(уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Заместитель директора институ	та №3 по методической р	работе
Ст. преп.		Н.В. Решетникова
(должность, уч. степень, звание)	(додинсь, даза)	(нинциалы, фамилия)

Аннотация

Дисциплина «Специальные электромеханические системы» входит в образовательную программу высшего образования — программу специалитета по направлению подготовки/ специальности 13.05.02 «Специальные электромеханические системы» направленности «Электромеханические системы специальных устройств и изделий». Дисциплина реализуется кафедрой «№32».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ОПК-4 «Способен использовать методы анализа, моделирования и оценки качества действующих и проектируемых образцов элементов специальных электромеханических систем»

ОПК-6 «Способен применять нормы законодательства Российской Федерации в профессиональной деятельности»

Содержание дисциплины охватывает круг вопросов, связанных с специальными электромеханическими системами специальных устройств и изделий: энергетическими системами на основе электромеханических преобразователей энергии, электроприводами.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы, 108 часов.

Язык обучения по дисциплине «русский».

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью преподавания дисциплины является ознакомление студентов с кругом вопросов в области специальных электромеханических систем. Студенты должны получить необходимые навыки по снятию характеристик элементов специальных электромеханических систем и инструментальному контролю для определения их пригодности к эксплуатации. Студенты должны также получить необходимые знания по специальным самолетным электромеханическим комплексам, их назначению, составу, особенностям функционирования.

- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа)	Код и наименование	Код и наименование индикатора до-
компетенции	компетенции	стижения компетенции
Общепрофессиональные компетенции	ОПК-4 Способен использовать методы анализа, моделирования и оценки качества действующих и проектируемых образцов элементов специальных электромеханических систем	ОПК-4.3.1 знает особенности режимов работы электроэнергетического и электротехнического оборудования объектов электроэнергетики; назначение, конструкцию, технические параметры и принцип работы электрооборудования ОПК-4.В.1 владеет навыками проведения анализа установившихся режимов работы трансформаторов и вращающихся электрических машин различных типов, элементов специальных электромеханических систем, использует знание их режимов работы и характеристик
Общепрофессиональные компетенции	ОПК-6 Способен применять нормы законодательства Российской Федерации в профессиональной деятельности	ОПК-6.В.1 владеет навыками обеспечения оптимальных режимов и параметров технологического процесса после проведённых работ с учетом требований норм законодательства Российской Федерации и технических регламентов в сфере профессиональной деятельности

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- « Электротехника»,
- « Силовая электроника».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- « Проектирование и конструирование специальных комплексов»

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по се- местрам №7
1	2	3
Общая трудоемкость дисциплины, 3E/ (час)	3/ 108	3/ 108
Из них часов практической подготовки		
Аудиторные занятия, всего час.	51	51
в том числе:		
лекции (Л), (час)	34	34
практические/семинарские занятия (ПЗ), (час)		
лабораторные работы (ЛР), (час)	17	17
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)	36	36
Самостоятельная работа, всего (час)	21	21
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.	Экз.

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции (час)	ПЗ (СЗ) (час)	ЛР (час)	КП (час)	СРС (час)
Сем	естр 7				
Раздел 1. Особенности специальных авиационных электромеханических устройств и систем	2				1
Раздел 2. Бортовое генерирующее оборудование	2		2		1
Раздел 3. Трансформаторы	2		1		1
Раздел 4. Электродвигатели и электроприводы	2		2		1
Раздел 5. Стартер -генераторы в системах пуска газотурбинных двигателей	2		2		1
Раздел 6. Топливные насосы	4		2		1
Раздел 7. Электроприводы в системах торможения колес самолета	4		2		3
Раздел 8. Противопожарное оборудование самолёта	4		2		3
Раздел 9. Информационные электрические машины	4		2		3
Раздел 10. Гироскопические электрические машины	4		2		3

Раздел 11. Бортовые электромашинные преобразователи	4		0		3
Итого в семестре:	34		17		21
Итого	34	0	17	0	21

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

	4 – Содержание разделов и тем лекционного цикла
Номер	Название и содержание разделов и тем лекционных занятий
раздела	
1	Особенности электрооборудования летательных аппаратов.
	1.1 Условия работы бортового оборудования: высотность, механические
	воздействия, произвольное положение в пространстве. Требования к бортовому
	электрооборудованию ЛА. Особенности конструкций элементов электрообору-
	дования ЛА.
	1.2 Основные понятия электромеханики. Законы Фарадея, Максвелла. Связь
	законов Фарадея и Максвелла. Закон Ампера. Закон полного тока и его приме-
	нение для расчета магнитных цепей устройств электромеханики. Закон Ома для
	магнитной цепи. Принцип обратимости электрических машин. Особенности ге-
	нераторного и двигательного режимов. Баланс мощностей в электромеханиче-
	ских преобразователях. Реакция якоря в электрических машинах. Особенности
	реакции якоря в авиационных электрических машинах.
2	Бортовое генерирующее оборудование.
	2.1 Генераторы постоянного тока (ГПТ). Конструкции ГПТ. Характеристи-
	ки ГПТ. Процесс самовозбуждения ГПТ. Приводы постоянной скорости враще-
	ния. Регуляторы напряжения. Включение ГПТ на параллельную работу.
	2.2 Синхронные генераторы (СГ). Схемы и конструкции бортовых СГ. Ре-
	гулирование выходного напряжения СГ. Защита бортовых потребителей по ча-
	стоте.
3	Трансформаторы. Характеристики трансформаторов. Специальные виды
	трансформаторов.
4	Электродвигатели и электроприводы.
	4.1 Бортовые электромеханизмы постоянного тока. Исполнительные ДПТ.
	Способы управления, характеристики. Передаточная функция. Импульсное
	управление как модификация якорного способа управления. Электропривод по-
	стоянного тока с широтноимпульсным преобразователем. Работа ДПТ в схеме с
	управляемым выпрямителем.
	4.2 Бортовые электромеханизмы переменного тока. Исполнительные АД.
	Способы управления, характеристики. Синхронные электродвигатели. Синхрон-
	ные микродвигатели. Электродвигатели низкой скорости вращения. Шаговые
	электродвигатели

5	Стартер-генераторы. Схемы пуска газотурбинных двигателей
6	Электрические топливные насосы.
7	Электроприводы систем торможения колес самолета
8	Противопожарное оборудование ЛА
9	Информационные электрические машины. Электромашинные датчики угла,
	скорости вращения, углового ускорения. Кодовые позиционные и скоростные
	датчики. Дистанционные системы передачи угла
10	Гироскопические электрические машины. Гироскопические двигатели, дат-
	чики угла и момента.
11	Бортовые электромашинные преобразователи. Электромашинные преобра-
	зователи рода тока и напряжения. Регулирование выходного напряжения и ча-
	стоты преобразователей.

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

	_			Из них	№ раз-
$N_{\underline{0}}$	Темы практических	Формы практических	Трудоемкость,	практической	дела
п/п	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
		Учебным планом не про	едусмотрено		
	Bcer	0			

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	№ раз-
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	дела
п/п	паименование наобраторных работ	(час)	подготовки,	дисцип
			(час)	ЛИНЫ
	Семестр	7		
1	Исследование гироскопического двига-	2		2
	теля			
2	Исследование гироскопического датчи-	1		3
	ка угла			
3	Исследование гироскопического датчи-	2		4
	ка момента			
4	Исследование электродвигателя посто-	2		5
	янного тока в схеме с управляемым вы-			
	прямителем			
5	Исследование СКВТ в режиме одно-	2		6
	фазного фазовращателя			
6	Исследование СКВТ в режиме двухфаз-	2		7
	ного фазовращателя			
7	Исследование СКВТ в режиме преобра-	2		8
	зователя координат			

8	Моделирование позиционного электро-	2	9
	привода постоянного тока		
9	Заключительное занятие	2	10
	Всего	17	

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

D	Всего,	Семестр 7,
Вид самостоятельной работы	час	час
1	2	3
Изучение теоретического материала дисциплины (TO)	9	9
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю успеваемости (ТКУ)	8	8
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной аттестации (ПА)	5	5
Всего:	21	21

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8— Перечень печатных и электронных учебных изданий

Пифр/ URL адрес

Библиографическая ссылка

Библиографическая ссылка

Грузков С.А., Останин С.Ю. и др. Электрооборудование летательных аппаратов. Учебник для ВУЗов. В двух томах. − М. Издательство МЭИ, 2005

Хаютин С.П., Жмуров Б.П., Тюляев М.Л. Системы электроснабжения летательных аппаратов. Учебник для ВУЗов. В двух томах. − М. Издательство МЭИ, 2005

	Ю.А. Гагарина», 2010 428 с., elibrary.ru
ISBN 5-06-	. Б у т Д. А . Бесконтактные электрические машины: Учеб.
000719-7	пособие д л я эл ектромех . и электроэнерг. спец. вузов.—
	М.: Высш. ш к., 1990. — 416 с.: ил.
	Барвинский А. П., Козлова Ф. Г. Электрооборудование
	самолетов: Учеб. для сред. спец. учеб, заведений — 2-е
	изд., перераб. И доп.—М.: Транспорт, 1990.—320с
ISBN 978-	Специальные электромеханические преобразователи (ч. 1.
5-7964-	Специальные трансформаторы): Курс лекц. / Э.Г. Чебот-
1124-7	ков; Самар. гос. техн. ун-т. Самара, 2008. 78 с.
	Специальные электромеханические преобразователи (ч.2.
	Специальные машины постоянного тока): Конспект лек-
	ций. / Э.Г. Чеботков; Самар. гос. техн. ун-т. Самара, 2008.
	c. 64

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 — Перечень электронных образовательных ресурсов информационнот телекоммуникационной сети «Интернет»

URL адрес	Наименование
	Не предусмотрено

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10– Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11– Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	21-21
2	Мультимедийная лекционная аудитория	31-04
5	5 Специализированная лаборатория 31-05	

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

10.3. Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	V	
5-балльная шкала	Характеристика сформированных компетенций	
	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; 	
«отлично» «зачтено»	– опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления;	
	– умело обосновывает и аргументирует выдвигаемые им идеи;– делает выводы и обобщения;	
	– свободно владеет системой специализированных понятий.	
	– обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литерату-	
(WODOLHO))	ры; – не допускает существенных неточностей;	
«хорошо» «зачтено»	– увязывает усвоенные знания с практической деятельностью направления;	
	– аргументирует научные положения;	
	делает выводы и обобщения;владеет системой специализированных понятий.	
	– обучающийся усвоил только основной программный материал,	
	по существу излагает его, опираясь на знания только основной литературы;	
«удовлетворительно»	– допускает несущественные ошибки и неточности;	
«зачтено»	- испытывает затруднения в практическом применении знаний	
	направления;	
	– слабо аргументирует научные положения;	

Оценка компетенции	Характеристика сформированных компетенций	
5-балльная шкала		
	 – затрудняется в формулировании выводов и обобщений; – частично владеет системой специализированных понятий. 	
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 	

10.4. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

No	Перечень вопросов (задач) для экзамена	Код
п/п	- · · · · · · · · · · · · · · · · · · ·	индикатора
1	1 Условия работы электрооборудования ЛА	ОПК-4.3.1
	2 Фундаментальные законы электромеханики. Закон Ампера. Закон	
	Фарадея.	
	3 Закон электромагнитной индукции Максвелла. Эквивалентность за-	
	конов Фарадея и Максвелла.	
	4 Принцип обратимости электрических машин.	
	5 Закон полного тока.	
	6 Схема и работа ДМР.	
	7 Закон Ома для магнитной цепи.	
	8 Принцип работы электрической машины переменного тока.	
	9 Принцип работы электрической машины постоянного тока	
	10 Конструкция и обмотки электрических машин постоянного тока.	
	11 Самолетные ГПТ. Электрическая схема, характеристики. Особенно-	
	сти самолетных ГПТ.	
	12 Реакция якоря МПТ.	
	13 Работа компенсационной обмотки ГПТ.	
	14 Процесс самовозбуждения ГПТ с параллельным возбуждением.	
	Условия самовозбуждения.	
	15 Регулирование напряжения бортовых ГПТ.	
	16 ДПТ с параллельным возбуждением. Электрическая схема. Механи-	
	ческая характеристика.	
	17 Регулирование скорости вращения ДПТ с параллельным возбужде-	
	нием.	
	18 ДПТ с последовательным возбуждением. Механическая характери-	
	стика.	
	19 Регулирование скорости вращения ДПТ с последовательным воз-	
	буждением.	
2	20 Пуск в ход ДПТ. Прямой, реостатный пуски. Пуск при пониженном	ОПК-4.В.1
	значении напряжения питания.	
	21 Включение ГПТ на параллельную работу с сетью.	
	22 Регулирование скорости вращения по схеме» ДПТ- управляемый	
	выпрямитель».	
	23 Бесконтактные ДПТ. Функциональная, электрическая схемы. Работа	

	БДПТ.	
	24 Создание вращающих полей в электрических машинах переменного	
	тока (двухфазных)	
	25 Принцип действия асинхронного двигателя. Механическая характе-	
	ристика.	
	26 Регулирование скорости вращения АД. Частотный способ регулиро-	
	вания.	
	27 Синхронные электрические машины. Конструкция, принцип дей-	
	ствия.	
	28 Бортовые авиационные синхронные генераторы.	
	29 Управляемые ДПТ. Способы управления. Передаточная функция.	
	30 Импульсное регулирование скорости вращения ДПТ.	
	31 Реверсивные схемы импульсного управления ДПТ.	
	32 Защита бортовой сети переменного тока по частоте.	
	33 Контроль выходной частоты и выходного напряжения самолетного	
	СГ.	
	34 Работа блока РН бортового СГ.	
	35 Вращающиеся трансформаторы. Назначение, конструкция, принцип	
	действия.	
3	36 Конструкция и принцип действия БВТ	ОПК-6.В.1
	37 Работа ВТ в режиме СКВТ и ЛТ	
	38 Работа ВТ в режиме преобразователя координат и фазовращателя	
	39 Работа ВТ в режиме трансформаторной дистанционной передачи	
	40 Погрешности СКВТ	
	41 Многополюсные BT	
	42 Индукционные редуктосины	
	43 Аналого-цифровой преобразователь с ВТ в качестве первичного	
	датчика	
	44 Асинхронные тахогенераторы. Назначение, конструкция, принцип	
	действия	
	45 Синхронные тахогенераторы	
	46 Тахогенераторы постоянного тока	
	47 Кодовые датчики угла	
	48 Бортовые электромашинные преобразователи рода тока	
	49 Индукторные генераторы в схемах бортовых электромашинных пре-	
	образователей	
	50 Схема и работа аналогового интегратора с тахогенератором	
	51 Dawywa anayya ny wa wani wa atawy Kampanyy a wakamanyy wa a	
	51 Регулирование выходной частоты бортовых электромашинных пре-	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	№ п/п Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	підикатора

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 — Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	Код индикатора

№ п/п	Примерный перечень вопросов для тестов	Код индикатора	
1	1. Трансформаторы нашли широкое распространение в:	ОПК-4.3.1	
	А) автоматике, телемеханике		
	В) кормоцехе		
	С) машиностроение, строительстве		
	D) корпусах		
	Е) сельхозтехнике		
	2. Коэффициенты трансформации:		
	A) $\frac{w_1}{}$		
	w_2		
	$\frac{E}{f_2}$		
	B) $\frac{f_1}{f_2}$ C) $\frac{P_1}{P_2}$ D) $\frac{I_1}{I_2}$		
	C) $\frac{r_1}{p}$		
	1 ₂		
	D) $\frac{I_1}{I_1}$		
	E) $\frac{\Phi_{M1}}{\Delta}$		
	Φ_{M2}		
	3. Ориентировочные значения мощности короткого замыкания си-		
	ловых трансформаторов при I $_{\text{\tiny K}} = I_{\text{\tiny H}}$ составляют (30,5) % от номи-		
	нальной мощности:		
	A) $P_{K} = 0.004 P_{H}$		
	B) $P_{K} = 0.003 P_{H}$		
	C) $P_{K} = 0.02P_{H}$		
	D) $P_{K} = 0.04P_{H}$		
	E) $P_{K} = 0.0045 P_{H}$		
	F) $P_{K} = 0.05P_{H}$		
	4. Суммарные потери асинхронного двигателя $\sum P = :$		
	A) Pmex		
	B) Pm1, P m(A)2		
	C) P2		
	D) Pk		
	E) P1		
	F) Рщ		

		Г
	5. Обмоточный коэффициент асинхронных двигателей - это произ-	
	ведение:	
	А) число витков	
	В) коэффициента трансформации	
	С) коэффициента укорочения обмотки k у	
	D) шага обмоток	
	Е) число пазов Z	
	F) коэффициента полезного действия η	
2	6. Пазы ротора асинхронного двигателя:	ОПК-4.В.1
	А) закрытый	
	В) закрытый бутылочный	
	С) закрытый овальный	
	D) полуоткрытый	
	Е) овальный	
	7. Основные конструкционные части трехфазного асинхронного	
	двигателя:	
	А) полюс	
	В) обмотка возбуждения	
	С) якорь	
	D) две трехфазные обмотки	
	Е) статор	
	8. Асинхронные двигатели в системах автоматики применяются в	
	вариантах:	
	А) с дисковым якорем	
	В) с полым алюминиевым ротором	
	С) с полым немагнитным якорем	
	D) с полым магнитным ротором	
	Е) с полым немагнитным ротором	
	9. Основные способы подключения синхронных генераторов на па-	
	раллельную работу:	
	А) включение «нагрузки»	
	В) включение по методу «самосинхронизации»	
	С) включение «эксплуатация»	
	D) включение «генератор»	
	Е) включение по методу «на потухание»	
	F) включение «на бегущий» или «вращающийся свет»	
	10. Схема двигателя постоянного тока независимого возбуждения:	
	то. Слема двигателя постоянного тока независимого возоуждения.	
	$\begin{bmatrix} + & U & - \\ I & E_{-}R_{\text{og}} R_{\text{Д}\Pi} & R_{\text{KO}} & R_{\text{Д}} \end{bmatrix}$	
	$ \begin{bmatrix} I & E & K_{OS} & K_{\Pi\Pi} & K_{KO} & K_{\Pi} \\ & & & & & & & & \end{bmatrix} $	
	0000	
	$^{-1}$ + $^{-1}$	
	А) активное сопротивление обмотки якоря	
	В) эдс обмотки ротора, ток обмотки ротора, обмотка ротора двига-	

	теля	
	С) дополнительная обмотка	
	D) активная сопротивление ротора, напряжение обмотки ротора	
	Е) дополнительные сопротивления	
	F) эдс обмотки якоря, ток обмотки якоря, обмотка якоря двигателя	
3	1. Асинхронный электродвигатель состоит из:	ОПК-6.В.1
	+ статора и ротора с обмотками.	
	- статора с обмоткой и ротора из отдельных штампованных листов	
	электротехнической стали.	
	- статора и короткозамкнутого ротора.	
	2.Скорость вращения асинхронного двигателя регулируется изме-	
	нением:	
	+ числа пар полюсов, частоты тока питающей сети, скольжения.	
	- числа пар полюсов.	
	- частоты тока питающей сети и скольжения.	
	3. Режим холостого хода трансформатора – это когда:	
	+ на вторичной обмотке трансформатора нет нагрузки.	
	- первичная обмотка трансформатора не подключена к сети.	
	- разомкнута первичная обмотка трансформатора.	
	4.Опыт короткого замыкания на трансформаторе – это когда:	
	+ вторичная обмотка трансформатора замкнута накоротко, а на пер-	
	вичную подано такое напряжение, чтобы во вторичной обмотке	
	протекал ток, равный номинальному току вторичной обмотки.	
	- вторичная обмотка трансформатора замкнута накоротко, а на пер-	
	вичную подано такое напряжение, чтобы во вторичной обмотке	
	протекал ток, равный номинальному току трансформатора.	
	- первичная обмотка трансформатора замкнута накоротко, а на вто-	
	ричную подано такое напряжение, чтобы в первичной обмотке про-	
	текал ток, равный номинальному току трансформатора.	
	5.Один ампер – это:	
	- количество электричества, прошедшего через поперечное сечение проводника в 1 мм2 в 1 сек.	
	+ количество электричества в 1 кулон, прошедшего через попереч-	
	ное сечение проводника в 1 мм2 в 1 сек.	
	- количество заряженных частиц, прошедших через поперечное се-	
	чение проводника за 1 сек.	

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п		Пе	еречень контрольных работ
	Не предусмотрено		

10.5. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины (Ниже приводятся рекомендации по составлению данного раздела)

Целью дисциплины является — получение студентами необходимых знаний, умений и навыков в области фундаментальных законов электродинамики, объясняющих работу элементов специальных электромеханических систем ЛА, в том числе знания условий работы на борту самолета, определяющих требования к конструкциям элементов систем. Студенты должны получить необходимые навыки по снятию характеристик элементов и систем и инструментальному контролю для определения их пригодности к эксплуатации. Это позволит получить более полное представление о содержании ряда дисциплин учебного плана на старших курсах.

11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

Фундаментальные законы электродинамики, на основе которых объясняются принципы действия и конструкции электрических машин постоянного и переменного тока;

- Условия работы бортовых самолетных электрических машин, определяющие требования к их конструкции;
 - Генерирующее бортовое самолетное электрооборудование;
 - Электроприводы;
 - -Электрические машины для гироскопов;
 - Бортовые статические и электромашинные преобразователи;
 - Информационные электрические машины;
 - Электроприводы систем торможения колес самолета;
 - Топливные насосы;
 - Электростартеры;

- Бортовое противопожарное оборудование.
- 11.2. Методические указания для обучающихся по выполнению лабораторных работ

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

- 1. Приступать к работе можно только после ознакомления с рабочим местом.
- 2. Перед сборкой схем убедиться в том, что лабораторное оборудование отключено от источника питания.
- 3. Перед включением схемы убедиться в том, что вся включенная в схему коммутационная аппаратура (кнопки и др.) находится в исходном положении.
- 4. При включении и в процессе регулирования следить за показаниями основных измерительных приборов (цифровой осциллограф, мультиметр и др.) схемы.
- 5. В процессе работы не оставлять без присмотра рабочее место, которое находится под напряжением.
- 6. Не касаться неизолированных частей приборов и аппаратов, которые находятся под напряжением.
- 7. К лабораторным занятиям допускаются только те студенты, которые усвоили правила безопасности.
- 8. Лабораторные работы выполняются бригадой студентов в составе не менее двух человек.
- 9. Каждый студент должен подготовиться к лабораторной работе. При недостаточной подготовке студент не допускается к ее выполнению.
- 10. Собранная схема и написанная программа должна быть проверена преподавателем, который после проверки дает разрешение на проведение опытов.
- 11. Перед включением схемы студент, производящий данную операцию, должен предупредить членов своей бригады об этом фразой «Начинаем эксперимент».
- 12. После включения схемы без записи показаний приборов проверяется возможность выполнения лабораторной работы во всем заданном диапазоне изменения характеристик и показаний. Только после этого приступают к работе.
- 13. Результаты измерений по каждой характеристике должны быть проверены преподавателем.
- 14. Все переключения в схеме и ее окончательная разборка делается только с разрешения преподавателя. В случае неверности полученных данных работа переделывается.
 - 15. После переключения схема должна быть проверена преподавателем.

- 16. В случае возникновения аварийной ситуации (появление дыма, запаха гари, несвойственных звуков, искры и др.) на рабочем месте необходимо немедленно отключить схему от напряжения и сообщить об этом событии преподавателю без любых изменений в схеме. Вместе с преподавателем надо найти причину аварии и устранить ее.
- 17. Студент должен бережно обращаться с предоставляемым ему оборудованием и компьютерной техникой, запрещается делать надписи мелом, карандашом или чернилами. Нельзя загромождать рабочее место приборами и аппаратами, которые не используются в лабораторной работе, оставлять на них книги, тетради и др. предметы.
- 18. К следующему занятию каждый студент должен составить отчет по предыдущей лабораторной работе в соответствии с установленной формой.

Структура и форма отчета о лабораторной работе

В отчете обязательно должны быть отражены следующие разделы: «Название» «Цель работы», «Содержание работы», «Схемы испытаний», «Результаты измерений и вычислений», «Анализ полученных характеристик и краткие выводы». В состав отчета могут быть включены другие разделы, которые учитывают специфику выполняемой лабораторной работы (фото экспериментов, программный код и др.). Необходимые схемы, рисунки и графики можно чертить карандашом либо с использованием специальных программных продуктов на персональном компьютере.

Требования к оформлению отчета о лабораторной работе

Результаты выполненных лабораторных работ, оформляются в виде отчета по одному образцу. Отчет пишут с одной стороны листа формата А4 (размером 210×297 мм). Основные надписи выполняют в соответствии с ГОСТ. Все выполненные и подписанные руководителем отчеты по лабораторным работам складывают в логической последовательности и брошюруют. При большом количестве страниц (более десяти) составляют содержание отчета, который размещают в альбоме после титульного листа. Титульный лист должен иметь надпись «Журнал лабораторных работ (отчеты)» с фамилией руководителя (преподаватель) и исполнителя (студент).

11.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- 11.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения диспиплины.

Проведение текущего контроля успеваемости осуществляется с помощью вопросов для тестов, приведенных в таблице 18. Оценивание текущего контроля успеваемости оценивается по системе зачет/ не зачет. Положительный результат текущего контроля успеваемости дает студенту дополнительный балл при проведении промежуточной аттестации.

11.5. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

– экзамен – форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Промежуточная аттестация оценивается по результатам текущего контроля успеваемости. В случае, если студент по уважительной причине не выполнил требования текущего контроля, ему предоставляется возможность сдать задолженности по пропущенным темам. Форма проведения промежуточной аттестации — письменная.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № про- токола засе- дания кафед- ры	Подпись зав. кафед- рой