МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 32

УТВЕРЖДАЮ

Руководитель образовательной программы

доц.,к.т.н.,доц.

(должность, уч. степень, звание)

О.Я. Солёная

(подлись) «17» февраля 2025 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Электрические машины» (Наинененалие дисциплины)

Код направления подготовки/ специальности	13.03.02	
Наименование направления подготовки/ специальности	Электроэнергетика и электротехника	
Наименование направленности	Цифровая энергетика	
Форма обучения	квино	
Год приема	2025	

Программу составил (а) И.Н. Железняк доц., к.т.н. (инициалы, фамилия) (подпияв, дата) (должность, уч. степень, звание) Программа одобрена на заседании кафедры № 32 «17» февраля 2025 г, протокол № 5 Заведующий кафедрой № 32 к.т.н.,доц. (инициалы, фамилия) (уч. степень, звание) Заместитель директора института №3 по методической работе Н.В. Решетникова Ст. преп. (подпис (инициалы, фамилия) (должность, уч. степень, звание)

Лист согласования рабочей программы дисциплины

Аннотация

Дисциплина «Электрические машины» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки 13.03.02 «Электроэнергетика и электротехника» направленности «Цифровая энергетика». Дисциплина реализуется кафедрой «№32».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ОПК-4 «Способен использовать методы анализа и моделирования электрических цепей и электрических машин»

ПК-3 «Способен принимать участие в проектировании объектов профессиональной деятельности в соответствии с техническим заданием и нормативно-технической документацией»

Содержание дисциплины охватывает круг вопросов, связанных с электромагнитными и электромеханическими процессами, проходящими внутри электромеханических преобразователей энергии переменного и постоянного тока.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, курсовое проектирование.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 7 зачетных единиц, 252 часа.

Язык обучения по дисциплине «русский».

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Получение обучающимися необходимых знаний основ теории электрических машин, ознакомление с устройством, существующими типами, их характеристиками и особенностями применения.

- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП BO).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

таолица 1 – Перечень ком		ров их достижения
Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Общепрофессиональные компетенции	ОПК-4 Способен использовать методы анализа и моделирования электрических цепей и электрических машин	ОПК-4.Д.5 анализирует установившиеся режимы работы трансформаторов и вращающихся электрических машин различных типов, использует знание их режимов работы и характеристик
Профессиональные компетенции	ПК-3 Способен принимать участие в проектировании объектов профессиональной деятельности в соответствии с техническим заданием и нормативнотехнической документацией	ПК-3.Д.1 выполняет сбор и анализ данных для проектирования объектов профессиональной деятельности ПК-3.Д.2 разрабатывает эскизные и рабочие чертежи графической части рабочей и проектной документации ПК-3.Д.3 использует средства автоматизированного проектирования для оформления рабочей документации объектов профессиональной деятельности ПК-3.Д.4 осуществляет контроль соответствия разрабатываемых проектов и технической документации стандартам, техническим условиям и другим нормативным документам ПК-3.Д.5 выполняет расчеты для проектирования объектов профессиональной деятельности

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Физика»,
- «Математика. Математический анализ»,
- «Электротехника»

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- «Электрический привод».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Dry wys Sys i 40 S stry		Трудоемкость	по семестрам
Вид учебной работы	Всего	№5	№6
1	2	3	4
Общая трудоемкость дисциплины, ЗЕ/ (час)	7/ 252	4/ 144	3/ 108
Из них часов практической подготовки	34	17	17
Аудиторные занятия, всего час.	119	68	51
в том числе:			
лекции (Л), (час)	51	34	17
практические/семинарские занятия (ПЗ),			
(час)			
лабораторные работы (ЛР), (час)	51	34	17
курсовой проект (работа) (КП, КР), (час)	17		17
экзамен, (час)	72	36	36
Самостоятельная работа, всего (час)	61	40	21
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз., Экз.	Экз.	Экз.

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции	ПЗ	ЛР	КП	CPC
т изделья, темы днецивницы	(час)	(C3)	(час)	(час)	(час)
Сем	естр 5				
Раздел 1. Общие вопросы					
электромеханического преобразования					
энергии					
Тема 1.1. Электромеханические					
преобразователи энергии (ЭМПЭ):					
определение, классификация, области					
применения	8		8		10
Тема 1.2. Основные законы электромагнетизма	0		O		10
Тема1.3. Силы, действующие в					
электромеханических системах.					
Тема 1.4. Условия непрерывного					
преобразования энергии в ЭМПЭ, основные					
типы электрических машин переменного и					
постоянного тока					

		1	Ι	ı	
Раздел 2. Вопросы теории машин постоянного					
тока Тема 2.1. Принцип работы и устройство					
машин постоянного тока					
Тема 2.2. Конструкция машин постоянного	9		9		10
тока Тема 2.3. Математические модели и					
физические процессы машин постоянного тока					
Тема 2.4. Генераторы постоянного тока					
Тема 2.5. Двигатели постоянного тока					
Раздел 3. Вопросы теории трансформаторов					
Тема 3.1. Принцип работы и устройство					
трансформаторов	0		0		10
Тема 3.2. Конструкция трансформаторов	8		8		10
Тема 3.3. Математические модели и					
физические процессы трансформаторов					
Раздел 4. Вопросы теории асинхронных					
машин					
Тема 4.1. Принцип работы и устройство					
1 1 1					
асинхронных машин Тема 4.2. Конструкция асинхронных машин					
Тема 4.3. Математические модели и	9		9		10
физические процессы асинхронных машин					
Тема 4.4. Асинхронная машина в режиме					
генератора Тема 4.5. Асинхронная машина в					
режиме двигателя					
Итого в семестре:	34		34		40
-			34		40
Семестр 6 Раздел 5 Вопросы теории синхронных					
машин Тема 5.1. Принцип работы и					
устройство синхронных машин					
Тема 5.2. Конструкция синхронных машин					
Тема 5.2. Конструкция синхронных машин Тема 5.3. Математические модели и					
физические процессы синхронных машин	17		17		21
Тема 5.4. Синхронная машина в режиме					
генератора Томо 5 5. Сумуромной можнице в реусиме					
Тема 5.5. Синхронная машина в режиме					
двигателя					
Тема 5.6 Синхронная машина в режиме вентильного двигателя					
				17	
Выполнение курсового проекта	17		17	17	21
Итого в семестре:		0			
Итого	51	0	51	17	61

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	делов и тем лекционного цикла Название и содержание разделов и тем лекционных занятий			
1	Общие вопросы электромеханического преобразования			
	энергии. Электромеханические преобразователи энергии			
	(ЭМПЭ): определение, классификация, области применения.			
	Основные законы электромагнетизма. Силы, действующие в			
	электромеханических системах. Условия непрерывного			
	преобразования энергии в ЭМПЭ, основные типы			
	электрических машин переменного и постоянного тока			
2	Вопросы теории машин постоянного тока. Принцип работы			
	и устройство машин постоянного тока. Конструкция машин			
	постоянного тока. Математические модели и физические			
	процессы машин постоянного тока. Генераторы постоянного			
	тока. Двигатели постоянного тока.			
3	Вопросы теории трансформаторов. Принцип работы и			
	устройство трансформаторов. Конструкция			
	трансформаторов. Математические модели и физические			
	процессы трансформаторов			
4	Вопросы теории асинхронных машин. Принцип работы и			
	устройство асинхронных машин. Конструкция асинхронных			
	машин. Математические модели и физические процессы			
	асинхронных машин. Асинхронная машина в режиме			
	генератора. Асинхронная машина в режиме двигателя.			
5	Вопросы теории синхронных машин. Принцип работы и			
	устройство синхронных машин. Конструкция синхронных			
	машин. Математические модели и физические процессы			
	синхронных машин. Синхронная машина в режиме			
	генератора. Синхронная машина в режиме двигателя.			

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

				Из них	No
No	Темы практических	Формы практических	Трудоемкость,	практической	раздела
Π/Π	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
	Учебным планом не предусмотрено				
	Всег	0			

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

No		Трупоемкості	Из них	$\mathcal{N}_{\underline{o}}$
п/п	Наименование лабораторных работ	Трудоемкость, (час)	практической	раздела
11/ 11		(lac)	подготовки,	дисцип

			(час)	лины	
	Семестр 5	5			
1	Испытания генератора постоянного тока	10	10	2	
	независимого возбуждения				
2	Испытания генератора постоянного тока	10	10	2	
	параллельного возбуждения				
3	Испытания двигателя постоянного тока	11	11	2	
	независимого возбуждения				
	Семестр 6				
4	Испытания асинхронных машин в режиме	10	10	4	
	двигателя				
5	Испытания трансформаторов	10	10	3	
	Всего	51			

4.5. Курсовое проектирование/ выполнение курсовой работы

Цель курсового проекта:

Часов практической подготовки:

Примерные темы заданий на курсовой проект приведены в разделе 10 РПД.

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего, час	Семестр 5, час	Семестр 6, час
1	2	3	4
Изучение теоретического материала дисциплины (TO)	24	20	4
Курсовое проектирование (КП, КР)	17		17
Расчетно-графические задания (РГЗ)			
Выполнение реферата (Р)			
Подготовка к текущему контролю успеваемости (ТКУ)	10	10	
Домашнее задание (ДЗ)			
Контрольные работы заочников (КРЗ)			
Подготовка к промежуточной аттестации (ПА)	10	10	
Всего:	61	40	21

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий

Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8- Перечень печатных и электронных учебных изданий

Шифр/	Библиографическая ссылка	Количество экземпляров в
URL адрес	внознографи теская севізка	библиотеке

		(кроме электронных экземпляров)
621.313	Вольдек А.И. Электрические машины,	8
B71	СПб: Питер 2007, 319 с.	
621.314 Э	Мартынов А.А., Тимофеев С.С., Машины	60
45	постоянного тока: учебное пособие СПб.:	
	ГУАП, 2016	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование
https://lib.guap.ru/jirbis2/index.php	Электронная библиотека ГУАП
https://driveconstructor.com/applications/wind	Электронный ресурс моделирования работы
	аппаратов

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11– Перечень информационно-справочных систем

1 00011111	will illeptions impopium, incluse mem one ion
№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	21-21
2	Специализированная лаборатория	31-02

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств		
Экзамен	Список вопросов к экзамену;		
	Тесты.		
Выполнение курсового проекта	Экспертная оценка на основе требований к		
	содержанию курсового проекта.		

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	у 1				
5-балльная шкала	Характеристика сформированных компетенций				
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 				
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 				
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 				
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 				

^{10.3.} Типовые контрольные задания или иные материалы. Вопросы для экзамена представлены в таблице 15.

Таблица 15 – Вопросы для экзамена

Таолица	. 13 — вопросы для экзамена	TC
$N\!$	Перечень вопросов для экзамена	Код индикатора
1	Классификация электрических машин (ЭМ) по назначению,	ПК-3.Д.1
	мощности, роду тока.	
2	Принцип работы и устройство коллекторных машины постоянного тока.	ПК-3.Д.2
3	Фундаментальные законы электромеханики. Закон Ампера. Закон Фарадея.	ОПК-4.Д.5
4	Э.Д.С. и момент машины постоянного тока.	ПК-3.Д.4
5	Принцип образования петлевой обмотки.	ПК-3.Д.5
6	Принцип образования волновой обмотки	ОПК-4.Д.5
7	Обмотки машин переменного тока, коэффициенты укорочения и	ПК-3.Д.1
,	распределения.	3.4.1
8	Магнитное поле машины постоянного тока в режиме холостого хода. Кривая намагничивания	ПК-3.Д.2
9	Магнитное поле машины постоянного тока при нагрузке.	ПК-3.Д.3
10	Реакция якоря при щетках установленных на нейтрали.	ПК-3.Д.4
11	Классификация генераторов постоянного тока.	ПК-3.Д.5
12	Характеристики генератора постоянного тока с независимым	ОПК-4.Д.5
12	возбуждением.	отк ч.д.5
14	Условия самовозбуждения генераторов.	ПК-3.Д.1
15	Регулирование напряжения генераторов постоянного тока	ПК-3.Д.2
16	Энергетическая диаграмма машины постоянного тока для	ПК-3.Д.3
10	генераторного режима.	ти э.д.э
17	Энергетическая диаграмма машины постоянного тока для	ПК-3.Д.4
17	двигательного режима	1111 3.4.
18	Характеристики двигателя с независимым возбуждением.	ПК-3.Д.5
19	Управление скоростью и моментом двигателей постоянного тока.	ОПК-4.Д.5
20	Регулирование частоты вращения двигателей постоянного тока	ПК-3.Д.1
21	Схемы регулирования частоты вращения двигателей постоянного тока.	ПК-3.Д.2
22	Особенности конструкции асинхронных двигателей автоматики, моментные двигатели.	ПК-3.Д.3
23	Информационные электрические машины, классификация по назначению, основные требования.	ПК-3.Д.4
24	Индуционные датчики угла с ограниченным диапазоном измерения.	ПК-3.Д.5
25	Вращающийся трансформатор, принцип работы.	ОПК-4.Д.5
26	Синусно-косинусный вращающийся трансформатор	ПК-3.Д.1
27	Вращающийся трансформатор а режиме фазовращателя	ПК-3.Д.2
28	Редуктосин. Принцип работы. Особенности конструкции.	ОПК-4.Д.5
29	Сельсины. Принцип работы. Применение.	ОПК-4.Д.5
30	Тахометры, основные типы, принципы работы	ОПК-4.Д.5
31	Применение асинхронной машины в качестве тахометра и	ОПК-4.Д.5
	акселерометра.	
32	Образование вращающегося магнитного поля в трехфазной	ОПК-4.Д.5
- -	электрической машине.	
33	Образование вращающегося магнитного поля в двухфазной электрической машине	ОПК-4.Д.5
34	Принцип работы и устройство асинхронной машины.	ПК-3.Д.3
J 4	ттрипции рассты и устроиство асинхронной машины.	тт-э.д.э

35	Принцип действия асинхронного двигателя. Механическая	ПК-3.Д.4
	характеристика.	
36	Энергетическая диаграмма асинхронного двигателя.	ПК-3.Д.5
37	Выражения для момента асинхронной машины.	ОПК-4.Д.5
38	Механическая характеристика асинхронной машины. Устойчивость	ПК-3.Д.1
	работы асинхронного двигателя.	
39	Способы пуска асинхронного двигателя.	ПК-3.Д.2
40	Регулирование частоты вращения асинхронных двигателей.	ПК-3.Д.3
41	Принцип действия и разновидности синхронных двигателей,	ПК-3.Д.4
	способы запуска.	
42	Синхронные генераторы, принцип действия, управление	ПК-3.Д.5
	напряжением.	
43	Синхронный двигатель. Особенности конструкции.	ОПК-4.Д.5
44	Реактивный синхронный двигатель. Конструкция. Моментная	ПК-3.Д.1
	характеристика	
45	Принцип действия гистерезисного электродвигателя. Особенности	ПК-3.Д.2
	конструкции и управления.	
46	Принцип действия бесконтактного двигателя постоянного тока.	ПК-3.Д.3
	Особенности управления.	
47	Основные способы управления бесконтактным двигателем	ПК-3.Д.4
	постоянного тока.	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 — Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

No	Примерный перечень тем для курсового проектирования/выполнения курсовой			
Π/Π	работы			
1	Проектирование турбогенератора			
2	Проектирование синхронной машины			
3	Проектирование асинхронной машины			
4	Проектирование двигателя постоянного тока			

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	INUMANULUI HANAUAUL DOHNOCOD HIII TACTOD						Код индикатора		
		<i>из чеі</i> кция:	пырех пр Прочита	бинированн редложенн айте текст, ты, обосно	<i>ых и обос</i> выберите	нованием правилы	<i>выбора</i> ный ответ	-	
	Какой из	следу	ющих ти	пов электр	омеханич	неских пр	еобразова	<u>телей</u>	ПК-3

	1
энергии используется для преобразования электрической энергии в	
механическую?	
а) Генератор	
b) Электродвигатель	
с) Трансформатор	
d) Резистор	
Какой из следующих параметров является ключевым для определения	ОПК-4
стабильности работы синхронной машины?	
а) Номинальная мощность	
b) Частота вращения магнитного поля	
с) Уровень напряжения	
d) Коэффициент мощности	
2 тип. Задание комбинированного типа с выбором нескольких вариан	тов ответа
из предложенных и развернутым обоснованием выбора	moo omoemu
из преоложенных и развернутым обоснованием выоора	
Инструкция: Прочитайте текст, выберите правильные варианты ответ запишите аргументы, обосновывающие выбор ответов	а и
запишите аргументы, ооосновывающие выоор ответов	
Vокна на спанионни угроруганий арианотов основни на сомочения	ПК-3
Какие из следующих утверждений являются основными законами	1118-3
электромагнетизма? (Выберите все подходящие варианты)	
а) Закон Ома	
b) Закон Фарадея	
с) Закон Кулона	
d) Закон Ампера	
Какие из следующих утверждений верны относительно принципа	ОПК-4
работы и устройства синхронных машин? (Выберите все подходящие	
варианты)	
 а) Синхронные машины могут работать как генераторы и как двигатели. 	
b) Ротор синхронной машины всегда вращается с частотой, равной	
частоте сети.	
с) Синхронные машины не требуют внешнего источника	
возбуждения.	
d) Синхронные машины используют магнитное поле для создания	
вращающего момента.	
3 тип. Задание закрытого типа на установление соответствия	
П	
Инструкция: Прочитайте текст и установите соответствие. К каждой и данной в левом столбце, подберите соответствующую по	·
правом столбце	
Установите соответствие	ПК-3
1. Электрическая сила	
2. Магнитная сила	
3. Сила трения	
a) Cura populusamas	
а) Сила, возникающая при взаимодействии электрических зарядов.	
b) Сила, возникающая в результате движения проводника в магнитном	
поле.	
с) Сила, препятствующая движению тел и возникающая при контакте	
поверхностей.	

d) Cura magnification and many management and a pro-				
d) Сила, проявляющаяся при изменении скорости движения тела и его				
Macce.	ОПК-4			
Установите соответствие	OHK-4			
1 (
1. Статор				
2. Ротор				
3. Система возбуждения				
4. Магнитное поле				
а) Часть машины, в которой создается вращающееся магнитное поле.				
b) Часть машины, которая вращается и создает механическую				
энергию.				
с) Устройство, обеспечивающее создание магнитного поля в роторе.				
d) Поле, необходимое для работы синхронной машины,				
обеспечивающее взаимодействие с обмотками статора.				
4 тип. Задание закрытого типа на установление последовательности	1			
4 тип. Эйойние закрытого типа на установление послеоовительности	,			
Иметричина Промитейта токот и метоморите полодоротали мости				
Инструкция: Прочитайте текст и установите последовательность.				
Запишите соответствующую последовательность букв сле	ева направо			
W.Y	TI. 0			
<u>Установите последовательность</u>	ПК-3			
Этапы работы машины постоянного тока:				
а) Создание магнитного поля в статоре.				
b) Приложение напряжения к обмоткам машины.				
с) Вращение ротора под действием магнитного поля.				
d) Генерация механической энергии.				
е) Передача энергии на внешнюю нагрузку.				
Этапы работы синхронной машины в режиме двигателя:	ОПК-4			
а) Приложение трехфазного переменного напряжения к обмоткам				
статора.				
-				
b) Создание вращающего магнитного поля в статоре.				
с) Вращение ротора синхронно с магнитным полем статора.				
d) Передача механической энергии на нагрузку.				
е) Регулирование скорости вращения ротора в зависимости от				
нагрузки.				
5 тип. Задание открытого типа с развернутым ответом				
Инструкция: Прочитайте текст и запишите развернутый обоснованный	ответ			
или напишите пропущенное слово/словосочетание				
Какие физические процессы происходят в машине постоянного тока	ПК-3			
при изменении нагрузки? Как это влияет на ее работу?				
В чем заключается отличие между линейными и нелинейными	ОПК-4			
математическими моделями в контексте машин постоянного тока?				
Приведите примеры ситуаций, когда использование одной модели				
предпочтительнее другой.				

Примечание: Задание 1 типа с выбором одного верного ответа из четырех предложенных и обоснованием выбора:

Полное совпадение с верным ответом – 1 балл.

Неверный ответ или его отсутствие -0 баллов.

Задание 2 типа с выбором нескольких вариантов ответа из предложенных и развернутым обоснованием выбора:

Полное совпадение с верным ответом 1 балл.

Отсутствие минимум одного правильно ответа или полное отсутствует ответа -0 баллов.

Задание 3 типа на установление соответствия:

Полное совпадение с верным ответом - 1 балл.

Неверное сопоставление ответов или отсутствие ответа -0 баллов.

Задание 4 типа на установление последовательности:

Полное правильное совпадение очередности ответов - 1 баллом

Нарушение правильного порядка ответов или отсутствие ответа – 0 баллов.

Задание 5 типа с развернутым ответом:

Правильный ответ за задание оценивается - 3 балла.

Если допущена одна ошибка \ неточность \ ответ правильный, но не полный - 1 балл.

Если допущено более 1 ошибки \setminus ответ неправильный \setminus ответ отсутствует - 0 баллов.

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п		Пе	речень контрольных работ
	Не предусмотрен	10	

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- Введение.
- Общие вопросы электромеханического преобразования энергии.
- Общие вопросы электрических аппаратов.
- Вопросы теории машин постоянного тока.
- Вопросы теории асинхронных машин и трансформаторов.
- Вопросы теории синхронных машин.
- 11.2. Методические указания для обучающихся по выполнению лабораторных работ

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Студенты делятся на подгруппы по 4-6 человека в каждой. Перед выполнением лабораторной работы подгруппа студентов получает задание и инструктаж по технике безопасности от преподавателя. Ввиду сложности оборудования лабораторные работы выполняются под наблюдением и руководством преподавателя.

Структура и форма отчета о лабораторной работе

Структура и форма отчета по лабораторной работе должны соответствовать требованиям нормативных документов ГУАП.

Требования к оформлению отчета о лабораторной работе

Отчет должен содержать:

- наименование и цель работы,
- краткие теоретические сведения,
- схемы. графики,
- характеристики, параметры,
- анализ результатов и выводы.
- оформленный отчет подлежит защите на очередном занятии.

11.3. Методические указания для обучающихся по прохождению курсового проектирования/выполнения курсовой работы

Курсовой проект/ работа проводится с целью формирования у обучающихся опыта комплексного решения конкретных задач профессиональной деятельности.

Структура пояснительной записки курсового проекта/ работы

- -титульный лист, оформленный в соответствии с требованиями норм учебнометодической документации ГУАП;
- индивидуальное задание на расчет и проектирование устройства, полученное у преподавателя;
- расчет главных размеров и конструктивных параметров устройства;
 электромагнитный расчет устройства;
 - тепловой расчет устройства;
 - заключение

Требования к оформлению пояснительной записки курсового проекта/ работы

Пояснительная записка оформляется в соответствии с требованиями норм учебнометодической документации ГУАП.

- 11.4. Методические указания для обучающихся по прохождению самостоятельной работы
- В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.
- В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся, являются:

- учебно-методический материал по дисциплине.
- 11.5. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Проведение текущего контроля успеваемости осуществляется с помощью вопросов, приведенных в таблице 15. Оценивание текущего контроля успеваемости оценивается по системе зачет/ не зачет. Положительный результат текущего контроля успеваемости дает студенту дополнительный балл при проведении промежуточной аттестации.

11.6. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

– экзамен – форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Промежуточная аттестация оценивается по результатам текущего контроля успеваемости. В случае, если студент по уважительной причине не выполнил требования текущего контроля, ему предоставляется возможность сдать задолженности по пропущенным темам. Форма проведения промежуточной аттестации – письменная.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой