МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 32

УТВЕРЖДАЮ

Руководитель образовательной программы

доц.,к.т.н.,доц.

(должность, уч. степень, звание)

ундия)

О.Я. Солёная

«17» февраля 2025 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Проектирование электроприводов» (Наименование дисциплины)

Код направления подготовки/ специальности	13.03.02	
Наименование направления подготовки/ специальности	Электроэнергетика и электротехника	
Наименование направленности	Цифровая энергетика	
Форма обучения	очная	
Год приема	2025	

Лист согласования рабочей программы дисциплины

Программу составил (а)	BAN 17.02.2025	O.E. Hanny mana
Ст. преп. (должность, уч. степень, звание)	(подпись, дата)	О.Б. Чернышева (инициалы, фамилия)
Программа одобрена на заседан	ии кафедры № 32	
«17» февраля 2025 г, протокол N	№ 5	
Заведующий кафедрой № 32	PA	
к.т.н.,доц.	17.02.2025	С.В. Солёный
(уч. степень, звание)	(подпись дата)	(инициалы, фамилия)
Заместитель директора институт	га №3 по методической рабо	оте
Ст. преп.	17.02.2025	Н.В. Решетникова
(должность, уч. степень, звание)	(помине дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Проектирование электроприводов» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 13.03.02 «Электроэнергетика и электротехника» направленности «Цифровая энергетика». Дисциплина реализуется кафедрой «№32».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-3 «Способен принимать участие в проектировании объектов профессиональной деятельности в соответствии с техническим заданием и нормативно-технической документацией»

Содержание дисциплины охватывает круг вопросов, связанных с:

- изучением и освоением методик расчета и проектирования основных типов электрических приводов электрических приводов постоянного и переменного тока;
- изучением и анализом научно-технической информации отечественного и зарубежного опыта по разработке и проектированию электрических приводов;
 - приобретением навыков расчета и проектирования электрических приводов;
 - развитием и закреплением навыков к самоорганизации и саморазвитию.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа студента.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме дифференцированного зачета.

Общая трудоемкость освоения дисциплины составляет 2 зачетных единицы, 72 часа.

Язык обучения по дисциплине «русский».

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью преподавания дисциплины является формирование у студентов необходимых знаний и умений по современным методикам расчета и проектирования электрических приводов, что позволит им успешно решать теоретические и практические задачи в их профессиональной деятельности. Обучающиеся должны освоить дисциплину на уровне, позволяющем им ориентироваться в схемных решениях, математических моделях, свойствах и характеристиках замкнутых и разомкнутых систем электроприводов постоянного и переменного тока. Уровень освоения дисциплины должен позволять студентам проводить обоснованный выбор структурной схемы проектируемого электропривода, выполнять типовые расчеты основных параметров и характеристик электрических приводов, выполнять синтез систем электроприводов, проектирования современные методики расчета электроприводов, И оценивать техническое состояние, поддержание восстановление работоспособности И электроэнергетического и электромеханического оборудования.

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и инликаторов их лостижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Профессиональные компетенции	ПК-3 Способен принимать участие в проектировании объектов профессиональной деятельности в соответствии с техническим заданием и нормативнотехнической документацией	ПК-3.Д.2 разрабатывает эскизные и рабочие чертежи графической части рабочей и проектной документации

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Электротехника»,
- «Электрические машины»,
- «Электрические и электронные аппараты»,
- «Теория автоматического управления»,
- «Электрический привод»

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- - «Энергоустановки на основе возобновляемых источников энергии»,
- «Математические методы исследований»,
- «Цифровое проектирование»,
- «Надежность электромеханических и электроэнергетических систем и комплексов»,
- Производственная преддипломная практика,
- Дипломное проектирование.

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблипе 2.

Таблица 2 – Объем и трудоемкость дисциплины

		Трудоемкость по
Вид учебной работы	Всего	семестрам
		№7
1	2	3
Общая трудоемкость дисциплины,	2/72	2/ 72
3Е/ (час)	21 12	2/ /2
Из них часов практической подготовки	34	34
Аудиторные занятия, всего час.	51	51
в том числе:		
лекции (Л), (час)	17	17
практические/семинарские занятия (ПЗ),	34	34
(час)		34
лабораторные работы (ЛР), (час)		
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)		
Самостоятельная работа, всего (час)	21	21
Вид промежуточной аттестации: дифф.	Дифф.	Tuche 2ou
зачет	Зач.	Дифф. Зач.

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Taosinga 5 Taogesia, temai girenjarinia, na Toygoemiceta					C D C
Разделы, темы дисциплины	Лекции	ПЗ (СЗ)	ЛР	КΠ	CPC
т азделы, темы дисциплины	(час)	(час)	(час)	(час)	(час)
Сем	естр 7				
Раздел 1. Введение Общие вопросы	3				_
проектирования ЭП					כ
Тема 1.1. Содержание технического задания на					
проектирование ЭП. Основные этапы					
проектирования ЭП					
Тема 1.2 Методика выбора электродвигателей		4			
для ЭП.		4			
Тема 1.3. Методы проверки двигателей на					
нагрев					
Раздел 2. Проектирование ЭП постоянного	8				8
тока.					O

Тема 2.1 Статический расчет замкнутых		12			
систем ЭП постоянного тока		12			
Тема 2.2. Усилители мощности для ЭП					
постоянного тока. Усилитель мощности с		4			
реверсивным с ШИП. Способы управления		7			
ШИП.					
Тема 2.3. Усилители мощности для ЭП					
постоянного тока. Усилите мощности на базе					
управляемых выпрямителей. Способы					
управления реверсивными ЭП УВ.					
Тема 2.4 Расчет параметров регуляторов в					
системах подчиненного регулирования					
Раздел 3. Проектирование асинхронного ЭП.	6				8
Тема 3.1. Расчет мощности и выбор двигателей		8			
при различных характерах нагрузки		O			
Тема 3.2. Асинхронный электропривод с					
фазовым управлением					
Тема 3.3. Асинхронный электропривод с		6			
частотным управлением		U			
	17	34			21
Итого	17	34	0	0	21

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий	
Раздел 1.	Введение. Общие вопросы проектирования ЭП	
Тема 1.1.	Содержание технического задания на проектирование ЭП.	
	Основные этапы проектирования ЭП	
Тема 1.2	Методика выбора двигателя для электроприводов	
	вентиляторов, насосов, грузоподъемных механизмов,	
	манипуляторов роботов	
Тема 1.3	Методы проверки двигателей на нагрев. Прямой и	
	косвенный методы. Особенности проверки двигателей по	
	нагреву косвенными методами при различных режимах их	
	работы.	
Раздел 2.	Проектирование ЭП постоянного тока.	
Тема 2.1	Статический расчет замкнутых систем ЭП ПТ с	
	отрицательной обратной связью по напряжению якоря	
	(ООСН); отрицательной обратной связью по скорости	
	(ООСС); с положительной обратной связью по току якоря	
	(ПОСТ). Расчет параметров систем с токоограничением.	

Тема 2.2	Усилители мощности для ЭП постоянного тока. Усилитель			
	мощности с реверсивным с ШИП. Способы управления			
	ШИП: симметричный, несимметричный и комбинированный			
	способы управления. Потери мощности и КПД ЭП с ШИП.			
Тема 2.3	Усилители мощности для ЭП постоянного тока. Усилите			
	мощности на базе управляемых выпрямителей. Совместный			
	и раздельный способы управления реверсивными ЭП с УВ.			
Тема 2.4	Расчет параметров регуляторов в системах подчиненного			
	регулирования: контура тока; контура скорости; контура			
	положения			
Раздел 3.	Проектирование асинхронного ЭП.			
Тема 3.1	. Расчет мощности и выбор двигателей при различных			
	характерах нагрузки. Расчет мощности и выбор			
	электродвигателя для ЭП грузоподъемного механизма,			
	тележки мостового крана.			
Тема 3.2	Асинхронный электропривод с фазовым управлением.			
	Расчет характеристик асинхронного электропривода при			
	фазовом способе управления. Естественные и искусственные			
	характеристики разомкнутого электропривода.			
Тема 3.3	Асинхронный электропривод с частотным управлением.			
	Методика расчета инвертора напряжения. Расчет потерь			
	мощности в транзисторах и диодах инвертора. Расчет			
	площади радиатора.			

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

				Из них	$N_{\underline{\circ}}$
No	Темы практических	Формы практических	Трудоемкость,	практической	раздела
Π/Π	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
		Семестр 7	7		
1	Методика выбора	Решение типовых	4	4	Тема
	двигателя для	задач			1.2
	электропривода				
	манипулятора				
	роботов				
2	Расчет усилителя	Решение типовых	4	4	Тема
	мощности ЭП ПТ с	задач			2.2
	реверсивным				
	транзисторным				
	ШИП				
3	Расчет замкнутого	Решение типовых	4	4	Тема
	ЭП ПТ с	задач			2.1
	отрицательной				
	обратной связью по				
	напряжению				

	(OOCH)				
4	Расчет замкнутого ЭП ПТ с	Решение типовых задач	4	4	Тема 2.1
	отрицательной				
	обратной связью по				
_	скорости (ООСС)	D.	4	4	T
5	Расчет замкнутого ЭП ПТ с	Решение типовых	4	4	Тема 2.1
	положительной	задач			2.1
	обратной связью по				
	току (ПОСТ)				
6	Расчет мощности и	Решение типовых	4	4	Тема
	выбор	задач			3.1
	электродвигателя				
	для ЭП				
	грузоподъемного				
7	механизма	D	4	4	Т
/	Расчет мощности и выбор	Решение типовых	4	4	Тема 3.1
	электродвигателя	задач			3.1
	для ЭП тележки				
	мостового крана				
8	Расчет системы	Решение типовых	4	4	Тема
	частотного	задач			3.3
	управления				
	асинхронного				
	электропривода		_		
9	Заключительное		2	2	
	занятие		2.4	2.4	
	Beerg)	34	34	

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	$N_{\underline{0}}$
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	раздела
Π/Π	п паименование лаоораторных раоот	(час)	подготовки,	дисцип
			(час)	лины
	Учебным планом не п	редусмотрено		
	Всего			

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 7,
Вид самостоятсявной расоты	час	час
1	2	3
Изучение теоретического материала	11	11
дисциплины (ТО)	11	11
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю	5	5
успеваемости (ТКУ)	3	3
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной	5	5
аттестации (ПА)	3	3
Всего:	21	21

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8- Перечень печатных и электронных учебных изданий

Шифр	Библиографическая ссылка / URL адрес	Количество
		экземпляров в
		библиотеке
		(кроме электронных
		экземпляров)
62-83	Мартынов А.А Электрический привод: учеб. пособие	40
M29	СПб.: ГУАП, 2015. – 524 с.	
621.313	Мартынов А.А. Основы проектирования электрических	30
M29	приводов.: Учеб. пособие/. СПб.:СПбГУАП, 2013. 141с.:	
	ил.	
	Мартынов А.А. Проектирование асинхронных	
	электроприводов: учеб. пособие / А.А. Мартынов, О.Б.	
	Чернышева. – СПб.: ГУАП, 2023. – 84 c.	
	Мартынов А.А. Проектирование электроприводов: учебн. пособие/ СПбГУАП. СПб., 2004. 97 с.	50
	Косулин В.Д., Мартынов А.А. Вентильный электропривод	60
	для роботов. Учебное пособие. – М.: Изд-во МАИ, 1991. –	
	152c.	
621.865.8	Мартынов А.А. Вентильный ЭП роботов. Расчет и	30
M29	проектирование систем тиристорного ЭП. Учебное	
	пособие./ ЛИАП. Л. 1991г92с.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование	
URL:http://194.226.30/32/book.htm	Библиотека Администрации Президента РФ [Электронный	
	pecypc]	
URL:http://imin.urc.ac.ru	Виртуальные библиотеки [Электронный ресурс].	
URL:http://www.rsl.ru	Российская национальная библиотека [Электронный ресурс].	
URL:http://web.ido.ru	Электронная библиотека [Электронный ресурс].	
URL:http://gpntb.ru	Государственная публичная научно-техническая библиотека	
	России [Электронный ресурс].	
http://window.edu.ru/	Информационный портал «Единое окно доступа к	
	образовательным ресурсам» [Электронный ресурс]	

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10– Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п		Наименование
	Не предусмотрено	

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ π/π	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Специализированная лаборатория	31-03
2	Мультимедийная лекционная аудитория	21-21

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Дифференцированный зачёт	Список вопросов;
	Тесты;

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	оценки уровня сформированности компетенции		
5-балльная шкала	Характеристика сформированных компетенций		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 		
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 		
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 		
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 		

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код
3 12 11/11	ттере тепь вопросов (задат) для экзамена	индикатора

Учебным планом не предусмотрено

Вопросы для дифф. зачета представлены в таблице 16. Таблица 16 – Вопросы для дифф. зачета

№ п/п	Перечень вопросов для дифф.зачета	Код
		индикатора
1	Классификация систем автоматизированного	ПК-3.Д.2
2	электропривода	
2	Содержание технического задания на проектирование ЭП.	
3	Основные этапы проектирования ЭП.	
3	Выбор электродвигателя и передаточного отношения	
4	редуктора при циклическом характере нагрузки.	
5	Анализ данных, необходимых для проектирования ЭП.	
	Выбор электродвигателя для ЭП вентилятора и насоса.	
7	Проверка двигателей на нагрев прямым методом.	
	Проверка двигателей на нагрев косвенными методами.	
8	Особенности проверки двигателей на нагрев косвенными	
9	методами при различных режимах их работы.	
9	Методика расчета усилителя мощности, выполненного по схеме реверсивного тиристорного преобразователя	
10	Методика расчета транзисторного реверсивного широтно-	
	импульсного преобразователя для ЭП постоянного тока.	
11	Методика выбора датчиков тока и напряжения для	
	замкнутых систем ЭП.	
12	Методика выбора датчиков скорости и положения для	
	замкнутых систем ЭП.	
13	Методика расчета регулятора тока в замкнутой системе	
	подчиненного регулирования.	
14	Методика расчета регулятора скорости в замкнутой системе подчиненного регулирования.	
15	Методика статического расчета замкнутой системы ЭП	
13	постоянного тока с отрицательной обратной связью по	
	напряжению якоря (ООСН),	
16	Методика статического расчета замкнутой системы ЭП	
10	постоянного тока с отрицательной обратной связью по	
	скорости (ООСС),	
17	Методика статического расчета замкнутой системы ЭП	
17	постоянного тока с положительной обратной связью по	
	току якоря (ПОСТ).	
18	Системы с токоограничением. Расчет параметров	
	регуляторов в системах подчиненного регулирования.	
19	Методика расчета мощности и выбор двигателя для	
	электропривода грузоподъемного механизма	
20	Методика расчета мощности и выбор двигателя для	
	электропривода тележки мостового крана	
21	Методика расчета мощности и выбор двигателя для	
	электропривода вентилятора	
22	Расчет характеристик асинхронного ЭП при фазовом	
	способе управления	
23	Расчет естественной и искусственной механических	
	характеристик разомкнутого электропривода	

24	Структурная схема системы управления асинхронного ЭП с фазовым управлением.	
25	Расчет инвертора напряжения.	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	/п Примерный перечень вопросов для тестов		
		индикатора	
1	1 mun. Задание комбинированного типа с выбором одного верного ответа из четырех предложенных и обоснованием выбора		
I	Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргумо обосновывающие выбор ответа		
1	Электродвигатель в ЭП предназначен для:	ПК-3.Д.2	
	а. преобразования механической энергии в электрическую		
	b. изменения параметров электрической энергии		
	с. преобразования электрической энергии в механическую		
	d. повышения коэффициента мощности линий электропередачи		
2	Величина определяемая, как отношение разности моментов,	ПК-3.Д.2	
	развиваемых электродвигателем, к соответствующей разности		
	угловых скоростей называется		
	а. твёрдость механической характеристики		
	 прочность механической характеристики 		
	с. мягкость механической характеристики		
	d. жёсткость механической характеристики		
2	тип. Задание комбинированного типа с выбором нескольких вариантов от из предложенных и развернутым обоснованием выбора	вета	
I	Инструкция: Прочитайте текст, выберите правильные варианты ответа и запишите аргументы, обосновывающие выбор ответов		
3	Укажите способы регулирования скорости вращения двигателя	ПК-3.Д.2	
	постоянного тока:		
	а. изменение числа пар полюсов		
	 изменение величины питающего напряжения 		
	с. изменение величины скольжения		
	d. изменение величины магнитного поля		
	е. введение добавочных сопротивлений		
	f. изменение частоты питающего напряжения		
4	Укажите способы регулирования скорости вращения асинхронного	ПК-3.Д.2	

	двигателя:			
	о ирмономно иново нов новносов			
	а. изменение числа пар полюсовb. изменение величины питающего напряжения			
	с. изменение величины питающего напряжения			
	d. изменение величины магнитного поля			
	е. введение добавочных сопротивлений			
	f. изменение частоты питающего напряжения			
	3 тип. Задание закрытого типа на установление соответствия			
	Инструкция: Прочитайте текст и установите соответствие. К каждой позиции левом столбце, подберите соответствующую позицию в право			
5	Соотнесите замкнутый контур системы подчиненного			
	регулирования с временем переходного процесса при настройке			
	системы на технический оптимум. T_1 – некомпенсируемая			
	постоянная времени:			
	Контур: Варианты:			
	 а. замкнутый токовый контур b. замкнутый контур по положению 2. 4,7 T₁ 			
	с. замкнутый скоростной контур 3. 7,6 T ₁			
	с. замкнутый скоростной контур 3. 7,0 T ₁			
	4 тип. Задание закрытого типа на установление последовательности			
	Инструкция: Прочитайте текст и установите последовательность. Запишите соответствующую последовательность букв слева н запятую	аправо через		
6	Определите последовательность этапов проектирования замкнутой системы электропривода:			
	а. выбор основных элементов проектируемой системы b. поверочный расчет			
	с. определение исходных данных для расчета			
	d. построение структурной схемы системы и определение			
	динамических характеристик выбранных элементов			
	неизменяемой части ЭП			
	е. реализация регуляторов и построение полной схемы			
	следящей системы			
	f. синтез динамических характеристик следящей системы			
	5 тип. Задание открытого типа с развернутым ответом			
	Инструкция: Прочитайте текст и запишите развернутый обоснованный ответ или напишите пропущенное слово/словосочетание			
7	Определите время переходного процесса, за которое скорость $\Im\Pi$ изменится от $\Omega_{\text{нач}}=50$ рад/с до $\Omega_{\text{кон}}=100$ рад/с при следующих исходных данных: - момент, развиваемый электродвигателем $M=150$ Hm; - момент сопротивления нагрузки $Mc=100$ Hm; - динамический момент $\Im\Pi J=2$ кг*м².	ПК-3.Д.2		
	В качестве ответа введите целое число.			
8	Зависимость изменения скорости на интервале времени, равному	ПК-3.Д.2		
	publicity			

одному	рабочему	циклу	электропривода	называется	
	·				

Примечание: СИСТЕМА ОЦЕНИВАНИЯ ТЕСТОВЫХ ЗАДАНИЙ.

1-й тип. Задание комбинированного типа с выбором одного верного ответа из четырех предложенных и обоснованием выбора считается верным, если правильно указана цифра и приведены конкретные аргументы, используемые при выборе ответа.

Полное совпадение с верным ответом – 1 балл.

Неверный ответ или его отсутствие – 0 баллов.

2-й тип. Задание комбинированного типа с выбором нескольких вариантов ответа из предложенных и развернутым обоснованием выбора считается верным, если правильно указаны цифры и приведены конкретные аргументы, используемые при выборе ответов.

Полное совпадение с верным ответом – 1 балл.

Если допущены ошибки или ответ отсутствует – 0 баллов.

3-й тип. Задание закрытого типа на установление соответствия считается верным, если установлены все соответствия (позиции из одного столбца верно сопоставлены с позициями другого столбца).

Полное совпадение с верным ответом – 1 балл.

Неверный ответ или его отсутствие – 0 баллов.

4-й тип. Задание закрытого типа на установление последовательности считается верным, если правильно указана вся последовательность цифр.

Полное совпадение с верным ответом – 1 балл.

Если допущены ошибки или ответ отсутствует – 0 баллов.

5-й тип. Задание открытого типа с развернутым ответом считается верным, если ответ совпадает с эталонным по содержанию и полноте.

Правильный ответ за задание оценивается в 3 балла.

Если допущена одна ошибка\неточность\ответ правильный, но не полный -1 балл.

Если допущено более 1 ошибки $\$ ответ неправильный $\$ ответ отсутствует – 0 баллов.

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ	
	Не предусмотрено	

- 10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.
 - 11. Методические указания для обучающихся по освоению дисциплины
- 11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала – логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую,

организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

Лекционный материал в полном объеме излагается в лекционной аудитории согласно расписанию. Для более полного и глубокого ознакомления студентов с материалами лекции, ее электронная версия размещается в Личном кабинете в разделе «Материалы».

11.2. Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

- 1. Все студенты должны быть ознакомлены с темами практических занятий, приведенными в таблице 5.
- 2. Практические занятия целесообразно проводить по темам, предварительно изученными студентами на лекциях или самостоятельно.
 - 3. В начале каждого практического занятия необходимо провести тестовый

контроль подготовки студентов к этому занятию, воспользовавшись вопросами тестового контроля, приведенными в таблице 18.

- 4. С целью повышения эффективности практических занятий необходимо изучение каждой темы сопровождать решением задач. Темы практических занятий приведены в таблице 5.
- 5. При проведении практических занятий необходимо обращать внимание студентов на методики расчета электрических приводов, а при решении студентами практических задач необходимо акцентировать внимание на ошибки, допускаемые студентами, предлагать им найти более оптимальный путь решения задачи и т.п.
- 11.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся являются:

- учебно-методический материал по дисциплине.
- 11.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Проведение текущего контроля успеваемости осуществляется с помощью тестов, приведенных в таблице 18. Оценивание текущего контроля успеваемости оценивается по системе зачет/ не зачет. Положительный результат текущего контроля успеваемости дает студенту дополнительный балл при проведении промежуточной аттестации.

11.5. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— дифференцированный зачет — это форма оценки знаний, полученных обучающимся при изучении дисциплины, при выполнении курсовых проектов, курсовых работ, научно-исследовательских работ и прохождении практик с аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Промежуточная аттестация оценивается по результатам текущего контроля успеваемости. В случае, если студент по уважительной причине не выполнил требования текущего контроля, ему предоставляется возможность сдать задолженности по пропущенным темам. Форма проведения промежуточной аттестации – письменная.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой