МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 32

УТВЕРЖДАЮ

Руководитель образовательной программы

доц.,к.т.н.,доц.

(должность, уч. степень, звание)

О.Я. Солёная

(подпясь) «17» февраля 2025 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Тепловые процессы в электрических машинах» (Наименование дисциплины)

Код направления подготовки/ специальности	13.03.02
Наименование направления подготовки/ специальности	Электроэнергетика и электротехника
Наименование направленности	Цифровая энергетика
Форма обучения	очная
Год приема	2025

Лист согласования рабочей программы дисциплины

Программу составил (а)		
доц., к.т.н.	190	И.Н. Железняк
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Программа одобрена на заседа	нии кафедры № 32	
«17» февраля 2025 г, протокол	№ 5	
Заведующий кафедрой № 32	Pen	
к.т.н.,доц.	Cu	С.В. Солёный
(уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Заместитель директора инстит	ута №3 по методической р	аботе
Ст. преп.	$\langle - \rangle$	И.В. Решетникова
(должность, уч. степень, звание)	(подпись дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Тепловые процессы в электрических машинах» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки 13.03.02 «Электроэнергетика и электротехника» направленности «Цифровая энергетика». Дисциплина реализуется кафедрой «№32».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-3 «Способен принимать участие в проектировании объектов профессиональной деятельности в соответствии с техническим заданием и нормативно-технической документацией»

Содержание дисциплины охватывает круг вопросов, связанных с электромагнитными и электромеханическими процессами, проходящими внутри электромеханических преобразователей энергии переменного и постоянного тока.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме дифференцированного зачета.

Общая трудоемкость освоения дисциплины составляет 2 зачетных единицы, 72 часа.

Язык обучения по дисциплине «русский».

- 1. Перечень планируемых результатов обучения по дисциплине
- 1.1. Цели преподавания дисциплины

Целью преподавания дисциплины является:

Получение студентами:

- теоретических знаний в области аналитической теории теплопроводности как науке об энергетическом обмене и температурном (стационарном и нестационарном) поле произвольного объекта с внутренними источниками тепла и системой конвективных стоков;
- прикладных знаний в отношении строгой постановки задачи теплообмена в активной зоне электрических машин, а также структуры и реализации инженерных методов тепловых расчетов машин различных видов;
- практических умений в отношении анализа тепловых процессов (стационарных и нестационарных), протекающих в активных частях при типичных эксплуатационных режимах работы электрической машины; первоначальные навыки по выбору подходящей системы охлаждения активных частей при заданном уровне электромагнитных нагрузок.

Формирование у студентов умений и навыков расчетных и лабораторных исследований основных тепловых характеристик электрических машин.

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Профессиональные компетенции	ПК-3 Способен принимать участие в проектировании объектов профессиональной деятельности в соответствии с техническим заданием и нормативнотехнической документацией	ПК-3.Д.4 осуществляет контроль соответствия разрабатываемых проектов и технической документации стандартам, техническим условиям и другим нормативным документам ПК-3.Д.6 определяет параметры элементов объектов профессиональной деятельности в различных режимах работы

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Математика. Теория вероятностей и математическая статистика»,
- «Математика. Математический анализ»,
- «Электротехника»,
- «Теоретическая механика»;
- «Физика».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- «Электрический привод».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам №7
1	2	3
Общая трудоемкость дисциплины, 3E/ (час)	2/72	2/ 72
Из них часов практической подготовки	17	17
Аудиторные занятия, всего час.	34	34
в том числе:		
лекции (Л), (час)	17	17
практические/семинарские занятия (ПЗ), (час)	17	17
лабораторные работы (ЛР), (час)		
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)		
Самостоятельная работа, всего (час)	38	38
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Дифф. Зач.	Дифф. Зач.

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

таолица 3 – Разделы, темы дисциплины, их трудоемкость					
Разделы, темы дисциплины	Лекции	П3 (С3)	ЛР	КП	CPC
таздолы, томы длоциили	(час)	(час)	(час)	(час)	(час)
Сем	естр 7				
Раздел 1. Введение в курс. Общие сведение о	1				2
тепловых процессах в электрических машинах	1				<i>L</i>
Раздел 2. Температурное поле	2	2			4
Раздел 3. Условия однозначности при решении	2				4
уравнения теплопроводности					7
Раздел 4. Подобие тепловых процессов	2	2			4
Раздел 5. Конвективный теплообмен	2	2			4
Раздел 6. Движение охлаждающих сред в каналах	2	2			4
электрических машин	<i>L</i>	2			4
Раздел 7. Математические модели стационарных	2	3			5
температурных полей электрических машин		3			3
Раздел 8. Тепловой расчет электрической машины в	2	3			5
стационарном режиме.	2	3			<i>J</i>
Раздел 9. Теплообменники. Нестационарные	2	3			6
тепловые процессы.	2	3			U
Итого в семестре:	17	17			38

Итого	17	17	0	0	38
-------	----	----	---	---	----

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий.

Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

	4 – Содержание разделов и тем лекционного цикла					
Номер раздела	Название и содержание разделов и тем лекционных занятий					
1.	Введение в курс.					
	Общие сведение о тепловых процессах в электрических машинах.					
	Тепловые процессы и жизнеспособность электрической машины. Учет тепловых требований при проектировании. Эволюция систем охлаждения - от естественной до криогенной. Количественные характеристики эффективности и экономичности системы охлаждения. Место расчета и опыта в исследовании теплового состояния электрической машины. Термические ограничения при работе электрической машины. Термохимическое и термофизическое перерождение изоляционных материалов. Правило Монтзингера. Нормирование предельных температур. Энергетический обмен в активном объеме					
	электрической машины. Виды теплообмена. Теплоносители.					
2.	Температурное поле					
	Распространение тепла в вещественной среде. Поле температуры. Закон Фурье. Теплопроводность. Дифференциальное уравнение теплопроводности иего физический смысл.					
3.	Условия однозначности при решении уравнения теплопроводности					
	Условия однозначности. Классификация. Виды граничных условий.					
4.	Подобие тепловых процессов Определение подобия. Условия подобия физических процессов. Критерии подобия. Подобие процессов теплообмена в электрических машинах. Физическое моделирование.					
5.	Конвективный теплообмен					
	Конвективный теплообмен. Коэффициент теплоотдачи при свободной и вынужденной конвекции различных сред					
6.	Движение охлаждающих сред в каналах электрических машин					
	Природа сопротивления движущейся среды. Потери давления, обусловленные трением в пограничном слое. Потери давления при местных возмущениях потока. Нагнетательные элементы. Вентиляционная сеть электрической					

	машины. Гидравлический расчет систем с протяженными каналами.					
7.	Математические модели стационарных температурных полей электрических					
	машин					
	Принципы математического моделирования температурного поля в активных					
	частях электрических машин. Понятие элементарной расчетной области.					
	Независимые и термически связанные области. Сосредоточенные и					
	распределенные источники тепла. Плоская задача для анизотропной области с					
	внутренним источником тепла. Плоская сопряженная задача. Внутренняя и					
	внешняя задача теплообмена. Понятие термического сопротивления.					
	Элементарные одномерные модели. Термические связи элементов конструкции					
	в стационарном режиме.					
8.	Тепловой расчет электрической машины в стационарном режиме					
	Упрощающие предпосылки при постановке задачи практического теплового					
	расчета. Основные составляющие превышения температуры активного элемента.					
	Универсальная одномерная модель. Температурный перепад в активном и					
	пассивном слое. Геометрические идеализации. Тепловая нагрузка и					
	температурный перепад на охлаждаемой поверхности. Подогрев среды в канале.					
	Расширенное понятие термического сопротивления. Метод эквивалентных схем.					
	Учет продольной теплопроводности в одномерных активных элементах					
	различной протяженности. Протяженный канал с переменной тепловой					
	нагрузкой. Пример теплового расчета статора с косвенным охлаждением					
	обмотки методом эквивалентных схем. Тепловой расчет обмотки с					
	непосредственным охлаждением.					
9.	Теплообменники. Нестационарные тепловые процессы.					
	теплоооменники. пестационарные тепловые процессы.					
	Классическая теория нагрева однородного тела. Показатель термической					
	инерции (постоянная времени нагрева). Двухемкостные модели. Типовые задачи					
	нестационарной теплопроводности в активных элементах электрических машин					
	в одномерной постановке. Границы допустимых экспресс-оценок показателей					
	термической инерции. Нестационарные тепловые процессы в замкнутых					
	контурах циркуляции теплоносителей.					

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

	<u>'</u>	summin in the repairmen			
				Из них	$N_{\underline{0}}$
No	Темы практических	Формы практических	Трудоемкость,	практической	раздела
п/п	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
	Семестр 7				
1	Анализ	Расчетно-	2	2	2
	температурного	графическое задание			
	поля				

2	Расчет тепловых	Расчетно-	2	2	4
	процессов	графическое задание			
3	Конвективный	Расчетно-	2	2	5
	теплообмен	графическое задание			
4	Движение	Расчетно-	2	2	6
	охлаждающих сред	графическое задание			
	в каналах				
	электрических				
	машин				
5	Математические	Расчетно-	3	3	7
	модели	графическое задание			
	стационарных				
	температурных				
	полей				
	электрических				
	машин				
6	Тепловой расчет	Расчетно-	3	3	8
	электрической	графическое задание			
	машины в				
	стационарном				
	режиме.				
7	Нестационарные	Расчетно-	3	3	9
	тепловые процессы.	графическое задание			
	Bcer	0	17		

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	$N_{\underline{0}}$		
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	раздела		
Π/Π	паименование лаоораторных раоот	(час)	подготовки,	дисцип		
			(час)	лины		
	Учебным планом не предусмотрено					
	Всего					

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 7,
Вид самостоятсявной расоты	час	час
1	2	3
Изучение теоретического материала дисциплины (TO)	25	25
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		

Подготовка к текущему контролю успеваемости (ТКУ)	9	9
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной аттестации (ПА)	20	20
Всего:	38	38

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8– Перечень печатных и электронных учебных изданий

1аолица о- перечень печатных и электронных учесных издании		
Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)
	Филиппов И.Ф. Теплообмен в	
	электрических машинах — Л.	
	Энергоатомиздат, 1986	
	Михеев М.А., Михеева М.И. «Основы	
	теплопередачи», М., «Энергия», 1977 г.	
	Гуревич Э.И. «Тепловые испытания и	
	исследования электрических машин», Л.,	
	«Энергия», 1977 г.	
621.314 Э	Мартынов А.А., Тимофеев С.С., Машины	60
45	постоянного тока: учебное пособие СПб.:	
	ГУАП, 2016	
621.313	Вольдек А.И. Электрические машины,	8
B71	СПб: Питер 2007, 319 с.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 — Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование
https://lib.guap.ru/jirbis2/index.php	Электронная библиотека ГУАП
https://driveconstructor.com/applications/wind	Электронный ресурс моделирования работы
	аппаратов

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п		Наименование
	Не предусмотрено	

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	21-21
2	Мультимедийная лекционная аудитория	31-04
4	Специализированная лаборатория	31-05

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Дифференцированный зачёт	Список вопросов;
	Тесты

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

<u> </u>	1 21 1 1
Оценка компетенции	Vanatetantatura ahan araanatuu N. Karatatatuu
5-балльная шкала	Характеристика сформированных компетенции

Оценка компетенции	Vanayetanyayaya ahanyayanayaya ya waxayayaya
5-балльная шкала	Характеристика сформированных компетенций
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий.
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий.
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий.
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений.

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
	Учебным планом не предусмотрено	

Вопросы для дифф. зачета представлены в таблице 16. Таблица 16 – Вопросы для дифф. зачета

№ п/п	Перечень вопросов для дифф. зачета	Код индикатора
11/11	Асинхронная машина при неподвижном роторе под нагрузкой.	ПК-3.Д.4
	Э.Д.С. и токи ротора АМ при вращающемся роторе.	
	Энергетическая диаграмма асинхронного двигателя.	
	Схемы замещения асинхронной машины.	
	Выражения для момента асинхронной машины.	
	Механическая характеристика асинхронной машины.	
	Обоснование круговой диаграммы асинхронной машины.	

Определение основных величин, характеризующих ас	синхронный
двигатель, по круговой диаграмме.	
Рабочие характеристики асинхронного двигателя.	
Устойчивость работы АД. Способы пуска асинхронного дв	вигателя. ПК-3.Д.6
Асинхронные двигатели с повышенными значениями	пускового
момента.	
Регулирование частоты вращения асинхронных двигателей	í.
Намагничивающая сила концентрической и распределенно	ой обмоток.
Общие выражения для э.д.с. и н.с. однофазной обмотки.	
Образование вращающегося магнитного поля в тре	ехфазной и
двухфазной машинах.	_
Принцип работы и устройство асинхронной машины.	
Асинхронная машина при неподвижном роторе в режиме х	солостого
хода	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 — Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

No	Іримерицій перецеці ропросор пла тестор					
п/п	примерный перечень вопросов для тестов	индикатора				
	1 тип. Задание комбинированного типа с выбором одного верного ответа					
	из четырех предложенных и обоснованием выбора					
	Инструкция: Прочитайте текст, выберите правильный ответ и запишите					
	аргументы, обосновывающие выбор ответа	C				
аргументы, ооосновывающие выоор ответа						
	Какой из следующих факторов наиболее существенно влияет на	ПК-3				
	тепловые процессы в электрических машинах?					
	а) Тип используемого изоляционного материала					
	b) Длина проводников в цепи					
	с) Частота переменного тока					
	d) Уровень окружающей температуры					
2 тип. Задание комбинированного типа с выбором нескольких вариантов ответа						
	из предложенных и развернутым обоснованием выбора					
Инструкция: Прочитайте текст, выберите правильные варианты ответа и						
запишите аргументы, обосновывающие выбор ответов						
	Какие из следующих условий являются необходимыми для	ПК-3				
	однозначности решения уравнения теплопроводности?	THC 5				
	а) Условие начальной температуры в каждой точке области					
	b) Условие о температуре на границе области					
	с) Условие о постоянной теплопроводности материала					
	d) Условие о постоянной плотности материала					
	a) v estobile o noctominon istornoctii matephana					

3 тип. Задание закрытого типа на установление соответствия

Инструкция: Прочитайте текст и установите соответствие. К каждой позиции, данной в левом столбце, подберите соответствующую позицию в правом столбце

Установите соответствие

ПК-3

Понятия:

- 1. Конвекция
- 2. Принудительная конвекция
- 3. Естественная конвекция
- 4. Теплопередача

Определения:

- а) Процесс передачи тепла между твердыми телами
- b) Перенос тепла за счет движения жидкости или газа
- с) Конвекция, вызванная внешними факторами, такими как вентиляторы или насосы
- d) Конвекция, возникающая из-за разницы температур и плотности в среде

4 тип. Задание закрытого типа на установление последовательности

Инструкция: Прочитайте текст и установите последовательность.

Запишите соответствующую последовательность букв слева направо

Установите последовательность

ПК-3

Этапы теплового расчета электрической машины в стационарном режиме:

- а) Определение тепловых потерь в машине
- b) Выбор материала для теплоотводящих элементов
- с) Расчет температурного поля внутри машины
- d) Анализ эффективности системы охлаждения
- е) Оценка предельных температур для различных узлов

5 тип. Задание открытого типа с развернутым ответом

Инструкция: Прочитайте текст и запишите развернутый обоснованный ответ или напишите пропущенное слово/словосочетание

<u>Какие факторы влияют на скорость изменения температуры в</u> нестационарных тепловых процессах, и как их можно количественно оценить?

ПК-3

Примечание:

Задание 1 типа с выбором одного верного ответа из четырех предложенных и обоснованием выбора:

Полное совпадение с верным ответом – 1 балл.

Неверный ответ или его отсутствие -0 баллов.

Задание 2 типа с выбором нескольких вариантов ответа из предложенных и развернутым обоснованием выбора:

Полное совпадение с верным ответом 1 балл.

Отсутствие минимум одного правильно ответа или полное отсутствует ответа -0 баллов.

Задание 3 типа на установление соответствия:

Полное совпадение с верным ответом - 1 балл.

Неверное сопоставление ответов или отсутствие ответа – 0 баллов.

Задание 4 типа на установление последовательности:

Полное правильное совпадение очередности ответов - 1 баллом

Нарушение правильного порядка ответов или отсутствие ответа $-\,0\,$ баллов.

Задание 5 типа с развернутым ответом:

Правильный ответ за задание оценивается - 3 балла.

Если допущена одна ошибка \ неточность \ ответ правильный, но не полный - 1 балл.

Если допущено более 1 ошибки \setminus ответ неправильный \setminus ответ отсутствует - 0 баллов.

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ
	Не предусмотрено

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;

- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- <u>Введение в курс. Общие сведение о тепловых процессах в электрических</u> машинах;
- Температурное поле;
- Условия однозначности при решении уравнения теплопроводности;
- Подобие тепловых процессов;
- Конвективный теплообмен;
- Движение охлаждающих сред в каналах электрических машин;
- <u>Математические модели стационарных температурных полей электрических</u> машин;
- Тепловой расчет электрической машины в стационарном режиме;
- Теплообменники;
- Нестационарные тепловые процессы.
- 11.2. Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

На практических занятиях предусматривается проведение расчетов по тематикам дисциплины, обсуждение вариантов решения рассматриваемой проблемы и задачи, оценка рациональности использования выбранного решения.

11.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся, являются:

- учебно-методический материал по дисциплине.
- 11.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Оценивание текущего контроля успеваемости оценивается по системе зачет/ не зачет. Положительный результат текущего контроля успеваемости дает студенту дополнительный балл при проведении промежуточной аттестации.

11.5. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

– дифференцированный зачет – это форма оценки знаний, полученных обучающимся при изучении дисциплины, при выполнении курсовых проектов, курсовых работ, научно-исследовательских работ и прохождении практик с аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Промежуточная аттестация оценивается по результатам текущего контроля успеваемости. В случае, если студент по уважительной причине не выполнил требования текущего контроля, ему предоставляется возможность сдать задолженности по пропущенным темам. Форма проведения промежуточной аттестации — письменная.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой