МИНИСТЕРСТВО НАУКИ И В ЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автоном ное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВ ЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 13

УТВ ЕРЖДАЮ

Руководитель программы

Зав.каф., к.т.н., доц.

(должность уч статань звание)

Н.А. Овчинникова

(инициаты, файили

(ID THICK)

«18» ___02__ 2025 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Анализ, синтез и структурное моделирование авиационных и космических систем» (Наклонованиедиациплины)

Код научной специальности	2.5.13.
Наименование научной специальности	Проектирование, конструкция, производство, испытания и эксплуатация летательных аппаратов
Наименование направленности (профиля) (при наличии)	
Год начала реализации программы	2025

Санкт-Петербург – 2025

Лист согласования рабочей программы дисциплины

Программу составил (а)	ARAD,	
Зав. каф.,к.т.н., доц	CHARL-	Н.А. Овчинникова
(должность уч степень звание)	(нолучев дата)	(инициалы, фамилия)
Программа одобрена на заседа	нии кафедры № 13	
«18»02 2025 г, протоко.	л № _7_	
Заведующий кафедрой № 13	24/1/1	
к.т.н доц	11/1/	Н.А. Овчинникова
(уч степень, звание)	(подни св. дата)	(инициалы, фамилия)
Ответственный за программу 2	513 2060	
	GIVU	
Зав. каф.,к.т.н., доц	Comment	Н.А. Овчинникова
(должность, уч. степень, звание)	(подпусь дата)	(инициалы, фамилия)
Заместитель директора институ	ла №1 по методической ра	боте
доц.,к.т.н.	(Staf	В.Е. Таратун
(должность, уч степень, звание)	(полинсь дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Анализ, синтез и структурное моделирование авиационных и космических систем» входит в состав программы подготовки научных и научно-педагогических кадров в аспирантуре по научной специальности 2.5.13. «Проектирование, конструкция, производство, испытания и эксплуатация летательных аппаратов». Дисциплина реализуется кафедрой «№13».

Содержание дисциплины охватывает круг вопросов, связанных с разработкой вычислительных моделей движения ЛА, математических моделей элементов авиационных и космических систем, преобразованием и анализом их динамических свойств, управляемости и наблюдаемости, математическим описанием внешних воздействий, ознакомление с аппаратом современного структурного проектирования, анализа и синтеза аэрокосмических систем ознакомление с принципами системного подхода, декомпозиции и координации.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа аспиранта и соискателя, консультации.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 часа.

Язык обучения по дисциплине «русский »

- 1. Перечень планируемых результатов обучения по дисциплине
- 1.1. Цели преподавания дисциплины

Содержание дисциплины охватывает круг вопросов, связанных с разработкой вычислительных моделей движения ЛА, математических моделей элементов авиационных и космических систем, преобразованием и анализом их динамических свойств, управляемости и наблюдаемости, математическим описанием внешних воздействий, ознакомление с аппаратом современного структурного проектирования, анализа и синтеза аэрокосмических систем, ознакомление с принципами системного подхода, декомпозиции и координации.

- 1.2. Дисциплина входит в состав программы подготовки научных и научно-педагогических кадров в аспирантуре.
 - 1.3. В результате изучения дисциплины аспирант должен:

знать:

- методы моделирования систем, структурного, параметрического синтеза и оценивания моделей, принципы формирования отчета (протокола) эксперименты;
- стандарты конструкторской, технологической и эксплуатационной документации; системы автоматизированного проектирования ЛА и САПР технолога
- особенности критического анализа и оценки современных научных достижений, генерирования новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях.

Уметь:

- создавать модели системы, обрабатывать и интерпретировать экспериментальные данные с формулировкой выводов и оформлением доказательной документации;
- принимать обоснованные схемотехнические, проектно-конструкторские и технологические решения ля выбора состава, оптимальных параметров и организации процессов жизненного цикла ЛА, а также связи этих процессов со свойствами изделий, технико-экономическими и организационными характеристиками их производства
- критически анализировать и оценивать современные научные достижения, генерировать новые идеи при решении исследовательских и практических задач, в том числе в междисциплинарных областях.

Владеть:

- навыками планирования и проведения эксперимента
- навыками проектирования ЛА и систем, построения моделей надежности и безопасности ЛА, выбора методов технической эксплуатации и формирования программ технического обслуживания ЛА.

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «История и философия»,
- «Организация диссертационных исследований»,
- «Моделирование технологических процессов производства и эксплуатации авиационной и ракетно-космической техники »

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- «Применение вариационных исчислений в научных исследованиях».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 1.

Таблица 1 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам №7
1	2	3
Общая трудоемкость дисциплины, 3E/ (час)	4/ 144	4/ 144
Из них часов практической подготовки, (час)		
Аудиторные занятия, всего час.	30	30
в том числе:		
лекции (Л), (час)	20	20
практические/семинарские занятия (ПЗ), (час)	10	10
экзамен, (час)	36	36
Самостоятельная работа, всего (час)	78	78
Вид промежуточной аттестации: зачет, дифф. Зачет, экзамен (Зачет, Дифф. Зач, Экз.**)	Экз.**	Экз.**

Примечание: ** кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 2.

Таблица 2 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции (час)	ПЗ (СЗ) (час)	СРС (час)
Семестр 7			
Раздел 1. Вводный раздел Тема 1.1. Динамические системы и методы их математического описания. Модели авиационных и космических систем. Тема 1.2. Компьютерные средства моделирования и аналитических преобразований Тема 1.3. Общие сведения о структурном моделировании авиационных и космических систем.	4	2	15
Раздел 2. Преобразования моделей динамических систем	4	2	15
Раздел 3. Случайные процессы и стохастические системы. Моделирование стохастических авиацион6ных и космических систем.	4	2	16
Раздел 4. Методы анализа и синтеза оптимальных систем управления аэрокосмическими системами на ЭВМ.		2	16

Раздел 5. Синтез оптимальных и субоптимальных систем навигации с помощью ЭВМ. Методы, программы и примеры моделирования авиационных и космических систем управления движением и навигации.	4	2	16
Итого в семестре:	20	10	78
Итого	20	10	78

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 3.

Таблица 3 — Содержание разделов и тем лекционного цикла

Номер раздела Название и содержание разделов и тем лекционных заняти			
	Вводный раздел Тема 1.1. Динамические системы и методы их математического описания. Модели авиационных и космических систем. Типы динамических систем: системы с сосредоточенными параметрами, с распределенными параметрами, дискретные системы, методы их математического описания. Передаточные функции, Z-преобразования, описание систем в пространстве состояний.		
Раздел 1.	Тема 1.2. Компьютерные средства моделирования и аналитических преобразований Основные сведения о программах Derive, Maple, Mathcad, MATLAB, SIMULINK, COMSOL и LABVIEW. Последние тенденции их развития. Основные сведения о программах, их установка и загрузка. Методы ввода информации и редактирование выражений. Построение математических выражений. Вычисление производных, интегралов, пределов, сумм и разложение в ряды и т.д. Декларирование новых определений. Операции факторизации и сепарации выражений. Аналитическое решение нелинейных уравнений и систем уравнений. Аналитическое решение систем дифференциальных уравнений.		
	Тема 1.3. Общие сведения о структурном моделировании авиационных и космических систем Определения и свойства систем. Понятия о структурном моделировании и системном подходе. Выделение системы из среды, определение системы. Системы и закономерности их функционирования и развития. Управляемость, достижимость, устойчивость. Свойства системы: целостность и членимость, связность, структура, организация, интегрированные качества. Классификация систем. Естественные, концептуальные и искусственные, простые и сложные, целенаправленные, целеполагающие, активные и пассивные, стабильные и развивающиеся системы.		
Раздел 2.	Преобразования моделей динамических систем		

	Примеры преобразований авиационных и космических систем.		
	Особенности моделирования самолетов, вертолетов, разных типов		
	ракет и космических транспортных систем с учетом упругости и		
	аэросервоупругости, колебания топлива в баках и т.д.		
	Моделирование стохастических авиационных и		
	космических систем		
	Случайные процессы и стохастические системы. Турбулентность		
Раздел 3.	атмосферы и ее моделирование и исследование влияние на		
таздел э.	движение различных ЛА. Ошибки измерения параметров		
	ориентации и навигации. Навигационные комплексы и их		
	моделирование. Фильтрация, сглаживание и прогнозирование в		
	аэрокосмических системах.		
Deproy 4	Методы анализа и синтеза оптимальных систем		
Раздел 4.	управления аэрокосмическими системами на ЭВМ.		

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 4.

Таблица 4 – Практические занятия и их трудоемкость

№ п/п	Темы практических занятий	Формы практических занятий	Трудоемкость, (час)	Из них практической подготовки,	дисцип
		Семестр 7		(час)	ЛИНЫ
1			2		1
2	Случайные процессы и стохастические системы. Моделирование стохастических систем.	Анализ стохастических систем. Вычисление вектора математического ожидания и матрицы ковариаций для нестационарных систем с помощью ЭВМ.	2		2
3	Синтез и анализ оптимальных систем управления аэрокосмическими системами на ЭВМ.	Примеры синтеза оптимальных систем управления систем стабилизации самолета и систем автоматической посадки самолета.	2		3
4	Синтез оптимальных и субоптимальных систем навигации с помощью ЭВМ.	Примеры синтеза оптимальных систем навигации при разном составе первичных навигационных средств.	2		4
5	Синтез оптимальных систем навигации и управления с помощью ЭВМ.	Моделирование оптимальной	2		5
	DCCI	<u> </u>	10		

4.4. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 5.

Таблица 5 – Виды самостоятельной работы и ее трудоемкость

1	1	
Вид самостоятельной работы	Всего,	Семестр 7,
Вид самостоятсявной рассты	час	час
1	2	3
Изучение теоретического материала	60	60
дисциплины (ТО)	00	00
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)	9	9
Подготовка к текущему контролю	0	0
успеваемости (ТКУ)	9	9
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной		
аттестации (ПА)		
Всего:	78	78

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 6-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 6. Таблица 6 – Перечень печатных и электронных учебных изданий

Количество экземпляров в Шифр/ библиотеке **URL** Библиографическая ссылка (кроме электронных адрес экземпляров) А. И. Панферов, А. В. Лопарев. Компьютерный 100 анализ и синтез систем ориентации, стабилизации и навигации. Учебное пособие. – СПб.: ГУАП, 2008. – 82 c. Guap.ru/guap/kafl2/1-4.doc А. И. Панферов, А. В. Лопарев, В. К. Пономарев. 004(075) 100 1116 Применение Mathcad в инженерных расчетах: Учеб. Пособие/ СПбГУАП. СПб, 2004, 88 с.: ил ict.edu.ru/ft/005590/panferov.pdf Л. А. Мироновский, К. Ю. Петрова. ВВЕДЕНИЕ В 100 МАТLАВ. Учеб. Пособие/ СПбГУАП, СПб., 2005. 122 с.: ил. guap.ru/guap/kaf44/trud/mironovsky_petrova_matlab.pdf Г. М. Быкова, А. И. Панферов. Основы 100 автоматизации и проектирования систем ориентации, навигации и стабилизации. Учебное пособие, Ленинград, 1982. 629.7 Исследование линейных систем ориентации, 52 Экз. $(\Gamma AA\Pi)$ навигации и стабилизации с помощью ПЭВМ [Текст]

1156	: учебное пособие / В. К. Пономарев, А. И. Панферов,	
	Л. И. Белова; С. –Петерб. Гос. Акад. Аэрокосм.	
	Приборостроения. – СПб. :Изд-во ГААП, 1993. – 51 с	
	: схем. – Библиогр. : с. 51 (5 назв.). – ISBN 5-230-	
	10297-7 : Б. ц.	
	Список литературы содержит названия на русском и	
	английском языках.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 7.

Таблица 7 – Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адр	ec	Наименование
http://matlab.exp	onenta.ru/ Е.В. Никул	пьчев Control System Toolbox

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 8.

Таблица 8 – Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 9.

Таблица 9 – Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице 11.

Таблица 11 – Состав материально-технической базы

№ π/π	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	
2	Дисплейный класс	

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 11.

Таблица 11 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств	
Экзамен**	Список вопросов к экзамену;	
	Экзаменационные билеты.	

Примечание: ** кандидатский экзамен

10.2. В качестве критериев оценки уровня освоения запланированных результатов обучения по дисциплине обучающимися применяется 4-балльная шкала оценивания, которая приведена таблице 12. В течение семестра может использоваться 100 -балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 12 – Критерии оценки уровня освоения запланированных результатов обучения по дисциплине

Оценка компетенции	Характеристика уровня освоения запланированных результатов		
5-баллыная шкала обучения по дисциплины			
«отлично» «зачтено»	 аспирант глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 		
«хорошо» «зачтено»	 аспирант твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью по направлению подготовки/специальности; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 		
- аспирант усвоил только основной программный материал по существу излагает его, опираясь на знания только ос литературы; - допускает несущественные ошибки и неточности; - испытывает затруднения в практическом применении направления; - слабо аргументирует научные положения; - затрудняется в формулировании выводов и обобщений; - частично владеет системой специализированных понятий			
«неудовлетворительно» «не зачтено»	 аспирант не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 		

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 13.

Таблица 13 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	
1	Динамические системы и методы их математического описания	
2	Примеры моделей авиационных и космических систем	
3	Типы динамических систем (передаточные функции, уравнения в пространстве состояний)	
4	Переход от одной формы математического описания динамических систем к другой. Привести примеры	
5	Основные сведения о программах Derive, Maple, Mathcad, MATLAB, SIMULINK, COMSOL и LABVIEW. Их назначение и особенности	
6	Методы ввода информации и редактирование выражений, Mathcad и MATLAB	
7	Построение математических выражений	
8	Вычисление производных, интегралов, пределов, сумм и разложение в ряды и т.д.	
9	Декларирование новых определений	
10	Операции факторизации и сепарации выражений	
11	Аналитическое решение нелинейных уравнений и систем уравнений.	
	Аналитическое решение систем дифференциальных уравнений.	
12	Понятия о структурном моделировании и системном подходе	
13	Выделение системы из среды, определение системы	
14	Системы и закономерности их функционирования и развития	
15	Управляемость, достижимость, устойчивость	
16	Свойства системы: целостность и членимость, связность, структура,	
	организация, интегрированные качества	
17	Классификация систем. Естественные, концептуальные и искусственные,	
	простые и сложные	
18	Классификация систем. Целенаправленные, целеполагающие, активные и	
	пассивные, стабильные и развивающиеся системы	
19	Примеры преобразований авиационных и космических систем	
20	Особенности моделирования самолетов, вертолетов	
21	Особенности моделирования ракет и космических транспортных систем	
22	Случайные процессы и стохастические системы	
23	Турбулентность атмосферы и ее моделирование и исследование влияния на движение различных ЛА	
24	Ошибки измерения параметров ориентации и навигации	
25	Навигационные комплексы и их моделирование	
26	Задачи фильтрации, сглаживания и прогнозирования в аэрокосмических системах	
27	Устойчивость, управляемость и маневренность	
28	Методы анализа качества систем управления аэрокосмическими системами	
29	Параметрический синтез. Косвенные методы оценки качества	
30	Методы оптимального управления. Принятие решений в условиях неопределенности	
31	Статистические модели принятия решений. Методы глобального критерия	
32	Модели и методы принятия решений при нечеткой информации	
33	Классификация игр. Матричные, кооперативные и дифференциальные игры	
34	Методы, программы и примеры моделирования авиационных и космических	
35	систем управления движением и навигация Постановка и решение задач формирования вычислительных моделей движения	
33	ЛА	
36	Формирование оптимальных по заданному критерию траекторий	
37	Методы автоматизации проектирования приборов и систем ориентации,	

стабилизации и навигации.

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 14.

Таблица 14 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 15.

Таблица 15 – Примерный перечень вопросов для тестов

	1	
№ п/п		Примерный перечень вопросов для тестов
		Учебным планом не предусмотрено

- 10.4. Методические материалы, определяющие процедуры оценивания уровня освоения запланированных результатов обучения по дисциплине, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.
 - 11. Методические указания для обучающихся по освоению дисциплины
 - 11.1. Методические указания для аспирантов по освоению лекционного материала.

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- Цели и задачи лекции;
- Краткий обзор содержания и материала предыдущей лекции;

- План текущей лекции;
- Рассмотрение материала текущей лекции;
- Демонстрация применения материала текущей лекции с использованием компьютерной техники;
 - Заключение;
- Анонс следующей лекции, постановка задачи по изучению рекомендованной литературы при подготовке к следующей лекции.

11.2. Методические указания для аспирантов по участию в семинарах (если предусмотрено учебным планом по данной дисииплине)

Основной целью для обучающегося является систематизация и обобщение знаний по изучаемой теме, разделу, формирование умения работать с дополнительными источниками информации, сопоставлять и сравнивать точки зрения, конспектировать прочитанное, высказывать свою точку зрения и т.п. В соответствии с ведущей дидактической целью содержанием семинарских занятий являются узловые, наиболее трудные для понимания и усвоения темы, разделы дисциплины. Спецификой данной формы занятий является совместная работа преподавателя и обучающегося над решением поставленной проблемы, а поиск верного ответа строится на основе чередования индивидуальной и коллективной деятельности.

При подготовке к семинарскому занятию по теме прослушанной лекции необходимо ознакомиться с планом его проведения, с литературой и научными публикациями по теме семинара.

11.3. Методические указания для аспирантов по прохождению практических занятий (если предусмотрено учебным планом по данной дисциплине)

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

11.4. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.5. Методические указания для аспирнтов по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Возможные методы текущего контроля успеваемости обучающихся:

- устный опрос на занятиях;
- систематическая проверка выполнения индивидуальных заданий;
- защита отчётов по лабораторным работам;
- проведение контрольных работ;
- тестирование;
- контроль самостоятельных работ (в письменной или устной формах);
- контроль выполнения индивидуального задания на практику;
- контроль курсового проектирования и выполнения курсовых работ;
- иные виды, определяемые преподавателем.

11.6. Методические указания для аспирантов по прохождению промежуточной аттестации.

Промежуточная аттестация аспирантов предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— экзамен — форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации аспирантов и соискателей ГУАП, обучающихся по программе высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы аспирантов и соискателей в ГУАП».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой