МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 13

УТВЕРЖДАЮ Руководитель программы

Зав.каф., к.т.н., доц.

« 18 »

(должность, уч степень, звание)

Н.А. Овчинникова 02

2025 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Моделирование технологических процессов производства и эксплуатации авиационной и ракетно-космической техники» (Наименование дисциплины)

Код научной специальности	2.5.13.
Наименование научной специальности	Проектирование, конструкция, производство, испытания и эксплуатация летательных аппаратов
Наименование направленности (профиля) (при наличии)	
Год начала реализации программы	2025

Санкт-Петербург – 2025

Лист согласования рабочей программы дисциплины

Программу составил (а)	. 11	
доц.,к.т.н., доц	Alis	А.С. Слюсаренко
(должность, уч степень, звание)	(полинсь, лата)	(инициалы, фамилия)
Программа одобрена на заседа	нии кафедры № 13	
«18»02 2025 г, протокол	n № _7_	
Заведующий кафедрой № 13	ARIO,	Ш.А. О
К.Т.Н., ДОЦ (уч. степень, звание)	(подряеь, дата)	Н.А. Овчинникова (инициалы, фамилия)
Ответственный за программу 2 Зав. каф.,к.т.н., доц (должность, уч степень, звание)	.5.13.	Н.А. Овчинникова (инициалы, фамилия)
Заместитель директора институ	та №1 по мет ол ичес кой р	аботе
доц.,к.т.н.	J44	В.Е. Таратун
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Моделирование технологических процессов производства и эксплуатации авиационной и ракетно-космической техники» входит в состав программы подготовки научных и научно-педагогических кадров в аспирантуре по научной специальности 2.5.13. «Проектирование, конструкция, производство, испытания и эксплуатация летательных аппаратов». Дисциплина реализуется кафедрой «№13».

Содержание дисциплины охватывает круг вопросов, связанных с использованием современных программных средств для моделирования технологических процессов, современные технологии сборки, испытаний и эксплуатации агрегатов и изделий ракетно-космической техники.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, самостоятельная работа.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 часа.

Язык обучения по дисциплине «русский »

- 1. Перечень планируемых результатов обучения по дисциплине
- 1.1. Цели преподавания дисциплины «Моделирование технологических процессов производства и эксплуатации авиационной и ракетно-космической техники»» является систематизирование знаний аспирантов в практическом использовании систем автоматизированного проектирования для моделирования технологических процессов и в применение современных технологий сборки, испытаний и эксплуатации агрегатов и изделий ракетно-космической техники..
- 1.2. Дисциплина входит в состав программы подготовки научных и научно-педагогических кадров в аспирантуре.
 - 1.3. В результате изучения дисциплины аспирант должен:

знать:

- конструкцию изделия авиационной и РКТ
- технические требования к КД, НД организации в части отработки КД на технологичность, по внедрению и аттестации технологических процессов.
- современные технологии сборки и испытаний агрегатов и изделий авиационной и РКТ
- нормативные и методические документы по обеспечению промышленной чистоты
- нормативные и методические документы по порядку оформления ПКД.

уметь:

- работать с программными средствами общего и специального назначения
- оформлять акты внедрения технологического процесса сборки и испытаний изделий и агрегатов РКТ
- разрабатывать и оформлять производственно-контрольную документацию (ПКД) на сборку, выполнение монтажей и проведения испытаний изделий и агрегатов авиационной и РКТ

владеть:

- отработкой конструкции изделий на технологичность с оформлением карт отработки
- расчетом потребного количества вспомогательного и расходного материала.
- моделированием технологических процессов с помощью современных систем САПР

2. Место дисциплины в структуре программы

Дисциплина может базироваться на знаниях, ранее приобретенных аспирантами при изучении следующих дисциплин:

- «Анализ, синтез и структурное моделирование авиационных и космических систем»,

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин.

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 1.

Таблица 1 – Объем и трудоемкость дисциплины

		Трудоемкость по
Вид учебной работы	Всего	семестрам
		№7
1	2	3
Общая трудоемкость дисциплины, ЗЕ/ (час)	4/ 144	4/ 144
Из них часов практической подготовки, (час)		
Аудиторные занятия, всего час.	20	20
в том числе:		
лекции (Л), (час)	20	20
практические/семинарские занятия (ПЗ), (час)		
экзамен, (час)	36	36
Самостоятельная работа (CP), всего (час)	88	88
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.	Экз.

Примечание: ***

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 2.

Таблица 2 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции (час)	П3 (С3) (час)	CPC (час)
Семестр 7			
Раздел 1. Назначение средств проектирования и моделирования технологических процессов авиационной и РКТ	4		14
Раздел 2. Классификация технических средств, участвующих в технологических процессах производства и эксплуатации авиационной и РКТ	4		14
Раздел 3. Автоматизированное моделирование технологических процессов с помощью CAE/CAD/CAM-систем	4		18
Раздел 4. Основные принципы инженерно- конструкторского моделирования технологических процессов производства авиационной и РКТ	4		14
Раздел 5. Технологические процессы с использованием трехмерных компьютерных моделей. N-мерное моделирование технологических процессов производства авиационной и РКТ	4		14
Итого в семестре:	20		88
Итого	20	0	88

Практическая подготовка заключается в непосредственном выполнении аспирантами определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 3.

Таблица 3 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий
1	Предмет и задачи дисциплины. Постановка задачи автоматизации моделирования технологических процессов
	производства авиационной и РКТ. Системный подход к
	проектированию технологических процессов. Структуризация процесса проектирования технологических
	процессов. Типизация и унификация проектных решений и
	средств проектирования технологических процессов.
	Классификация САПР.
2	Классификация технических средств автоматизации и
	управления. Технические, программно-технические и
	общесистемные средства автоматизации. Информационно-
	управляющие вычислительные комплексы.
	Автоматизированное моделирование технологических
	процессов в среде Solid Works. Конструкторско-
	технологическая документация на исполнительные
	механизмы и устройства, участвующие в технологических
	процессах производства и эксплуатации авиационной и РКТ.
3	Построение модели в среде Solid Works Процедуры анализа, моделирования, оптимизации
S	Процедуры анализа, моделирования, оптимизации проектных решений в САЕ-системах. CALS-технологии.
	Функции АСУП (ERP-систем). Функции SCADA-систем.
	Функции систем управления документами и
	документооборотом. Функциональный состав
	интегрированных САПР. Интерфейсы, языки, форматы
	межпрограммных обменов САПР. Структурный состав
	интегрированных САПР. Межпрограммный обмен между
	САПР Solid Works и AutoCad. Импорт в SolidWorks
	существующего двухмерного проекта, созданного в
	программе AutoCAD. Создание трехмерной модели на
	основе анализа данных двухмерного чертежа.
4	Единство методики моделирования технологических
	процессов. Единство структуры однотипных изделий.
	Комплексность принятия решений. Общность принятия проектных решений. Принятие типовых проектных решений.
	Многоуровневость (многостадийность) проектных решений.
	Комплексность современного производства. Инженерно-
	конструкторское моделирование в специальном
	машиностроении.
	1

	1
5	Технологические схемы сборки сложных технических
	устройств. Схемы и ступени сборки устройств технических
	систем. Последовательность операций при технологическом
	процессе сборки. Схемы сборки в соответствии с
	требованиями ЕСКД. Отработка (проверка изделия) на
	точность геометрических параметров и осуществление
	анализа характеристик изделия при изменении некоторых
	его параметров в процессе сборки. Разработка подходов к
	автоматизации проектирования технологических процессов
	сборки с применением технологий трехмерного
	моделирования. Визуально-наглядные инструкции сборки
	2D-образы. 3D-образы. Двухмерное и трехмерное
	моделирование. Анализ и обработка информации в средах N-
	мерного моделирования при проектировании
	технологических процессов. 4D, 5D, 6D проектирование.
	Средства технологий N-мерного моделирования. Диаграммы
	Ганта. Средства аддитивных технологий. Анализ
	информационного обеспечения для процессов подготовки
	изделий сложных технических систем. Роль технологий N-
	мерного моделирования в организации технологических
	процессов и управлении ими.

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 4.

Таблица 4 – Практические занятия и их трудоемкость

				Из них	$N_{\underline{0}}$	
$N_{\underline{0}}$	Темы практических	Формы практических	Трудоемкость,	практической	раздела	
Π/Π	занятий	занятий	(час)	подготовки,	дисцип	
				(час)	ЛИНЫ	
	Учебным планом не предусмотрено					
Всего						

4.4. Самостоятельная работа аспирантов

Виды самостоятельной работы и ее трудоемкость приведены в таблице 5.

Таблица 5 – Виды самостоятельной работы и ее трудоемкость

<u>1</u>	1	
Вид самостоятельной работы	Всего,	Семестр 7,
Вид самостоятельной расоты	час	час
1	2	3
Изучение теоретического материала дисциплины (TO)	70	70
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю успеваемости (ТКУ)	10	10
Домашнее задание (ДЗ)		
Подготовка к промежуточной аттестации (программы аспирантуры)	8	8
Всего:	88	88

5. Перечень учебно-методического обеспечения для самостоятельной работы аспирантов по дисциплине Учебно-методические материалы для самостоятельной работы аспирантов указаны в п.п. 6-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 6. Таблица 6— Перечень печатных и электронных учебных изданий

Таолица о	перечень печатных и электронных учесных из	Количество экземпляров в
Шифр/	Библиографическая ссылка	библиотеке
URL адрес	внознографи теская севыка	(кроме электронных экземпляров)
	Технические средства автоматизации и	
	управления: Учебное пособие / О.В.	
	Шишов М.: ИНФРА-М, 2012 397 с.:	
	60x90 1/16 + CD-ROM (Высшее	
	образование). (переплет, cd rom) ISBN 978-	
	5-16-005130-7	
	Современные технологии и технические	
	средства информатизации: Учебник / О.В.	
	Шишов М.: НИЦ Инфра-М, 2012 462	
	с.: 60х90 1/16 (Высшее образование).	
	(переплет) ISBN 978-5-16-005369-1	
	Аверченков В. И., Казаков Ю. М.,	
	Автоматизация проектирования	
	технологических процессов: учебное	
	пособие для вузов "Флинта", 2011 ISBN	
	978-5-9765-1265-8	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 7.

Таблица 7 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование	
http://e.lanbook.com	Электронно-библиотечная система издательства «Лань»	
http://www.rucont.ru/	.rucont.ru/ Национальный цифровой ресурс Руконт - межотраслевая	
	электронная библиотека (ЭБС)	

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 8.

Таблица 8 – Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 9.

Таблица 9- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице 10.

Таблица 10 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	
2	Мультимедийная лекционная аудитория	

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средств для проведения промежуточной аттестации аспирантов по дисциплине приведен в таблице 11.

Таблица 11 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств	
Экзамен	Список вопросов к экзамену;	
	Экзаменационные билеты;	
	Задачи;	
	Тесты.	

10.2. В качестве критериев оценки уровня освоения аспирантами дисциплины применяется 4-балльная шкала оценивания, которая приведена таблице 12. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 12 – Критерии оценки уровня освоения дисциплины

Оценка	Vanatetanuatura vaanua aanaavua uuavuutuuu			
4-балльная шкала	Характеристика уровня освоения дисциплины			
«отлично» «зачтено»	 аспирант глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью по направлению подготовки/ специальности; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 			
«хорошо» «зачтено»	 аспирант твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью по направлению подготовки/ специальности; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 			
«удовлетворительно» «зачтено»	 аспирант усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний по направлению подготовки/ специальности; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 			
«неудовлетворительно» «не зачтено»	 аспирант не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении подготовки/ специальности; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 			

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 13.

Таблица 13 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	
1	Постановка задачи автоматизации моделирования технологических процессов	
	производства и эксплуатации авиационной и РКТ.	
2	Системный подход к моделированию технологических процессов производства	
	и эксплуатации авиационной и РКТ	
3	Структуризация процесса моделирования технологических процессов	
	производства и эксплуатации авиационной и РКТ.	
4	Типизация и унификация проектных решений и средств моделирования	
	технологических процессов производства и эксплуатации авиационной и РКТ.	
5	Классификация технических средств автоматизации и управления,	
	участвующих в технологических процессах производства и эксплуатации	
	авиационной и РКТ.	
6	Автоматизированное проектирование исполнительных механизмов и устройств	
	технологических процессов в среде Solid Works	
7	Процедуры анализа, моделирования, оптимизации проектных решений в САЕ-	
	системах	
8	Функциональный состав интегрированных САПР. Интерфейсы, языки, форматы	
	межпрограммных обменов САПР. Структурный состав интегрированных САПР	
9	Единство методики моделирования технологических процессов производства и	
	эксплуатации авиационной и РКТ Единство структуры однотипных изделий	
10	Комплекс государственных стандартов, устанавливающих порядок разработки,	
	оформления и обращения конструкторской документации. Распределение	
	стандартов ЕСКД по классификационным группам (ГОСТ)	
11	Классификация конструкторских документов. Стадии разработки	
	конструкторской документации	
12	Методика моделирования технологических процессов механической обработки	
	деталей	
13	Основные этапы моделирования технологических процессов механической	
	обработки деталей	
14	Анализ и обработка информации в средах N-мерного моделирования при	
	проектировании технологических процессов. 4D, 5D, 6D проектирование	
15	Средства аддитивных технологий	
16	Анализ информационного обеспечения для процессов подготовки изделий	
	сложных технических систем	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 14. Таблица 14 — Вопросы (задачи) для зачета / дифф. зачета

1	
№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета
Учебным планом не предусмотрено	

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 15.

Таблица 15 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	
1	Что такое этап реализации?	
	– построение выводов по данным, полученным путем имитации;	
	– теоретическое применение результатов программирования;	
	 практическое применение модели и результатов моделирования. 	
2	На что не ориентируются при выборе системы управления, состоящей из	

	нескольких элементов?			
	– на быстродействие и надежность;			
	– на определенное число элементов;			
	на функциональную полноту.			
3	Что понимается под программным обеспечением?			
	– соответствующим образом организованный набор программ и данных;			
	– набор специальных программ для работы САПР;			
	– набор специальных программ для моделирования.			
4	Что понимают под синтезом структуры АСУ?			
	– процесс исследования, определяющий место эффективного элемента, как в			
	физическом, так и техническом смысле;			
	– процесс перебора вариантов построения взаимосвязей элементов по заданным			
	критериям и эффективности АСУ в целом;			
	– процесс реализации процедур и программных комплексов для работы АСУ			
5	Чему при проектировании систем управления уделяется большое внимание?			
	- сопряжению чувствительного элемента системы с ее вычислительными			
	средствами;			
	 быстродействию и надежности; 			
	 массогабаритным показателям и мощности 			
6	За счет чего достигается подобие физического реального явления и модели?			
	- за счет соответствия физического реального явления и модели;			
	– за счет равенства значений критериев подобности;			
	– за счет равенства экспериментальных данных с теоретическими подобными.			
7	При математическом моделировании в качестве объекта моделирования			
	выступают			
	– графики переходного процесса, описывающие объект по уравнениям;			
	– исходные уравнения, представляющие математическую модель объекта;			
	 процессы, протекающие в математической модели 			
8	Что такое физическое моделирование?			
	– метод экспериментального изучения различных физических явлений,			
	основанный на математических моделях;			
	– метод экспериментального изучения различных физических явлений,			
	основанный на их физическом подобии;			
	- метод математического изучения различных физических явлений, основанный			
	на их математическом подобии			

10.4. Методические материалы, определяющие процедуры оценивания уровня освоения дисциплины, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации аспирантов ГУАП.

11. Методические указания для аспирантов по освоению дисциплины

11.1. Методические указания для аспирантов по освоению лекционного материала. Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении аспирантами лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- изложение теоретических вопросов, связанных с рассматриваемой темой;
- описание методов и алгоритмов, применяемых в современных технологических процессах производства и эксплуатации авиационной и РКТ;
 - демонстрация примеров решения задач;
 - обобщение изложенного материала;
 - ответы на возникающие вопросы по теме лекции.
- 11.2. Методические указания для аспирантов по прохождению самостоятельной работы
- В ходе выполнения самостоятельной работы, аспирант выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.
- В процессе выполнения самостоятельной работы, у аспиранта формируется целесообразное планирование рабочего времени, которое позволяет ему развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу аспиранта являются:

- учебно-методический материал по дисциплине;
- лекции.

11.3. Методические указания для аспирантов по прохождению текущего контроля успеваемости.

Возможные методы текущего контроля успеваемости аспирантов:

- устный опрос на занятиях;
- тестирование. По форме заданий выбраны закрытые тесты (с выборочным ответом). Каждому вопросу соответствует один вариант ответа. Текущий контроль успеваемости предусматривает контроль качества знаний аспирантов, осуществляемый в течение семестра с целью оценивания хода освоения дисциплины;
 - контроль самостоятельных работ (в письменной или устной формах);

11.4. Методические указания для аспирантов по прохождению промежуточной аттестации.

Промежуточная аттестация аспирантов предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— экзамен — форма оценки знаний, полученных аспирантами в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Система оценок при проведении текущего контроля и промежуточной аттестации осуществляется в соответствии с руководящим документом организации РДО ГУАП. СМК 3.76 «Положение о текущем контроле успеваемости и промежуточной аттестации студентов и аспирантов, обучающихся по образовательным программам высшего образования в ГУАП» https://docs.guap.ru/guap/2020/sto_smk-3-76.pdf.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой