МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ Φ ЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 41

УТВЕРЖДАЮ

Руководитель образовательной программы

доц.,к.т.н.

(должность, уч. степень, звание)

Е.Л. Турнецкая

(инициалы, фамилия)

hom

(полиис

«19» февраля 2025 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Введение в специальные разделы высшей математики» (Наименование дисциплины)

Код направления подготовки/ специальности	09.03.03
Наименование направления подготовки/ специальности	Прикладная информатика
Наименование направленности	Прикладная информатика в информационной сфере
Форма обучения	очно-заочная
Год приема	2025

Санкт-Петербург- 2025

Лист согласования рабочей программы дисциплины

Программу составил (а)

(подпись, дата)	Е.А. Яковлева (инициалы, фамилия)
ии кафедры № 41	
№ 07-2024/25	
one	
Cell	Г.А. Коржавин
(подпись, дата)	(инициалы, фамилия)
га №4 по ме тодичес кой р	работе
	ии кафедры № 41 № 07-2024/25

Аннотация

Дисциплина «Введение в специальные разделы высшей математики» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 09.03.03 «Прикладная информатика» направленности «Прикладная информатика в информационной сфере». Дисциплина реализуется кафедрой «№1».

Дисциплина не является обязательной при освоении обучающимся образовательной программы и направлена на углубленное формирование следующих компетенций:

УК-1 «Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач»

ОПК-1 «Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности»

ПК-13 «способность применять системный подход и математические методы в формализации решения прикладных задач»

ПК-14 «Способность использовать знание основных методов искусственного интеллекта в последующей профессиональной деятельности в качестве научных сотрудников, преподавателей образовательных организаций высшего образования, инженеров, технологов»

Содержание дисциплины охватывает круг вопросов, связанных с углубленным изучением связанных с разделами математики, наиболее часто используемыми в практике прикладного информатика.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме дифференцированного зачета.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 часа.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью преподавания дисциплины является знакомство обучающихся с продвинутыми разделами высшей алгебры, дифференциальные уравнения широко используемыми в таких областях прикладной информатики как статистика и машинное обучение.

- 1.2. Дисциплина является факультативной дисциплиной по направлению образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа)	Код и наименование	Код и наименование индикатора
компетенции	компетенции	достижения компетенции
		УК-1.Д.1 осуществляет анализ ситуации
	УК-1 Способен	в реальных социальных условиях для
	осуществлять	выявления актуальной социально-
	поиск, критический	значимой задачи/проблемы, требующей
V	анализ и синтез	решения
Универсальные	информации,	УК-1.Д.2 производит постановку
компетенции	применять	проблемы путем фиксации ее
	системный подход	содержания, выявления субъекта
	для решения	проблемы, а также всех
	поставленных задач	заинтересованных сторон в данной
		ситуации
	ОПК-1 Способен	
	применять	
	естественнонаучные	
	и общеинженерные	
	знания, методы	ОПК-1.В.1 владеть навыками
Общепрофессиональные	математического	теоретического и экспериментального
компетенции	анализа и	исследования объектов
компетенции	моделирования,	профессиональной деятельности
	теоретического и	профессиональной деятельности
	экспериментального	
	исследования в	
	профессиональной	
	деятельности	
		ПК-13.3.1 знать подходы и базовые
	ПК-13 способность	методы решения научно-
	применять	исследовательских задач в области
	системный подход и	информационных процессов и систем
Профессиональные	математические	ПК-13.У.1 уметь осуществлять
компетенции	методы в	формализацию задач исследования
	формализации	информационных процессов и систем
	решения	ПК-13.В.1 владеть навыками решения
	прикладных задач	задач анализа информационных
H 1	HIC 14 C	процессов и систем
Профессиональные	ПК-14 Способность	ПК-14.3.1 знать теоретические и
компетенции	использовать знание	прикладные основы анализа данных,

основных методов искусственного интеллекта в	включая методы искусственного интеллекта ПК-14.У.1 уметь подготавливать данные
последующей	для проведения аналитических работ по
профессиональной	исследованию данных
деятельности в	
качестве научных	
сотрудников,	
преподавателей	
образовательных	
организаций	
высшего	
образования,	
инженеров,	
технологов	

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Математика. Математический анализ»,
- «Теория вероятностей и математическая статистика»,
- «Математика. Аналитическая геометрия и линейная алгебра»,

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- «Прикладные методы оптимизации»,
- «Имитационное моделирование»,
- а также при прохождении прохождении практики и выполнении выпускной квалификационной работы

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Dry wys Sys i mas sys	Dagra	Трудоемкость	по семестрам
Вид учебной работы	Всего	№6	№7
1	2	3	4
Общая трудоемкость дисциплины, 3E/ (час)	4/ 144	2/72	2/72
Из них часов практической подготовки	16	8	8
Аудиторные занятия, всего час.	34	17	17
в том числе:			
лекции (Л), (час)			
практические/семинарские занятия (ПЗ), (час)	34	17	17
лабораторные работы (ЛР), (час)			
курсовой проект (работа) (КП, КР), (час)			
экзамен, (час)			
Самостоятельная работа, всего (час)	110	55	55
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач,	Дифф. Зач.,	Дифф. Зач.	Дифф. Зач.

Экз.**)	Дифф.	
	Зач.	

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Роздани жами мистиними	Лекции	П3 (С3)	ЛР	ΚП	CPC
Разделы, темы дисциплины	(час)	(час)	(час)	(час)	(час)
Cer	иестр 5				
Раздел 1. Дополнительные разделы линейной					
алгебры. Функции от матриц и их использование		3			8
при решении дифференциальных уравнений.					
Раздел 2. Дифференциальные уравнения первого		6			14
порядка.		U			17
Раздел 3. Дифференциальные уравнения высших					
порядков.					
Тема 3.1 Дифференциальные уравнения высших					
порядков. Основные понятия и определения					
Тема 3.2 Линейные однородные дифференциальны		6			16
уравнения n – го порядка					
Тема 3.3 Линейные неоднородные					
дифференциальные уравнения n — го порядка с					
постоянными коэффициентами.					
Итого в семестре:		17			38
Семест	p 6				
Раздел 4. Операторный метод решения		3			8
дифференциальных уравнений.					
Раздел 5. Решение систем дифференциальных		6			14
уравнений					1.
Раздел 6. Численные методы решения задачи		8			16
Коши		U			10
Итого в семестре:		17			38
Итого		34	0	0	76

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

темер раздела	Учебным планом не предусмотрено
Номер раздела	Название и содержание разделов и тем лекционных занятий

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

№ п/п	Темы практических занятий	Формы практических занятий	Трудоем кость, (час)	Из них практичес кой подготовк и, (час)	№ раздела дисцип лины
		стр 5	T		•
1	Нахождение функций от матриц двумя способами (через многочлены и через компоненты исходной матрицы).	Решение задач	2		1
2	Приведение кривых второго порядка к каноническому виду	Решение ситуационных задач	2	1	1
3	Приведение поверхностей второго порядка к каноническому виду	Решение ситуационных задач	2	1	1
4	Решение дифференциальных уравнений первого порядка (уравнения с разделяющимися переменными, уравнения в полных дифференциалов, однородные уравнения)	Решение ситуационных задач	2	2	2
5	Решение дифференциальных уравнений первого порядка (линейные однородные уравнение, линейные уравнения первого порядка, уравнение Бернулли, уравнения Клеро, уравнение Рикатти)	Решение ситуационных задач	3	2	3
6	Решение линейных однородных уравнение высших порядков.	Решение ситуационных задач	3	1	3
7	Решение линейных неоднородных дифференциальных уравнений п-го порядка с постоянными коэффициентами	Решение ситуационных задач	3	2	3
	Семе	стр 6			
8	Решение дифференциальных уравнений операторным методом	Решение ситуационных задач	3	1	4
9	Решение систем дифференциальных уравнений. Решение практических задач, приводящихся к системам дифференциальных уравнений	Решение ситуационных задач	6	4	
10	Численные методы решения дифференциальных уравнений	Решение ситуационных задач	8	4	
	Всего	<u> </u>	34	18	
	Decio		J 7	10	

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

No	Наименование лабораторных работ	Трудоемкость,	Из них	№
Π/Π	паименование лаоораторных раоот	(час)	практической	раздела

		подготовки, (час)	дисцип лины		
Учебным планом не п	редусмотрено				
Всего					

4.5. Курсовое проектирование/ выполнение курсовой работы

Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего, час	Семестр 5, час	Семестр 6, час
1	2	3	4
Изучение теоретического материала дисциплины (TO)		20	20
Курсовое проектирование (КП, КР)			
Расчетно-графические задания (РГЗ)			
Выполнение реферата (Р)			
Подготовка к текущему контролю успеваемости (ТКУ)		8	8
Домашнее задание (ДЗ)			
Контрольные работы заочников (КРЗ)			
Подготовка к промежуточной аттестации (ПА)		10	10
Всего:	76	38	38

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8– Перечень печатных и электронных учебных изданий

		Количество
		экземпляро
		ВВ
Шифр/		библиотеке
ИКL адрес	Библиографическая ссылка	(кроме
ОКЕ адрес		электронны
		X
		экземпляро
		в)
https://znanium.com/catalog/product/190	Зенков, А. В. Вычислительная	
2582	математика для IT-специальностей :	
	учебное пособие /А. В. ЗенковМосква	
	; Вологда: Инфра-Инженерия, 2022	

	100
	128 с ISBN 978-5-729-0883-7 Текст :
	электронный URL:
	https://znanium.com/catalog/product/1902
	582- Режим доступа: по подписке.
https://znanium.com/catalog/product/101	Гловацкая, А. П. Вычислительные
3723	модели:учебное пособие/А.П.
3723	ГловацкаяМосква: ИНФРА-М, 2021
	395сВысшее образование:
	Бакалавриат)DOI
	10.12737/1013723ISBN 978-5-16-
	014981-3 Текст : электронный URL:
	https://znanium.com/catalog/product/1013
	723-Режим доступа: по подписке.
https://znanium.com/catalog/product/108	Шабаршина, И. С. Основы
	компьютерной математики. Задачи
8111	системного анализа и управления:
	учебное пособие / И. С. Шабаршина, Е.
	В. Корохова, В. В. Корохов; Южный
	федеральный университет Ростов-на-
	Дону; Таганрог: Издательство Южного
	федерального университета, 2019142
	с ISBN 978-5-9275-3118-9 Текст :
	электронный URL:
	https://znanium.com/catalog/product/1088
1.44 1/	111– Режим доступа: по подписке Титов, К. В. Компьютерная
https://znanium.com/catalog/product/926	, , , , , , , , , , , , , , , , , , ,
480	математика: Учебное пособие/
	К.В.Титов - М.: ИЦ РИОР, НИЦ
	ИНФРА-М, 2018 261 с. (Высшее
	образование) ISBN 978-5-369-01470-
	7 Текст : электронный URL:
	https://znanium.com/catalog/product/9264
	80-Режим доступа: по подписке.

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 — Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование
http://window.edu.ru/	Бесплатная электронная библиотека онлайн "Единое окно к образовательным ресурсам"
https://www.intuit.ru/	Национальный Открытый Университет "ИНТУИТ"
https://elibrary.ru/	eLIBRARY.RU - Научная электронная библиотека
http://lib.guap.ru/	Библиотека ГУАП
https://znanium.com/	Электронно-библиотечная система Znanium
https://e.lanbook.com/	ЭБС Лань
https://www.book.ru/	BOOK.RU - современная электронная библиотека для вузов и ссузов от правообладателя
https://urait.ru/	Образовательная платформа Юрайт
http://www.iprbookshop.ru/	Электронно-библиотечная система IPR BOOKS

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Фонд аудиторий ГУАП (каф.41) для проведения	
	лекционных и практических занятий +	

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Дифференцированный зачёт	Список вопросов;
	Тесты;

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

	- ¬ JF T -FF
Оценка компетенции	Vanagramuoriusa ahannuun ananuun ku kanuustavuunii
5-балльная шкала	Характеристика сформированных компетенции

Оценка компетенции	Характеристика сформированных компетенций	
5-балльная шкала		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 	
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 	
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 	
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 	

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
	Учебным планом не предусмотрено	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 — Вопросы (задачи) для зачета / дифф. Зачета

№ п/п	№ п/п Перечень вопросов (задач) для зачета / дифф. зачета	Код
J 12 11/11		индикатора
1.	Собственные числа и собственные векторы матрицы.	УК-1.Д.1
2.	Применение функций от матриц при решении линейных	УК-1.Д.1
	дифференциальных уравнений.	
2	Применение собственных чисел и собственных векторов	УК-1.Д.2
	для приведения кривой второго порядка к каноническому	
	виду	
	Применение собственных чисел и собственных векторов	УК-1.Д.2

	для приведения поверхности второго порядка к каноническому виду	
1	Нормы векторов и матриц.	ОПК-1.3.1
2	Общее, частное, особое решение дифференцального	ОПК-1.У.1
2	уравнения	OTHC 1.5.1
3	Геометрический и механический смысл общего интеграла.	ОПК-1.У.1
	Примеры.	
4	Характеристический и минимальный многочлен матрицы.	ОПК-1.В.1
5	Сущность определения функций от матриц и возможность иных определений.	ОПК-1.3.1
6	Основные понятия и определения задачи Коши	ПК-13.3.1
7	Методы решения дифференциальных уравнений первого	ПК-13.3.1
8	порядка. Уравнения с разделяющимися переменными	ПК-13.У.1
8	Преобразование Лапласа и его свойства. Таблица некоторых изображений.	
9	Бернулли.	ПК-13.У.1
10	Решение линейных уравнений методом вариации произвольной постоянной, методом произведений.	ПК-13.3.1
11	Преобразование Лапласа и его свойства. Нахождение оригинала по изображению	ПК-13.3.1
12	Уравнение Клеро, уравнение Рикатти	ПК-13.В.1
13	Методы Рунге-Кутта и способы учета ошибок интегрирования этими методами.	ПК-13.В.1
14	Сведение задачи Коши для уравнения п-го порядка к задаче Коши для системы уравнений первого порядка.	ПК-13.В.1
15	Практические задачи, приводящиеся к решению дифференциальных уравнений. Примеры.	ПК-14.3.1
16	Практические задачи, приводящиеся к решению систем дифференциальных уравнений.	ПК-14.3.1
17	Примеры применения операторного метода в практических задачах (теория управление, передаточные функции)	ПК-14.У.1
18	. Применение операционного исчисления к решению дифференциальных уравнений и их систем	ПК-14.У.1

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

Ī	№ п/п	Примерный перечень вопросов для тестов	Код
			индикатора

	\	T =
1	Прочитать тест. Выбрать один правильный ответ Что означает решить систему нелинейных уравнений?	УК-1.Д.1
	(1) найти число, удовлетворяющее систему с точностью ε	
	(2) найти вектор $X = [x_1, x_2, x_3, \ldots, x_n]$, удовлетворяющий	
	(2) наити вектор $\Gamma = [\omega_1, \omega_2, \omega_3, \dots, \omega_n]$, удовлетворяющий систему с точностью ε	
	· ·	
	(3) найти число, удовлетворяющее систему $V = \begin{bmatrix} v_1 & v_2 & v_3 \\ v_4 & v_4 & v_4 \end{bmatrix}$	
	(4) найти вектор $X = [x_1, x_2, x_3, \dots, x_n]$, удовлетворяющий	
	системе Правильный ответ:2	
2	Прочитайте тест. Определите тип каждого из данных уравнений. Ответ	УК-1.Д.2
2	запишите в виде последовательности пар цифр и букв:	3 К 1.Д.2
	1. $y' = \frac{y}{x} + \sin \frac{y}{x}$	
	$2. y' + y - xy^2 = 0$	
	$3. x(y^2-4)dx+ydy=0$	
	$\int_{0}^{\infty} \int_{0}^{\infty} x \left(y - 4 \right) dx + y dy = 0$	
	$A = x^{\prime} + xy$	
	$4. y' + \frac{xy}{1 - x^2} = \arcsin x$	
	А) уравнение с разделяющимися переменными;	
	Б)однородное уравнение первого порядка;	
	В)линейное уравнение первого порядка;	
	Г)уравнение Бернулли.	
	П	
	Правильный ответ 1Б 2В 3А 4Г	
3	Выберите 1 правильный ответ. Задача нахождения частного решения	УК-1.Д.1
	дифференциального уравнения, удовлетворяющего заданным начальным	1.7.1
	условиям называется задачей:	
	1) Саррюса 2)Коши 3) Лапласа	
	Правильный ответ:2	
4	Чем является особое решение дифференциального уравнения? Дайте	УК-1.Д.1
	развернутый ответ	
5	Даны дифференциальные уравнения разных порядков. Расположить	УК-1.Д.1
	типы уравнения в порядке возрастания количества неизвестных	
	постоянных, которые появляются при нахождении решения:	
	А) уравнение с разделяющимися переменными третьего порядка	
	Б) уравнение Бернулли (первого порядка)	
	В) линейной неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами	
	порядка с постоянными коэффициентами Г) линейное однородное уравнение четвертого порядка.	
	Правильный ответ: БВАГ	
6	Прочитайте тест. Выберите несколько правильных ответов. Даны	УК-1.Д.2
J	уравнения. Выберите среди них дифференциальные уравнения	1.74.2
	второго порядке. Ответ запишите в виде последовательности букв	
	слева направо:	
	A) $y' + 4y'' + 20y = 0$	
	$\mathbf{E}) dy - 3x^2ydx = 0$	
	$B) y'' \operatorname{ctg} 3x + y' = 0$	
	$\Gamma(y')^3 + yy'' = (y')^2$	
	Правильный ответ: AB Для четырех дифференциальных уравнений необходимо решить	
7		ОПК-1.3.1

		T		
	задачу Коши. Определить, какое количество начальных условий необходимо для решения задачи Коши для каждого уравнения. Расположить уравнения в порядке возрастания необходимых			
	условий			
	А) уравнение с разделяющимися переменными третьего порядка Б) уравнение Бернулли (первого порядка)			
	В) линейной неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами			
	Г) линейное однородное уравнение четвертого порядка. Правильный ответ: БВАГ			
8	00	ОПК-1.У.1		
0	Как называется область, в которой начальное приближение $\overline{X^0}$	OHK-1.9.1		
	сходится к искомому решению?			
	(1) областью расхождений			
	(2) областью сходимости			
	(3) замкнутым интервалом			
	(4) полуплоскостью			
	Правильный ответ: 2			
9	Что такое характеристическое уравнение. Дайте развернутый ответ.	ОПК-1.У.1		
_				
10	Укажите функции, которые являются решением уравнения	ОПК-1.В.1		
	$\begin{aligned} dy - 3x^2 y dx &= 0: \\ 1. y &= e^{x^3} \end{aligned}$			
	1. $y = e$			
	2. $y = e^x + 2$			
	2. $y = e^{x} + 2$ 3. $y = e^{x^{3}-1}$ 4. $y = 2e^{x^{2}}$			
	$4. y = 2e^{x}$			
	Правильный ответ 1,3			
11	Определен дискриминант квадратической формы	ОПК-1.В.1		
	. 2			
	$\Delta = a_{12}^2 - a_{11}a_{22}$			
	Сопоставьте значение дискриминанта и тип кривой:			
	1. $\Delta > 0$			
	$2. \Delta < 0$			
	3. $\Delta=0$			
	$\Delta = 0$ Тип кривой:			
	А) параболический			
	Б) гиперболический			
	В) эллиптический			
	Правильный ответ:			
	1Б 2В 3A			
12	Прочитайте тест. Выберете правильный ответ. Матрица 2х2 состоит из	ПК-12.3.1		
	нулей в главной диагонали, 1 и -1 в побочной. Собственные числа матрицы			
	будут:			
	оудуг. 1. действительные			
	2. мнимые			
	3. это зависит от поля, в котором рассматривается матрица			
	4. Действительные и мнимые			
	Правильный ответ: 2			
13	Сопоставьте уравнения второго порядка и способы их решения.	ПК-12.В.1		
	1) $y'' = xe^{-x}$;			
	$(y')^3 + yy'' = (y')^2;$			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	$\int \int y + (x+1)y = 0$.			
	Варианты ответов:			
	- mpannalu vibvivu	Í.		

	А)последовательное интегрирование обеих частей уравнения; Б)подстановка $y' = z(x), y'' = z'(x)$;			
	В)подстановка $y' = p(y), y'' = p\frac{dp}{dy}$			
	ay .			
4.4	Правильный ответ: 1A 2B 3B	FV4 10 D 1		
14	Для четырех дифференциальных уравнений необходимо решить	ПК-12.В.1		
	задачу Коши. Определить, какое количество начальных условий			
	необходимо для решения задачи Коши для каждого уравнения.			
	Расположить уравнения в порядке возрастания необходимых условий			
	А) уравнение с разделяющимися переменными третьего порядка			
	Б) уравнение Бернулли (первого порядка)			
	В) линейной неоднородное дифференциальное уравнение второго			
	порядка с постоянными коэффициентами			
	Г) линейное однородное уравнение четвертого порядка.			
	Правильный ответ: БВАГ			
15	Прочитайте тест. Выберете несколько правильных ответов.	ПК-12.У.1		
	Задание 3. Укажите функции, являющиеся решениями уравнения.			
	$-dy + 3x^2y dx = 0.$			
	Варианты ответов: (укажите два			
	otbeta)			
	$I. y = e^{x^3};$			
	2. $y = -e^{x} + 3$; 3. $y = e^{x^{3}-1}$; 4. $y = 1+2e^{x^{2}}$			
	3. $y = e^{x^3-1}$;			
	4. $y = 1 + 2e^{x^2}$			
	Правильный ответ: 1, 3			
16	Что такое частное решение дифференциального уравнение. Чем оно отличается от общего решения? Дайте развернутый ответ.	ПК-12.У.1		
17	Сопоставьте уравнения второго порядка и способы их решения.	ПК-14.У.1		
	1) $y'' \operatorname{ctg} 3x + y' = 0$;			
	2) $y'' = \cos^2 x + e^{3x} + 8x^2$;			
	3) $(y')^2 = (2y + 3y') y''$.			
	Варианты ответов:			
	А)последовательное интегрирование обеих частей уравнения;			
	Б)подстановка $y' = z(x), y'' = z'(x)$;			
	B)подстановка $y' = p(y), y'' = p \frac{dp}{dy}$			
	Правильный ответ: 1Б 2А 3В			
18	Какой вид имеет система нелинейных дифференциальных	ПК-14.3.1		
10	уравнений? Приведете пример. Обоснуйте ответ.	111\(\cdot-14.3.1		
19	Прочитайте тест. Выберете один правильный ответ	ПК-14.У.1		
		1110 17.7.1		
	Фундаментальная система решений уравнения			
	y'' + 4y' + 20y = 0 имеет вид			
	Ranuauti i atherop			
	Bapuarti otheron:			
	1. $y_1 = \cos 4x$, $y_2 = \sin 4x$;			
	2. $y_1 = e^{-2x}$, $y_2 = e^{2x}$;			
	3. $y_1 = e^{-2x} \cos 4x$, $y_2 = e^{-2x} \sin 4x$;			

	4. $y_1 = e^{-2x}, y_2 = 1$.				
	Правильный ответ: 3				
20	Прочитайте тест. Сопоставьте типы уравнений и их возможные решения.	ПК-14.3.1			
	Ответ запишите в виде пар цифры и буквы:				
	1) линейное уравнение первого порядка;				
	2) линейное однородное уравнение второго порядка;				
	3) линейное неоднородное уравнение второго порядка;				
	4) линейное уравнение третьего порядка.				
	Варианты ответов: .A) $y = C_1 \cos 2x + C_2 \sin 2x$;				
	$.\mathbf{E}) y = \left(e^{x} + C_{1}\right)x;$				
	B) $y = C_1 e^{7x} + C_2 x e^{7x} + 2\cos 7x$;				
	$\Gamma) y = C_1 + C_2 \cos x + C_3 \sin x.$				
	Правильный ответ: 1Б 2А 3В 4Г				
21	Выберите 1 правильный ответ. Каждому дифференциальному уравнению	ПК-14.3.1			
	соответствует п решений. Укажите значение числа п.				
	1) 1 2)100000 3) ∞				
	Правильный ответ:3				

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п		Пе	еречень контрольных	работ
	Не предусмотрено			

- 10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.
 - 11. Методические указания для обучающихся по освоению дисциплины
 - 1. Методические указания для обучающихся по освоению дисциплины

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления;

- появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
- получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Выделяются следующие виды лекций:

• Вводная лекция

Вводная лекция к дисциплине знакомит обучающихся с целью и назначением курса, его ролью и местом в системе дисциплин. В ходе такой лекции связывается теоретический и практический материал с практикой будущей работы, рассказывается общая методика работы над курсом, предлагаются литературные источники, помогающие усвоению материала дисциплины и освоению компетенций, ставятся научные проблемы, выдвигаются гипотезы, определяется форма текущего контроля и промежуточной аттестации.

Вводная лекция к разделу. Аналогично вводной лекции к дисциплине раскрывает ряд вопросов, но связанных не с дисциплиной в целом, а с тематикой конкретного раздела.

• Обзорная лекция

Проводится с целью систематизации знаний на более высоком уровне, рассмотрения особо трудных вопросов дисциплины.

• Проблемная лекция

На данной лекции новое знание вводится как неизвестное, которое необходимо "открыть". В рамках лекции создается проблемная ситуация, которую обучающие решают поэтапно с подсказками и помощью преподавателя.

• Лекшия влвоем

Эта разновидность лекции является продолжением и развитием проблемного изложения материала в диалоге двух преподавателей. Здесь моделируются реальные ситуации обсуждения теоретических и практических вопросов двумя специалистами.

• Лекция с заранее запланированными ошибками

Данная лекция призвана активизировать внимание обучающихся, развивать их мыслительную деятельность, формировать умение выступать в роли экспертов.

Задача преподавателя состоит в том, чтобы заложить в лекцию определенное количество ошибок содержательного, методического, поведенческого характера. Подбираются наиболее типичные ошибки, которые обычно не выпячиваются, а как бы затушевываются. Задача обучающихся состоит в том, чтобы по ходу лекции отмечать ошибки, фиксировать и называть их в конце.

• Лекция-пресс-конференция

Преподаватель просит обучающихся задавать письменно вопросы по данной теме. В течение двух-трех минут обучающиеся формулируют наиболее интересующие их вопросы и передают преподавателю, который в течение трех-пяти минут сортирует вопросы по их содержанию и начинает лекцию. Лекция излагается не как ответы на вопросы, а как связный текст, в процессе изложения которого формируются ответы.

• Лекция-консультация

Материал излагается в виде вопросов и ответов или вопросов, ответов и дискуссий. Структура предоставления лекционного материала:

• Вводная часть лекции

Первое представление о лекции содержится уже в формулировке темы. Она должна быть краткой, выражать суть основной идеи, быть привлекательной по форме. Целесообразно здесь сказать на значение этой темы для последующего усвоения знаний и развития личности обучающихся, для будущей профессиональной деятельности. Далее можно сообщить цели лекции и ее план. Желательно сориентировать слушателей на последующий контроль знаний, полезно указать на связь нового материала с пройденным и предыдущим. Темп изложения этой части лекции, как правило, должен быть выше темпа изложения основного, что заставляет обучающихся психологически собраться и сосредоточиться. Вводная часть лекции обычно занимает 5-7 минут.

• Основная часть лекции

Переходу к изложению первого вопроса, как правило, должна предшествовать пауза. В это время лектор может проверить, все ли слушатели готовы к восприятию лекции (позы, выражения лиц, разговоры). Заметив обучающихся, не готовых к восприятию, опытные преподаватели произносят краткую мобилизующую фразу, останавливают взгляд на нерадивых, реже - называют фамилию, имя и не тратят время на длительные замечания.

Для того чтобы преодолеть потенциальную пассивность слушателей, необходимо всеми возможными способами придать лекции проблемный характер, побуждая слушателей к самостоятельной познавательной активности и творчеству.

К таким активным средствам можно отнести:

- обращение к обучающимся с вопросами, уточняющими понимание основных идей и фактов темы;
- организацию мини-столкновений различных точек зрения по выдвинутым преподавателем положениям;
- постановку вопросов, задач с множественностью решений и др.;
- индивидуальный стиль изложения материала;
- обеспечение обратной связи.
 - Заключение

В процессе чтения лекции преподаватель должен позаботиться о ее завершении. Рассчитать время, а не прерывать лекцию на полуслове. Обычно для заключения материала бывает достаточно 5-7 минут. Завершая лекцию, преподаватель отвечает на вопросы слушателей, подводит итог, дает методические указания к самостоятельной работе, комментирует предлагаемую литературу. Заканчивать лекцию нужно конструктивно по содержанию и положительно по эмоциональному настрою. Обучающиеся должны уйти заинтересованными, заинтригованными, желающими опробовать завтра же предложения лектора, а также в хорошем настроении и активном тонусе.

Материалы по лекционному курсу выкладываются в Личный кабинет в электронной образовательной среде университета

11.1. Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

закрепление, углубление, расширение и детализация знаний при решении конкретных задач;

- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине. При проведении практического занятия в форме практической подготовки обучающиеся выполняют действия, максимально приближенные к реальным, соответствующим будущим трудовым функциям.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий.

1. Решение ситуационных задач.

Вид практического занятия, на котором решаются компетентностноориентированные задачи, имеющие ярко выраженный практический характер и для решения которой необходимы предметные знания по дисциплине. Процесс решения ситуационной задачи соответствует схеме: знание—понимание—применение—анализ синтез—оценка. При решении практических задач обучающийся понимает реальную цену знаниям.

Материалы по практическим занятиям выкладываются в Личный кабинет в электронной образовательной среде университета.

11.2. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий

уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся являются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.3. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины. Невыполнение требований или их части по прохождению текущего контроля успеваемости при успешном прохождении промежуточной аттестации может привести к понижению итоговой оценки.

Возможные методы текущего контроля:

- устный опрос на занятиях;
- систематическая проверка выполнения индивидуальных и домашних заданий;
- защита отчетов по лабораторным работам;
- проведение контрольных работ;
- тестирование;
- контроль самостоятельных работ;
- проведение контрольных работ;
- доклад на научной конференции;
- написание научной статьи.
- 11.4. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

• зачет — это форма оценки знаний, полученных обучающимся в ходе изучения учебной дисциплины в целом или промежуточная (по окончании семестра) оценка знаний обучающимся по отдельным разделам дисциплины с аттестационной оценкой "зачтено" или "не зачтено".

Зачет проводится в одной из следующих форм:

- в устной форме в виде ответа на один или несколько вопросов по дисциплине
 - в письменной форме в виде теста
 - с применением средств электронного обучения (LMS ГУАП)

В случае дистанционной формы промежуточной аттестации, зачет проводится в виде теста с применением средств электронного обучения.

• дифференцированный зачет — это форма оценки знаний, полученных обучающимся при изучении дисциплины, при выполнении курсовых проектов, курсовых работ, научно-исследовательских работ и прохождении практик с аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Дифференцированный зачет проводится в виде ответа в устной форме в виде ответа на один или несколько вопросов по дисциплине

- в письменной форме в виде теста
- с применением средств электронного обучения (LMS ГУАП) В случае дистанционной формы промежуточной аттестации, зачет проводится в виде теста с применением средств электронного обучения.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой