МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 6

УТВЕРЖДАЮ

Руководитель образовательной программы

д.т.н.,проф.

(должность, уч. степень, звание)

А.В. Копыльцов

(инициалы, фамилия)

100

« 10 » февраля 2025 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Цифровая метрология» (Наименование дисциплины)

Код направления подготовки/ специальности	03.03.01
Наименование направления подготовки/ специальности	Прикладные математика и физика
Наименование направленности	Прикладная физика и информационные технологии в наноиндустрии
Форма обучения	енто
Год приема	2025

Лист согласования рабочей программы дисциплины

программу составил (а)		
доц.,к.т.н. (должность, уч. степень, звание)	05.02.2025 (подпись, дата)	H.Ю. Ефремов (инициалы, фамилия)
Программа одобрена на заседани « <u>5</u> » февраля 2025 г, проте		
Заведующий кафедрой № 6 д.э.н.,проф. (уч. степень, звание)	05.02.2025 (подущь, дата)	В.В. Окрепилов
() it eventually, statutely		· · ·
Заместитель директора института	а ФПТИ по методической р	работе
ДОЦ.,К.Т.Н.	10.02.2025	Н.Ю. Ефремов (инициалы, фамилия)

Аннотация

Дисциплина «Цифровая метрология» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 03.03.01 «Прикладные математика и физика» направленности «Прикладная физика и информационные технологии в наноиндустрии». Дисциплина реализуется кафедрой «№6».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

УК-2 «Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений»

ПК-5 «Цифровая метрология»

Содержание дисциплины охватывает круг вопросов, связанных со становлением и развитием современной цифровой метрологии, а также ее основными элементами. Рассматриваются организация и проведение автоматического контроля качества продукции, который позволяет снизить стоимость контроля, уменьшить число ошибок и длительность контроля, смягчить последствия нехватки персонала, а также избежать в работе контролера; типы, номенклатура, конструктивные монотонности метрологические характеристики средств измерений; принципы выбора методов и средств измерений, основы разработки стратегии измерений и измерительных программ для контроля параметров конкретной детали сложной формы по требованиям рабочего чертежа; порядок подготовки и проведения измерений с использованием различных контрольно-измерительных средств / измерительных машин.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы, 108 часов.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью дисциплины является формирование у студентов знаний, умений и навыков в области цифровой метрологии: технической документации, измерительного оборудования и оснастки, специализированного программного обеспечения. Кроме того, целью дисциплины является получение практических навыков в вопросах выбора методов и средств измерений, разработки стратегии измерений и измерительных программ для контроля параметров конкретной детали сложной формы по требованиям рабочего чертежа, порядка подготовки и проведения измерений с использованием различных контрольно-измерительных средств / измерительных машин.

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Универсальные компетенции	УК-2 Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений	УК-2.3.3 знать возможности и ограничения применения цифровых инструментов для решения поставленных задач
Профессиональные компетенции	ПК-5 Цифровая метрология	ПК-5.3.1 знать современные и актуальные тенденции в области метрологического обеспечения производства ПК-5.3.2 знать нормативную документацию по контролю качества продукции; эксплуатации, ремонту, наладке, поверке, калибровке, юстировке и хранению цифровых средств измерений ПК-5.3.3 знать конструктивные и метрологические характеристики цифровых средств измерений, в том числе специальных (для измерения узких канавок, зубчатых колес, резьбы и т.д.) ПК-5.3.4 знать типы и номенклатуру средств измерений (в том числе цифровых), используемых инструментов и приспособлений (щупов, датчиков, фиксирующих устройства и

ПК-5.У.1 уметь выбирать наиболее подходящие по ситуации методы и средства измерений; выбирать измерительные инструменты/приборы (щупы, датчики и т.д.), вспомогательные и фиксирующие приспособления (тиски, призмы, прижимы и т.д.), исходя из методики измерений; выбирать технологию измерений, минимизирующую вмешательство оператора в процесс; учитывать при выборе технологии измерений условия окружающей среды и механические свойства используемых материалов, возможные погрешности измерительного оборудовании ПК-5.В.1 владеть навыками выбора методов и средств измерений, в том числе цифровых, для контроля параметров конкретной детали по требованиям рабочего чертежа ПК-5.В.2 владеть навыками подбора инструмента для контроля параметров деталей различной формы и конфигурации; проведения калибровки и подготовки к работе цифрового измерительного оборудования для контактных и бесконтактных измерений ПК-5.В.3 владеть навыками работы с программным обеспечением, необходимым для проведения измерительных операций и сохранения измерительной информации ПК-5.В.4 владеть навыками выбора технологий измерений, минимизирующих вмешательство оператора

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Инженерная и компьютерная графика»;
- «Информатика»;
- «Электротехника»;
- «Математика. Теория вероятностей и математическая статистика»;
- «Физика».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- «Натурные эксперименты и исследование геосистем»,
- «Методы и приборы контроля окружающей среды».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам №4
1	2	3
Общая трудоемкость дисциплины, 3E/ (час)	3/ 108	3/ 108
Из них часов практической подготовки	17	17
Аудиторные занятия, всего час.	51	51
в том числе:		
лекции (Л), (час)	17	17
практические/семинарские занятия (ПЗ), (час)		
лабораторные работы (ЛР), (час)	34	34
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)	36	36
Самостоятельная работа, всего (час)	21	21
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.	Экз.

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции (час)	ПЗ (СЗ) (час)	ЛР (час)	КП (час)	СРС (час)
Сем	естр 4			, , ,	
Раздел 1. Общие сведения о цифровой	4				3
метрологии.					
Тема 1.1. Понятие цифровой метрологии.					
Тема 1.2. Элементы цифровой метрологии.					
Тема 1.3. Компетенция T64 «Цифровая					
метрология».					
Тема 1.4. Лаборатория цифровой метрологии.					
Раздел 2. Нормирование точности типовых	4		6		8
элементов деталей и узлов					
Тема 2.1. Номинальный размер.					
Предпочтительные числа и линейные размеры.					
Тема 2.2. Классификация размеров.					
Предельные отклонения.					
Тема 2.3. Посадки с зазором, с натягом и					
переходные.					
Тема 2.4. Система допусков и посадок ИСО.					

Раздел 3. Измерения современными измерительными приборами и системами Тема 3.1. Классификация и назначение современных цифровых измерительных приборов и систем. Тема 3.2. Ручной измерительный инструмент. Тема 3.3. Системы для оценки шероховатости	5		20		5
поверхности					
Тема 3.4. Системы для контроля размеров и					
макропрофиля деталей и узлов.					
Тема 3.5. Видеоизмерительные микроскопы.					
Раздел 4. Трехкоординатные измерения на	4		8		5
координатно-измерительных машинах					
Тема 4.1. История возникновения и					
классификация КИМ.					
Тема 4.2. Конструкция и виды датчиков для КИМ.					
Тема 4.3. Методика проведения измерений на					
координатно-измерительных машинах.					
•	17		34		21
Итого в семестре:		0		0	
Итого	17	0	34	0	21

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий			
Раздел 1. Общие сведения	Тема 1.1. Понятие цифровой метрологии.			
о цифровой метрологии.	Роль метрологии в цифровизации экономики и			
	Индустрии 4.0. Определение, цель и задачи цифровой			
	метрологии.			
	Тема 1.2. Элементы цифровой метрологии.			
	Описание основных элементов цифровой мтрологии:			
	цифровая эталонная база, информационно-измерительные			
	системы, цифровые измерения, нанометрология.			
	Искусственный интеллект в метрологии.			
	Тема 1.3. Компетенция Т64 «Цифровая метрология».			
	Описание и содержание компетенции. Содержание			
	конкурсной документации и заданий компетенции			
	«Цифровая метрология».			
	Тема 1.4. Лаборатория цифровой метрологии.			
	Инфраструктурный план лаборатории цифровой метрологии.			
	Состав оборудования лаборатории.			
Раздел 2. Нормирование	Тема 2.1. Номинальный размер. Предпочтительные числа и			
точности типовых	линейные размеры.			
элементов деталей и узлов	Понятие номинального размера. Принципы выбора			

значений номинальных размеров элементов деталей и узлов. Принципы построения таблиц рядов предпочтительных чисел и нормальных линейных размеров. Тема 2.2. Классификация размеров. Предельные отклонения. отверстия Размеры И вала. Номинальный, действительный и предельные размеры. Нижнее и верхнее предельные отклонения, запись и схема размера с предельными отклонениями. Тема 2.3. Посадки с зазором, с натягом и переходные. Понятие посадки. Схема и обозначение посадки с предельными отклонениями. Типовые посадки с зазором, натягом и переходные: формулы, схемы, обозначения. Тема 2.4. Система допусков и посадок ИСО. Система отверстия и система вала. Классы допуска, обозначение размеров и посадок с классами допуска. Классификация и назначение современных Раздел 3. Измерения Тема 3.1. цифровых измерительных приборов и систем. современными Классификация измерительного оборудования. измерительными Назначение и метрологические характеристики приборов и приборами и системами Тема 3.2. Ручной измерительный инструмент. Конструкция основных типов измерительного инструмента. Система беспроводной передачи информации U-WAVE. Методика настройки и калибровки инструмента. Тема 3.3. Системы для оценки шероховатости поверхности. Обши сведения измерениях шероховатости Описание профилометра Surftest SJ-410. поверхности. Методики калибровки щупа и измерений шероховатости поверхности. Тема 3.4. Системы для контроля размеров и макропрофиля деталей и узлов. Кругломер ROUNDTESTRA-120Р. Методики калибровки и измерений отклонений формы и взаимного расположения поверхностей. Контурограф Contracer CV-2100M3. Методики калибровки и измерений линейных и угловых размеров по контуру деталей. Тема 3.5. Видеоизмерительные микроскопы. Общее описание ВИМ Quick Scope серии QS-LZ/AFB. Методика подготовки к измерениям. Методика измерений линейных и угловых размеров деталей. Раздел 4. Тема 4.1. История возникновения и классификация КИМ. Возникновение КИМ в СССР и Европе. Совремеенны Трехкоординатные производители КИМ. Классификация КИМ. измерения на Тема 4.2. Конструкция и виды датчиков для КИМ. координатно-Конструкция и элементы контактного датчика КИМ. измерительных машинах Основные виды датчиков для стационарных КИМ. Тема 4.3. Методика проведения измерений на координатноизмерительных машинах. КИМ с ручным управлением Crysta-Plus M 443. Калибровка

щупа КИМ. Методика измерений линейных и угловых размеров деталей.

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

				Из них	$N_{\underline{0}}$
No॒	Темы практических	Формы практических	Трудоемкость,	практической	раздела
п/п	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
		Учебным планом не про	едусмотрено		
	Bcer	0			

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

	1		Из них	No
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	раздела
Π/Π	паименование лаоораторных раоот	(час)	подготовки,	дисцип
			(час)	лины
	Семестр 4	4		
1	Подбор ручного измерительного	2	2	2
	инструмента			
2	Контроль качества деталей ручным	4	4	2
	измерительным инструментов			
3	Калибровка профилометра. Измерение	4	4	3
	шероховатости поверхности.			
4	Калибровка и подготовка к измерениям	4	4	3
	кругломера			
5	Измерение на кругломере	4	4	3
	концентричности, круглости и			
	перпендикулярности на детали типа			
	"Втулка"			
6	Настройка ВИМ и измерение типовых	4	4	3
	размеров			
7	Калибровка контурографа и измерение	4	4	3
	типовой детали			
8	Калибровка КИМ и создание черновой	4	4	4
	привязки к детали			
9	Измерение типовых размеров детали на	4	4	4
	КИМ			
	Всего	34		

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 4,
Вид самостоятсявной рассты	час	час
1	2	3
Изучение теоретического материала	10	10
дисциплины (ТО)	10	10
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю	3	3
успеваемости (ТКУ)	3	3
Домашнее задание (ДЗ)	3	3
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной	5	5
аттестации (ПА)	3	3
Всего:	21	21

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8– Перечень печатных и электронных учебных изданий

		Количест
		ВО
		экземпля
		ров в
Шифр/		библиоте
ИRL адрес	Библиографическая ссылка	ке
ОКЕ адрес		(кроме
		электрон
		ных
		экземпля
		ров)
004 Ц 75	Цифровая метрология: учебное пособие /	3
	Ю. А. Антохина [и др.]; ред. В. В.	
	Окрепилов; СПетерб. гос. ун-т аэрокосм.	
	приборостроения Санкт-Петербург: Изд-	
	во ГУАП, 2021 181 с.	
006 O-75	Основы цифровой метрологии: учебник /	5
	Санкт-Петербург: ГУАП, 2021. – 182 с. –	
	ISBN 978-5-8088-1641-1	
006 Γ 98	Цифровая метрология: учебметод.	5
	пособие / Е. А. Гущина,	
	К. В. Епифанцев, Н. Ю. Ефремов. – СПб.:	

	ГУАП, 2022. – 104 с.	
006 O-75	Основы метрологии: учебник / Окрепилов	5
	В.В. и др. – СПб: ГУАП, 2020. 479 стр.	
https://new.znanium.com/catalog/pr	Афанасьев, А. А. Взаимозаменяемость и	
oduct/1021782	нормирование точности: учебник / А.А.	
	Афанасьев, А.А. Погонин. — Москва:	
	ИНФРА-М, 2019. — 427 с. — (Высшее	
	образование: Бакалавриат). —	
	www.dx.doi.org/10.12737/textbook_5a57059a	
	aba317.28249851 ISBN 978-5-16-105908-	
	1.	
https://znanium.com/catalog/produc	Завистовский, В. Э. Допуски, посадки и	
t/1062397	технические измерения : учебное пособие /	
	В.Э. Завистовский, С.Э. Завистовский. —	
	Москва : ИНФРА-М, 2020. — 278 с. —	
	(Среднее профессиональное образование)	
	ISBN 978-5-16-015152-6.	
https://znanium.com/catalog/produc	Клименков, С. С. Нормирование точности	
t/976506	и технические измерения в	
	машиностроении: учебник / С.С.	
	Клименков. — Минск : Новое знание ;	
	Москва: ИНФРА-М, 2018. — 248 с.: ил. —	
	(Высшее образование: Бакалавриат)	
	ISBN 978-5-16-006881-7.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 — Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование	
https://worldskills.ru/	Сайт Агенства развития	
-	профессий и навыков	
https://www.vniiftri.ru/	Эталоны	
	Всероссийского НИИ	
	физико-технических	
	радиоизмерений	
https://docs.cntd.ru/document/1200166732	Электронный фонд	
-	нормативной	
	информации	
	«Техэксперт»	

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10– Перечень программного обеспечения

	 	F	
№ п/п			Наименование

Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п		Наименование
	Не предусмотрено	

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Мультимедийная лекционная аудитория	
2	Лаборатория цифровой метрологии	52-50

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Экзаменационные билеты;
	Задачи;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Onemia romieremini				
Оценка компетенции	Характеристика сформированных компетенций			
5-балльная шкала	ларактеристика сформированных компетенции			
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 			

Оценка компетенции	Характеристика сформированных компетенций	
5-балльная шкала	ларактеристика сформированных компетенции	
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 	
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 	
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 	

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код
J (± 11/11	перечень вопросов (задач) для экзамена	индикатора
1	Что вы узнали о методах работы с цифровым	ПК-5.3.1
	измерительным инструментом?	ПК-5.3.2
		ПК-5.3.3
		ПК-5.3.4
		ПК-5.У.1
		ПК-5.В.1
		ПК-5.В.2
2	Объясните, как измерять измерительным инструментом	УК-2.3.3
	геометрические параметры детали: длину, диаметр вала,	ПК-5.3.1
	диаметр внутреннего отверстия.	ПК-5.3.2
		ПК-5.3.3
		ПК-5.3.4
		ПК-5.У.1
		ПК-5.В.1
		ПК-5.В.2
3	Объясните принципы беспроводной передачи	УК-2.3.3
	измерительной информации с ручного инструмента на ПК	ПК-5.3.1
	и порядок её обработки.	ПК-5.3.2
		ПК-5.3.3
		ПК-5.3.4
		ПК-5.У.1

		ПК-5.В.1
		ПК-5.В.2
4	Что будет, если предварительно не провести калибровку	ПК-5.3.1
	нутромера? Что будет, если возникнет отказ, когда вы без	ПК-5.3.2
	учета трещётки будете продолжать вращать барабан	ПК-5.3.3
	нутромера?	ПК-5.3.4
	ny ipomepu.	ПК-5.У.1
		ПК-5.В.1
		ПК-5.В.2
5	Что вы узнали о методах измерения шероховатости	ПК-5.3.1
	поверхности?	ПК-5.3.2
	nez-p.m.e-r.m.	ПК-5.3.3
		ПК-5.3.4
		ПК-5.У.1
		ПК-5.В.1
		ПК-5.В.2
6	Что будет, если предварительно не провести калибровку	УК-2.3.3
O	профилометра. Объясните цель применения настройки	ПК-5.3.1
	трассировки шага λs.	ПК-5.3.2
	трассировки тага лу.	ПК-5.3.3
		ПК-5.3.4
		ПК-5.У.1
		ПК-5.В.1
		ПК-5.В.1 ПК-5.В.2
7	Объясните порядок измерения шероховатости	УК-2.3.3
,	поверхности разной формы профилометром.	ПК-5.3.1
	поверхности разной формы профилометром.	ПК-5.3.1
		ПК-5.3.3
		ПК-5.3.4
		ПК-5.У.1
		ПК-5.В.1
		ПК-5.В.2
8	Что вы узнали о работе видеоизмерительной системы?	ПК-5.3.1
O	Оцените эффективность проведения базовых операций	ПК-5.3.2
	при подготовке ВИМ к измерениям.	ПК-5.3.3
	при подготовко втич к померениями	ПК-5.3.4
		ПК-5.У.1
		ПК-5.В.1
		ПК-5.В.2
9	Оцените, какие факторы влияют на точность измерения на	УК-2.3.3
	ВИМ?	ПК-5.3.1
		ПК-5.3.2
		ПК-5.3.3
		ПК-5.3.4
		ПК-5.У.1
		ПК-5.В.1
		ПК-5.В.1 ПК-5.В.2
10	Объясните, как правильно выполнять измерения на ВИМ.	УК-2.3.3
10	обълените, как правыльно выполнять измерения на вини.	ЛК-5.3.1
		ПК-5.3.1
		ПК-5.3.3
		1111-2.2.3

		ПК-5.У.1
		ПК-3.У.1 ПК-5.В.1
		ПК-5.В.1 ПК-5.В.2
11	Что будет, если предварительно не провести калибровку	ПК-5.3.1
11	контурографа?	ПК-5.3.1
	контурографал	ПК-5.3.3
		ПК-5.3.4
		ПК-5.У.1
		ПК-5.9.1 ПК-5.В.1
		ПК-5.В.1 ПК-5.В.2
12	Какие критерии вы используете для оценки стабильной	УК-2.3.3
12	работы сканирования детали на контурографе? Какие	ЛК-5.3.1
	метрологические отказы негативно влияют на точность	ПК-5.3.1
	измерения контурографа?	ПК-5.3.3
	измерения контурографа:	ПК-5.3.4
		ПК-5.У.1
		ПК-5.В.1
		ПК-5.В.1 ПК-5.В.2
13	Objective way havened to have been been economically	УК-2.3.3
13	Объясните, как измерять контурографом геометрические параметры контура детали.	УК-2.3.3 ПК-5.3.1
	параметры контура детали.	ПК-5.3.1
		ПК-5.3.3
		ПК-5.3.4
		ПК-5.У.1
		ПК-5.В.1
		ПК-5.В.1 ПК-5.В.2
14	Что будет, если предварительно не сделать	УК-2.3.3
17	центрирование/выравнивание на кругломере?	ПК-5.3.1
	центрирование выравнивание на крупломере.	ПК-5.3.2
		ПК-5.3.3
		ПК-5.3.4
		ПК-5.У.1
		ПК-5.В.1
		ПК-5.В.2
15	Какие критерии вы используете для оценки стабильной	УК-2.3.3
	работы сканирования детали на кругломере?	ПК-5.3.1
		ПК-5.3.2
		ПК-5.3.3
		ПК-5.3.4
		ПК-5.У.1
		ПК-5.В.1
		ПК-5.В.2
16	Объясните, как измерять кругломером геометрические	ПК-5.3.1
	параметры детали – тела вращения.	ПК-5.3.2
		ПК-5.В.1
		ПК-5.В.2
		ПК-5.В.3
		ПК-5.В.4
17	Что вы узнали о работе сканирующей системы на КИМ?	УК-2.3.3
	Что вы узнали о метрологических отказах на КИМ?	ПК-5.3.1
	J	ПК-5.3.2
		ПК-5.3.3

		ПК-5.3.4
		ПК-5.У.1
		ПК-5.В.1
		ПК-5.В.2
18	Что будет, если предварительно не подключить	ПК-5.3.1
	рефрижератор на КИМ. Объясните цель применения	ПК-5.3.2
	датчиков температурного расширения	ПК-5.В.1
		ПК-5.В.2
		ПК-5.В.3
		ПК-5.В.4
19	Объясните порядок измерения КИМ параметров	УК-2.3.3
	сложнопрофильных деталей	ПК-5.3.1
		ПК-5.3.2
		ПК-5.3.3
		ПК-5.3.4
		ПК-5.У.1
		ПК-5.В.1
		ПК-5.В.2
20	Что будет, если предварительно не учитывать систему	УК-2.3.3
	вала или систему отверстия при контроле качества	ПК-5.3.1
	изделия и периодически путать эти 2 системы?	ПК-5.3.2
		ПК-5.3.3
		ПК-5.3.4
		ПК-5.У.1
		ПК-5.В.1
		ПК-5.В.2

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	Код			
J 11/ 11	примерный пере ень вопросов для тестов	индикатора			
	Перечень вопросов для текущего/промежуточного контроля				
	Общие вопросы цифровой метрологии	УК-2.3.3			
	1) Выделите, какое из направлений не упоминаются в перечне	ПК-5.3.1			
1	1 основных задач цифровой метрологии?				
	а) Сети 5G;	ПК-5.3.2 ПК-5.3.3			
	b) BigData;	11K-3.3.3			

	с) Метрологические облака;	ПК-5.3.4
	d) Индустрия 4.0	ПК-5.У.1
	2) Укажите, что из перечисленного не является элементом	ПК-5.В.1
	современной цифровой метрологии?	ПК-5.В.2
	а) Цифровые измерения;b) Цифровые эталоны;	1111 0.15.2
	с) Нанометрология;	
	с) панометрология, d) Цифровые двойники.	
	3) Как вы считаете, сколько видов ИИС в зависимости от	
	выполняемых функий существует?	
	a) 5;	
	b) 10;	
	c) 7;	
	d) 12.	
	4) Выделите, какой десятичной степени соответствует приставка	
	«нано»?	
	a) 10 ⁻⁶ ;	
	b) 10 ⁻¹² ;	
	c) 10 ⁻⁹ ;	
	d) 10^{-3} .	
	5) Укажите, как называются датчики, в которых к одному	
	преобразователю подключается ряд сенсоров, воспринимающих различные или	
	однотипные величины?	
	а) Средства измерений;b) многофункциональные;	
	с) комплексные;	
	мультисенсорные.	
	Оборудование цифровой метрологии	ПК-5.3.1
	6) Укажите, ПО FormTracePack используется для:	ПК-5.3.2
	а) КИМ	ПК-5.3.3
	b) ВИМ	
	с) Ручного измерительного инструмента	ПК-5.3.4
	d) контурографа	ПК-5.У.1
	7) Укажите, ПО RoundPack используется для:	ПК-5.В.1
	a) КИМ b) ВИМ	ПК-5.В.2
	, , , , , , , , , , , , , , , , , , ,	
	с) Ручного измерительного инструментаd) кругломера	
	8) Укажите, ПО MCosmos используется для:	
	а) КИМ	
	b) ВИМ	
	с) Ручного измерительного инструмента	
	d) Кругломера	
	9) Укажите, ПО QSPack используется для:	
2	а) КИМ	
_	b) ВИМ	
	с) Ручного измерительного инструмента	
	d) Кругломера	
	10) Как вы считаете, какой прибор работает без специализированного ПО?	
	а) КИМ	
	b) BUM	
	с) Ручной измерительный инструмент	
	d) профилометр	
	11) Выделите, какой из типов ручного измерительного инструмента	
	Mitutoyo в лаборатории ЦМ не является цифровым?	
	а) Штангенциркуль	
	b) Штангенрейсмас	
	с) Гладкий микрометр	
	 d) Двухточечный нутромер 12) Как вы считаете, какая деталь используется для калибровки 	
	трехточечного нутромера?	
	а) Треугольник	
L	/ 1 J	

b)	Параллелепипед
c)	Куб
d)	Кольцо
	13) Укажите, какой инструмент не подходит для контроля общей длины
вала?	
	Штангенциркуль
	Микрометр
	Штангенрейсмус
d)	нутромер
	14) Выделите, какой инструмент подходит для контроля размеров типа
	тий и валов?
	Штангенциркуль
	Микрометр
	Штангенрейсмус
a)	нутромер
	15) Как вы считатет, во сколько раз погрешность подходящего
	тельного инструмента должна быть меньше величины допуска на
контрол а)	пируемый размер?
a) b)	
c)	
	10
u)	16) Объясните цель функции Select stylus профилолметра:
9)	Выбора типа щупа
	Запуска трассировки
	Настройки режимов
	Все ответы верны
u)	17) Укажите, какое количество шагов N является стандартным для
профил	ометра?
a)	
	10
c)	
d)	
,	18) Выделите, во сколько методов измерений реализует профилометр
Mitutoy	
a)	
b)	5
c)	3
d)	4
	19) Найдите, какое значение центрирования (в мкм) должно быть
обеспеч	нено при нивелировании детали на предметном столе кругломера?
a)	5
b)	
c)	
d)	20
	20) Укажите, сколько микрометрических головок обеспечивают
	рование детали на столе кругломера?
a)	5
b)	
c)	4
a)	20 21) Выданита скан ка сенений необходима измерить ная контроля
1117	21) Выделите, сколько сечений необходимо измерить для контроля
	ричности? 2
a) b)	3
c)	4
d)	5
u)	22) Укажите, сколько сечений необходимо измерить для получения оси?
a)	22)
b)	3
c)	4
d)	5
٠,	23) Выделите, сколько сечений необходимо измерить для контроля
	, , , , , , , , , , , , , , , , , ,

биения?	
a) 2	
· ··· · · · · · · · · · · · · · · · ·	
b) 3	
c) 4	
d) 5	
24) Определите, какое отклонение формы соответствует данному	
изображению?	
а) плоскостность	
b) цилиндричность	
с) круглость	
d) радиальное биение	
25) Как вы считаете, какая из операций выполняется при настройке	
ВИМ первой?	
а) Черновая фокусировка на детали	
b) Настройка освещения	
с) Построение линий	
d) автофокусировка	
26) Выберите, какая функция позволяет измерить окружность,	
полностью попадающую в поле зрения, быстрее всего?	
а) По точкам	
b) Автоэлемент	
с) Пересечение	
d) вычитание	
27) Укажите, какое количество шагов N задается для калибровки	
контурографа (эталон состоит из КМД, сферы и штифта)	
a) 5	
b) 10	
c) 3	
d) 2	
28) Как можно объяснить, что позволяет сделать сшивка контура при	
работе с контурографом?	
а) Измерить все размеры на контуре	
b) Объединить несколько контуров в один	
с) Для контурографа не применяется	
d) Объединить несколько размеров	
29) Укажите, как выбрать длину измеряемой поверхности при работе на	
профилометре?	
а) Через количество N	
b) Через длину отсечки шага	
с) Через скорость прямого хода	
d) Через скорость обратного хода	
30) Выделите, сколько точек необходимо измерить при калибровке	
щупа КИМ?	
a) 5	
b) 9	
c) 15	
d) 20	
31) Укажите, какой примерный диаметр у калибровочной сферы КИМ	
(B MM)?	
a) 15	
b) 20	
c) 25	
d) 30	
32) Выделите, сколько элементов необходимо измерить на детали для	
черновой привязке к ней?	
a) 2	
b) 3	
c) 5	
d) 7	
33) Назовите, в каком режиме необходимо создавать измерительную	
программу на КИМ для последующего повтора при контроле партии деталей?	
а) Repeat Mode	
b) Standart Mode	
) builduit inode	1

	c)	Learn Mode	
	d)	Measure Mode	
		Отклонения, допуски и посадки 34) Укажите, как называется характер соединения деталей,	ПК-5.3.1
	опреде	ляемый величиной получающихся зазоров или натягов:	ПК-5.3.2
	_	посадкой	ПК-5.3.3
	b)	сопряжением	ПК-5.3.4
	c)	основным отклонением	ПК-5.У.1
		35) Определите, какое звено является регулирующим	ПК-5.В.1
	a)		ПК-5.В.2
	· ·	A	
	c)	В 36) Определите правильную запись, обозначенную на чертеже	
	отверст		
		Ø40+0,025	
		Ø40p7н7	
	c)	40p7(+0,025;-0,34)	
		37) Как называется посадка, при которой диаметр отверстия	
		ельно меньше диаметра вала?	
	a) b)	с натягом с зазором	
	c)	•	
		38) Как называется посадка, при которой диаметр отверстия	
	значит	ельно больше диаметра вала?	
	a)	с зазором	
	b)	с натягом	
	c)	переходная	
	nanuoo	39) Укажите, как называется абсолютная величина алгебраической ги между верхним и нижним отклонениями?	
		ответ 1 и 2 верны	
3	b)	полем допуска	
	c)	допуском	
		40) Вспомните, в системе СЭВ для размеров до 10000 мм установлено	
		квалитетов:	
		19	
	b) c)	14 21	
		41) Укажите, как называется характер соединения деталей,	
	опреде	ляемый величиной получающихся зазоров или натягов?	
		посадкой	
		сопряжением	
	c)	основным отклонением	
	2)	42) Верхнее предельное отклонение в системе отверстия обозначается: ES	
		Ew	
	· · · · · · · · · · · · · · · · · · ·	±ES	
		43) Выделите, как называется абсолютная величина алгебраической	
	разност	ги между верхним и нижним отклонениями?	
		ответ 1 и 2 верны	
		полем допуска	
	c)	допуском	
	рисунк	44) Укажите, в какой системе представлен обозначенный размер на	
		в системе вала	
		в системе отверстия	
		открытый размер	
		45) Укажите, в какой системе представлен обозначенный размер на	
	рисунк		

- а) в системе отверстия
- b) в системе вала
- с) открытый размер
 - 46) Найдите определение номинального размера:
- а) размер, относительно которого определяют предельные размеры и который служит началом отсчёта отклонений
- b) размер, определяющий величину и форму детали
- с) размер, необходимый для изготовления и контроля детали
 - 47) Найдите определение взаимозаменяемости:
- а) возможность беспригоночной сборки любых независимо изготовленных с заданной точностью
- b) Свойство быстрой собираемости и возможности равноценной замены, но с потерей точности
- с) однотипных деталей
- d) выполнение требований к замене бракованных деталей.
 - 48) Дайте правильный перевод известным формулировкам:
- a) Допуск IT = Internal tolerance; Верхние и нижние отклонения, ES = Ecart Superieur, ~EI = Ecart Interieur
- b) Допуск IT = International teacher; Верхние и нижние отклонения, ES = Ecart Superfinisher, EI = Ecart Interieur
- c) Допуск IT = International tool; Верхние и нижние отклонения, ES = Ecart Superfinisher, EI = Ecart Interieur
 - 49) Ø100 G7/h6 обозначает, что это посадка:
- а) в системе вала
- b) в системе отверстия
- с) переходная
 - 50) Как называется график, изображенный на рисунке:
- а) Осциллограмма
- b) График частотной характеристики
- с) График профиля
 - 51) Определите, чего не хватает в указании базы:
- а) Допуска
- b) Предела миниума материала
- с) Обозначения отклонения от геометрии
 - 52) Что за инструмент обозначен на рисунке
- а) Штангенрейсмас
- b) Штангенциркуль
- с) Профилометр
 - 53) Посмотрите на рисунок, какой калибр обозначен?
- а) Калибр-скоба
- b) Калибр кольцо
- с) Калибр регулируемый
 - 54) Посмотрите на рисунок, какой калибр обозначен?
- а) Калибр регулируемый
- b) Калибр-скоба
- с) Калибр гладкий
 - 55) Посмотрите на чертеж. Что значит определение «CZ»?
- а) Общее поле допуска
- b) Зависимый допуск
- с) Правило прилегания «Е»
- 56) Согласно ГОСТ Р 53442-2015, теоретически точный размер TED обозначение «LE» это
 - а) Элемент-линия
 - b) Смещенное поле допуска
 - с) Зависимый допуск
 - 57) Согласно ГОСТ Р 53442-2015, теоретически точный размер ТЕD:
 - а) Все ответы верны
 - b) TED размер, который применяют при выполнении различных операций

- (например операций присоединения, разделения или набора).
- с) TED может быть линейным или угловым.
- d) TED может определять протяженность или относительное месторасположение части какого-либо элемента
 - 58) Найдите характеристику правила Тейлора:
- а) если размер размерного элемента везде равен пределу максимума материала, то элемент должен иметь идеальную цилиндрическую форму, после указания допуска указывается знак «Е», распространяется чаще всего, при установке подшипников
- b) если размер размерного элемента везде равен пределу максимума материала, то элемент должен иметь идеальную цилиндрическую форму.
- с) если размер размерного элемента везде равен пределу максимума материала, то элемент должен иметь идеальную цилиндрическую форму, после указания допуска указывается знак «Е»
- 59) Согласно ГОСТ Р 53442-2015, теоретически точный размер TED обозначение «UZ» это
 - а) Смещенное поле допуска
 - b) Зависимый допуск
 - с) Элемент-линия
 - 60) Как обозначаются зависимые допуски?
 - a) MLR
 - b) H
 - c) E

Задания для проверки остаточных знаний

Тип 1 Задание комбинированного типа с выбором одного верного ответа из четырех предложенных и обоснованием выбора.

(Инструкция: прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа).

Как вы считаете, сколько видов ИИС (информационноизмерительных систем) в зависимости от выполняемых функций существует?

- a) 5;
- b) 10;
- c) 7;
- d) 12.

ОФОРМЛЕНИЕ ОТВЕТА (ЭТАЛОННЫЙ ОТВЕТ):

5 видов ИИС. В зависимости от выполняемых функций ИИС реализуются в виде 5 систем: измерительные системы, системы автоматического контроля, системы технического диагностирования, системы распознавания образов, телеизмерительные системы.

Тип 2 Задание комбинированного типа с выбором нескольких вариантов ответа из предложенных и развернутым обоснованием выбора.

(Инструкция: прочитайте текст, выберите правильные варианты ответа и запишите аргументы, обосновывающие выбор ответов).

Укажите средства измерений, относящихся к группе ручных измерительных инструментов

- а) Штангенциркуль;
- b) Видеомикроскоп;
- с) Микрометр;
- d) Профилометр;
- е) Нутромер;

УК-2

f) Кругломер.

ОФОРМЛЕНИЕ ОТВЕТА (ЭТАЛОННЫЙ ОТВЕТ):

Нутромер, Микрометр, Штангенциркуль — мобильные переносные ручные измерительные инструменты, не требующие долгой настройки и калибровки, не имеющие стационарного массивного корпуса

Тип 3 Задание закрытого типа на установление соответствия.

(Инструкция: прочитайте текст и установите соответствие. К каждой позиции, данной в левом столбце, подберите соответствующую позицию в правом столбце).

Укажите пару «единица физической величины» - «универсальная физическая постоянная»

- а) метр
- b) ампер
- с) килограмм
- d) кельвин
- 1) заряд электрона
- 2) скорость света
- 3) постоянная Планка
- 4) постоянная Больцмана

Ключ с ответами

a	b	c	d
2	1	3	4

Тип 4 Задание закрытого типа на установление последовательности. (Инструкция: прочитайте текст и установите последовательность. Запишите соответствующую последовательность букв слева направо).

Расположите ручной измерительный инструмент в порядке увеличения точности

- а) Микрометр
- b) Нутромер
- с) Штангенциркуль
- d) Штангенрейсмас

Ключ с ответами

1	2	3	4
c	d	a	b

Тип 5 Задание открытого типа с развернутым ответом.

(Инструкция: прочитайте текст и запишите развернутый обоснованный ответ)

Обоснуйте, какой ручной измерительный инструмент может быть использован для контроля наружного диаметра вала номиналом 45 мм с допуском 20 мкм

ОФОРМЛЕНИЕ ОТВЕТА (ЭТАЛОННЫЙ ОТВЕТ):

Для контроля размера подойдет цифровой микрометр. Он подходит как по конструктивному признаку, так и по соотношению погрешности и допуска на размер (погрешность микрометра ± 2 мкм).

Тип 1 Задание комбинированного типа с выбором одного верного ответа из четырех предложенных и обоснованием выбора.

(Инструкция: прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа).

Как вы считаете, какая деталь используется для калибровки трехточечного нутромера?

- а) Треугольник
- b) Параллелепипед
- с) Куб
- d) Кольцо

ОФОРМЛЕНИЕ ОТВЕТА (ЭТАЛОННЫЙ ОТВЕТ):

Кольцо. Для калибровки любого трехточечного нутромера подойдет только кольцо с внутренним отверстием нормированного диаметра.

Тип 2 Задание комбинированного типа с выбором нескольких вариантов ответа из предложенных и развернутым обоснованием выбора.

(Инструкция: прочитайте текст, выберите правильные варианты ответа и запишите аргументы, обосновывающие выбор ответов).

Выделите меры или детали, используемые для калибровки оборудования цифровой метрологии

- а) Калибр-пробка;
- b) Концевые меры длины;
- с) Кольцо;
- d) Магазин сопротивлений;
- е) Мера шероховатости;
- f) Chepa.

ОФОРМЛЕНИЕ ОТВЕТА (ЭТАЛОННЫЙ ОТВЕТ):

Концевые меры длины, кольцо, мера шероховатости — основные детали и меры, используемые для калибровки цифровых ручного измерительного инструмента и профилометра.

Тип 3 Задание закрытого типа на установление соответствия.

(Инструкция: Прочитайте текст и установите соответствие. К каждой позиции, данной в левом столбце, подберите соответствующую позицию в правом столбце)

Укажите пару «Средство измерений» - «Программное обеспечение»

- а) Ручной инструмент
- b) Контурограф
- с) Кругломер
- d) КИМ
- 1) MCosmos
- 2) FormTracePack

ПК-5

- 3) MeasureLink
- 4) RoundPack

Ключ с ответами

a	b	c	d
3	2	4	1

Тип 4 Задание закрытого типа на установление последовательности. (Инструкция: Прочитайте текст и установите последовательность. Запишите соответствующую последовательность букв слева направо)

Расположите буквы вариантов в порядке выполнения этапов измерения шероховатости поверхности профилометром SurfTest

- а) установка параметров трассировки
- b) настройка допуска
- с) калибровка по мере
- d) запуск трассировки

Ключ с ответами

1	2	3	4
С	a	b	d

Тип 5 Задание открытого типа с развернутым ответом.

(Прочитайте текст и запишите развернутый обоснованный ответ) При контроле диаметра вала номиналом 30 мм и предельными отклонениями -0,010 и 0,020 мм получен размер 30,003 мм. Определите, соответствует ли размер вала установленному допуску на размер.

ОФОРМЛЕНИЕ ОТВЕТА (ЭТАЛОННЫЙ ОТВЕТ):

Измеренный размер вала соответствует установленному допуску на размер. Годный размер должен находиться в диапазоне от 29,990 до 30,020 мм.

Система оценивания тестовых заданий:

1 тип) Задание комбинированного типа с выбором одного верного ответа из четырех предложенных и обоснованием выбора считается верным, если правильно указана цифра и приведены конкретные аргументы, используемые при выборе ответа. Полное совпадение с верным ответом оценивается 1 баллом, неверный ответ или его отсутствие – 0 баллов.

2 тип) Задание комбинированного типа с выбором нескольких вариантов ответа из предложенных и развернутым обоснованием выбора считается верным, если правильно указаны цифры и приведены конкретные аргументы, используемые при выборе ответов. Полное совпадение с верным ответом оценивается 1 баллом, если допущены ошибки или ответ отсутствует — 0 баллов.

3 тип) Задание закрытого типа на установление соответствия считается верным, если установлены все соответствия (позиции из одного столбца верно сопоставлены с позициями другого столбца). Полное совпадение с верным ответом оценивается 1 баллом, неверный ответ или его отсутствие -0 баллов

4 тип) Задание закрытого типа на установление последовательности считается верным, если правильно указана вся последовательность цифр. Полное совпадение с

верным ответом оценивается 1 баллом, если допущены ошибки или ответ отсутствует -0 баллов.

5 тип) Задание открытого типа с развернутым ответом считается верным, если ответ совпадает с эталонным по содержанию и полноте. Правильный ответ за задание оценивается в 3 балла, если допущена одна ошибка \неточность \ ответ правильный, но не полный - 1 балл, если допущено более 1 ошибки \ ответ неправильный \ ответ отсутствует – 0 баллов.

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ	
	Не предусмотрено	

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- презентация;
- видеоролики;

Видеоматериалы размещены в курсе LMS (https://lms.guap.ru/new/course/view.php?id=8092).

1. Вводная часть лекции (вступление) предусматривает время на проверку готовности студентов к занятию (их наличие и осмотр внешнего вида, текущий контроль пройденного ранее учебного материала),а также объявление темы лекции, её целей, рекомендаций по использованию учебной литературы в часы самостоятельной работы, с указанием параграфов (страниц) и полных наименований изданий.

Вступление:

- тема лекции;
- учебные цели, которые должны быть достигнуты на лекции;
- учебные вопросы;
- учебная литература.

Контрольные вопросы (пример):

- 1. Назовите метрологические характеристики средств измерений.
- 2. Дайте характеристику основной погрешности измерения.
- 3. Назовите источники дополнительных погрешностей измерений.
- 2. Основная часть лекции раскрывает учебные вопросы занятия. При необходимости конкретизировать учебный материал, главные (узловые) вопросы могут содержать подвопросы.

Понятие о единстве измерений и его основы:

- условия единства измерений;
- нормативные основы единства измерений;
- организационные основы единства измерений;
- технические основы единства измерений.
- 3. В заключительной части лекции следует планировать время на выводы, выдачу задания студентам на самостоятельную работу, ответы на вопросы по пройденной теме, подведение итогов, а также на общие выводы, помогающие осмыслить всю лекцию, отчётливо высветить её основную идею.

Заключительная часть

- 1. Выводы по лекции.
- 2. Объявление оценок студентам по инициативному контролю.
- 3.Задание студентам на самостоятельную работу.
- 4.Ответы на вопросы студентов.
- 11.2. Методические указания для обучающихся по выполнению лабораторных работ

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Задание к выполнению лабораторной работы выдается преподавателем в начале занятия в соответствии с планом занятий. Темы лабораторных работ приведены в табл. 5 данной программы.

Выполнение лабораторной работы состоит из трех этапов:

- экспериментально-практического;
- расчетно-аналитического;
- контрольного в виде защиты отчета.

Во вводной части проведения лабораторной работы предусматриваются: вступление, введение, доведение до обучающихся основных мер безопасности при работе с приборами и оборудованием лаборатории.

Вводная часть плана так же должна включать проверку подготовленности студентов к занятию (проверка выполнения задания, знаний по теме занятия, знанию руководящих документов и др.). Контрольные вопросы должны формулироваться так, чтобы ответы на них позволяли убедиться в подготовленности студентов к занятию.

Основная часть занятия должна включать последовательность работы обучающихся и преподавателя на занятии: подготовка лабораторного оборудования к работе; порядок проведения эксперимента (опыта) — отрабатываемые вопросы (задачи, действия) и их краткое содержание; приведение лабораторного оборудования в исходное состояние; анализ полученных результатов и оформление отчета.

В задании на лабораторную работу указываются:

- наименование темы;
- учебные цели;
- время и место проведения;
- перечень отрабатываемых учебных вопросов;
- организационно-методические указания студентам по подготовке и проведению занятия;
- перечень литературы (документов), подлежащих изучению перед занятием;
- отчётные документы (материалы) по лабораторной работе и сроки их представления.

В задании на лабораторную работу преподаватель может указать перечень контрольных вопросов, необходимых для проверки готовности обучающихся к занятию.

В перечень литературы и материалов для подготовки и проведения лабораторной работы могут включаться учебники и учебные пособия, технические описания и эксплуатационные инструкции лабораторного оборудования, инструкции по мерам безопасности, различные справочные и другие материалы, необходимые для работы.

В отчетных материалах в задании, как правило, указываются: форма отчета; как должен быть оформлен цифровой и графический материал; порядок сравнения полученных результатов с расчетными, оценка погрешностей; порядок формулировки выводов и заключений; порядок защиты выполненной работы.

Структура и форма отчета о лабораторной работе

Отчет о лабораторной работе должен содержать: титульный лист, основную часть, выводы по результатам исследований.

На титульном листе должны быть указаны: название дисциплины, название лабораторной работы, фамилия и инициалы преподавателя, фамилия и инициалы студента, номер его учебной группы и дата защиты работы.

Основная часть должна содержать задание, результаты экспериментальнопрактической работы, расчетно-аналитические материалы.

Выводы по проделанной работе должны содержать рекомендации по улучшению условий труда на рабочем месте.

Требования к оформлению отчета о лабораторной работе

Титульный лист отчета должен соответствовать шаблону, приведенному в секторе нормативной документации $\Gamma \text{У} A \Pi \text{ https://guap.ru/standart/doc}$

Оформление основной части отчета должно быть оформлено в соответствии с ГОСТ 7.32-2017. Требования приведены в секторе нормативной документации ГУАП https://guap.ru/standart/doc

При формировании списка источников студентам необходимо руководствоваться требованиями стандарта ГОСТ 7.0.100-2018. Примеры оформления списка источников приведены в секторе нормативной документации ГУАП. https://guap.ru/standart/doc.

11.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- курс в LMS.
- 11.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

В течение семестры студенты

- защищают лабораторные работы;
- выполняют тестирования по материалам лекции в среде LMS.

Для текущего контроля успеваемости используются тесты.

11.5. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— экзамен — форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Если в течение семестра студентом защищено менее 50% отчетов по лабораторным работам, оценка на экзамене может быть занижена на 1 балл.

Система оценок при проведении текущего контроля и промежуточной аттестации осуществляется в соответствии с руководящим документом организации РДО ГУАП. СМК 3.76 «Положение о текущем контроле успеваемости и промежуточной аттестации студентов и аспирантов, обучающихся по образовательным программам высшего образования в ГУАП» https://docs.guap.ru/guap/2020/sto_smk-3-76.pdf.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой