МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 1

УТВЕРЖДАЮ
Руководитель образовательной программы
д.т.н.,проф.

(должность, уч. степень, звание)

А.В. Копыльцов

(инициалы, фамилия)

(подпись)

« 10 » февраля 2025 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Дифференциальные уравнения» (Наименование дисциплины)

Код направления подготовки/ специальности	03.03.01 Прикладные математика и физика	
Наименование направления подготовки/ специальности		
Наименование направленности	Прикладная физика и информационные технологии наноиндустрии	
Форма обучения	очная	
Год приема	2025	

Лист согласования рабочей программы дисциплины

Программу составил (а)	De	
доц.,к.фм.н. (должность, уч. степень, звание)	03.02.2025 (подпись, дата)	Д.В. Сугак (инициалы, фамилия)
Программа одобрена на заседа		
« <u>3</u> » <u>февраля</u> 20 <u>25</u> г, пр	отокол № <u>02/01</u> _	965 9
Заведующий кафедрой № 1 д.фм.н.,доц.	03.02.2025	А.О. Смирнов
(уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Заместитель директора инстит	ута ФПТИ по методической р	аботе
доц.,к.т.н.	10.02.2025	Н.Ю. Ефремов
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Дифференциальные уравнения» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 03.03.01 «Прикладные математика и физика» направленности «Прикладная физика и информационные технологии в наноиндустрии». Дисциплина реализуется кафедрой «№1».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

УК-2 «Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений»

Содержание дисциплины охватывает круг вопросов, связанных с различными методами интегрирования обыкновенных дифференциальных уравнений, с теоремами существования и единственности решений обыкновенных дифференциальных уравнений, с системами линейных дифференциальных уравнений, а также с возможностями использования обыкновенных дифференциальных уравнений при изучении реальных явлений и процессов.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа обучающегося, консультации.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 5 зачетных единиц, 180 часов.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Преподавание дисциплины «Дифференциальные уравнения» имеет целью воспитать высокую математическую культуру у студентов, необходимую им в последующем применении различных методов решения обыкновенных дифференциальных уравнений, а также развить у обучающихся способность устанавливать зависимость между физическими величинами и их производными в форме обыкновенных дифференциальных уравнений.

- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Универсальные компетенции	УК-2 Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений	УК-2.3.1 знать виды ресурсов и ограничения для решения поставленных задач УК-2.У.1 уметь проводить анализ поставленной цели и формулировать задачи, которые необходимо решить для ее достижения УК-2.У.3 уметь выдвигать альтернативные варианты действий с целью выбора оптимальных способов решения задач, в том числе с помощью цифровых средств УК-2.В.2 владеть навыками выбора оптимального способа решения задач с учетом имеющихся условий, ресурсов и ограничений

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- « Математика. Математический анализ»,
- « Математика. Аналитическая геометрия и линейная алгебра».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- « Физические основы нанотехнологии»,
- « Физика твердого тела»,

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам №4
1	2	3
Общая трудоемкость дисциплины, 3E/ (час)	5/ 180	5/ 180
Из них часов практической подготовки		
Аудиторные занятия, всего час.	51	51
в том числе:		
лекции (Л), (час)	34	34
практические/семинарские занятия (ПЗ), (час)	17	17
лабораторные работы (ЛР), (час)		
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)	54	54
Самостоятельная работа, всего (час)	75	75
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.	Экз.

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции	П3 (С3)	ЛР	КП	CPC
***************************************	(час)	(час)	(час)	(час)	(час)
Cem	естр 4				
Раздел 1. Дифференциальные уравнения первого порядка.	10	5			25
Раздел 2. Дифференциальные уравнения порядка выше первого.	12	6			25
Раздел 3. Преобразование Лапласа.	12	6			25
Итого в семестре:	34	17			75
Итого	34	17	0	0	75

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий
---------------	---

1	Дифференциальные уравнения первого порядка.
_	дифференциизыные уривнения первого порядки
	Уравнения первого порядка, разрешенные относительно производной. Уравнения с разделяющимися переменными.
	Линейные уравнения первого порядка. Уравнения в полных
	дифференциалах. Теоремы существования и единственности
	решения уравнения $\frac{dy}{dt} = f(x, y)$. Простейшие типы уравнений,
	не разрешенных относительно производной.
2	Дифференциальные уравнения порядка выше первого.
	Теорема существования и единственности для
	дифференциального уравнения п-го порядка. Простейшие случаи
	понижения порядка. Линейные дифференциальные уравнения n-го
	порядка. Линейные однородные уравнения с постоянными
	коэффициентами и уравнения Эйлера. Линейные неоднородные
	уравнения с постоянными коэффициентами и уравнения Эйлера.
	Понятие о краевых задачах.
3	Преобразование Лапласа.
	Преобразование Лапласа постоянной, показательной функции,
	синуса и косинуса. Дифференцирование оригинала и
	изображения. Интегрирование оригинала и изображения.
	Преобразование Лапласа от свертки. Преобразование Лапласа
	смещенной функции. Преобразование Лапласа линейных
	дифференциальных уравнений с постоянными коэффициентами и
	их систем.

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

	•	1 37		Из них	$N_{\underline{0}}$
$N_{\underline{0}}$	Темы практических	Формы практических	Трудоемкость,	практической	раздела
п/п	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
		Семестр 4			
1.1	Дифференциальные	Решение задач	1		1
	уравнения с				
	разделяющимися				
	переменными.				
1.2	Однородные	Решение задач	2		1
	дифференциальные				
	уравнения первого				
	порядка.				
1.3	Уравнения в полных	Решение задач	2		1
	дифференциалах.				
2.1	Однородные	Решение задач	2		2
	линейные				
	дифференциальные				
	уравнения с				

	постоянными			
	коэффициентами.			
2.2	Формула	Решение задач	2	2
	Остроградского-			
	Лиувилля.			
2.3	Линейное	Решение задач	2	2
	неоднородное			
	дифференциальное			
	уравнение. Метод			
	вариации			
	произвольных			
	постоянных.			
3.1	Преобразование	Решение задач	2	3
	Лапласа.			
	Дифференцирование			
	оригинала.			
3.2	Преобразование	Решение задач	2	3
	Лапласа.			
	Дифференцирование			
	изображения.			
3.3	Восстановление	Решение задач	2	3
	оригинала по			
	заданному			
	изображению.			
	Beer	0	17	

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

	•	1 1 2 7 1		Из них	$N_{\underline{0}}$
$N_{\underline{0}}$	Цаиманаран	ие лабораторных работ	Трудоемкость,	практической	раздела
Π/Π	Паимсновані	ие лаоораторных раоот	(час)	подготовки,	дисцип
				(час)	лины
		Учебным планом не п	редусмотрено		
		Всего			

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 4,
Вид самостоятсявной раооты	час	час
1	2	3
Изучение теоретического материала дисциплины (TO)	40	40

Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю успеваемости (ТКУ)	20	20
Домашнее задание (ДЗ)	10	10
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной аттестации (ПА)	5	5
Всего:	75	75

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8– Перечень печатных и электронных учебных изданий

Количество экземпляров Шифр/ в библиотеке Библиографическая ссылка URL адрес (кроме электронных экземпляров) Пискунов Н. С. Дифференциальное и интегральное исчисления: В 2 т.: учебное 517 П34 пособие для студентов втузов М.: Интеграл-237 Пресс, 2004 -- 2004. - 415 c. Берман, Г. Н. Сборник задач по курсу 517 математического анализа: учебное пособие / Б50 165 Г. Н. Берман. - 22-е изд., перераб. - СПб.: Профессия, 2005. - 432 с. Зингер А.А., Макарова М.В. Дифференциальные уравнения: учеб. УДК 517.9 100 пособие/ А.А. Зингер, М.В. Макарова. – СПб.:ГУАП, 2014.- 56с. Макарова М.В., Помыткин С.П. Применение дифференциальных уравнений для решения УДК 517.9 прикладных задач: учеб.-метод. пособие/ 50 М.В. Макарова, С.П. Помыткин. –СПб.: ГУАП, 2021.- 45с. Агафонов, С.А. Дифференциальные уравнения / С.А. Агафонов, А.Д. Герман, Т.В. ЭБС Лань Муратова. – МГТУ им. Н.Э. Баумана, 2004. (Сер. Математика в техническом университете; Вып. VII). Евсеева, О. А. Дифференциальные уравнения: учебно-методическое пособие / О. ЭБС Лань

А. Евсеева, О. А. Малыгина, Е. В. Пронина.

	— Москва: РТУ МИРЭА, 2021. — 139 с.	
	Павельева, Е. Б. Неопределенные интегралы:	
	методические указания / Е. Б. Павельева. —	DEG H
	2-е изд. — Москва: МГТУ им. Н.Э. Баумана,	ЭБС Лань
	2018. — 96 c.	
	Крум, Е. В. Дифференциальные уравнения и	
	системы дифференциальных уравнений:	ЭГС Логи
	учебно-методическое пособие / Е. В. Крум, Е.	ЭБС Лань
	К. Бичи-оол. — Кызыл: ТувГУ, 2018. — 78 с.	
	Жабко, А. П. Дифференциальные уравнения	
	и устойчивость: учебник / А. П. Жабко, Е. Д.	ЭБС Лань
	Котина, О. Н. Чижова. — Санкт-Петербург:	ЭБС Лань
	Лань, 2022. — 320 с.	
	Назарова, Т. М. Дифференциальные	
	уравнения: учебное пособие / Т. М. Назарова,	ЭБС Лань
	И. М. Пупышев, В. В. Хаблов. —	SBC Harib
	Новосибирск: НГТУ, 2017. — 100 с.	
	Вельмисов, П. А. Дифференциальные	
	уравнения: учебное пособие / П. А.	ЭБС Лань
	Вельмисов. — Ульяновск: УлГТУ, 201751с.	1.5
517	Филиппов А.Ф. Введение в теорию	15
Ф53	дифференциальных уравнений: учебник / А. Ф.	
	Филиппов 3-е изд., испр М.: URSS:	
	КомКнига, 2010 240 с.	
517	Эльсгольц Л.Э. Дифференциальные уравнения:	1
Э53	учебное пособие / Л. Э. Эльсгольц М.; Л.:	
	Гостехиздат, 1957 271 с.	
517	Филиппов А.Ф. Сборник задач по	4
Ф53	дифференциальным уравнениям: учебное	
	пособие / А. Ф. Филиппов 7-е изд., стер М.:	
	Наука, 1992 128 с.	
517	Понтрягин Л.С.	1
П56	Обыкновенные дифференциальные уравнения:	
	учебник / Л. С. Понтрягин 4-е изд М.: Наука.	
	Гл. ред. физмат. лит., 1974 331 с.	
517	Пискунов Н. С. Дифференциальное и	237
П34	интегральное исчисления: В 2 т.: учебное пособие	
	для студентов втузов М.: Интеграл-Пресс, 2004 -	
	- 2004 415 c.	
517	Берман, Г. Н. Сборник задач по курсу	165
Б50	математического анализа: учебное пособие / Г. Н.	
	Берман 22-е изд., перераб СПб.: Профессия,	
	2005 432 c.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9. Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование
http://www.intuit.ru/	Интуит (национальный открытый университет)
http://e.lanbook.com/books	Доступ в ЭБС «Лань» осуществляется по договору № 695-7 от
	30.11.2011
http://www.math-net.ru	Общероссийский математический портал
http://e.lanbook.com/view	ЭБС «Лань»

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование	
1.	Microsoft Windows	
2.	Microsoft Office	
3.	MathType	
4.	Wolfram Mathematica	

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	ЭБС «Лань»

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	1 Лекционная аудитория	
2	Аудитория общего назначения	

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Экзаменационные билеты;
	Задачи;

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	оценки уровня сформированности компетенции		
5-балльная шкала	Характеристика сформированных компетенций		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 		
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 		
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 		
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 		

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
1	Какое уравнение называется дифференциальным	УК-2.3.1
	уравнением первого порядка?	
	Ответ: Дифференциальным уравнением первого	

2	порядка называется уравнение, связывающее x , y и y' . Оно может быть задано в одной из форм: $F(x, y, y') = 0$. $y' = f(x, y)$, $M(x, y)dx + N(x, y)dy = 0$. В каком случае функция $y = \varphi(x, C)$ (или $\Phi(x, y, C) = 0$), является общим решением дифференциального уравнения первого порядка? Ответ: Общим решением (общим интегралом) дифференциального уравнения первого порядка называется функция $y = \varphi(x, C)$ (или $\Phi(x, y, C) = 0$), которая а) является решением уравнения при любом допустимом C ; б) любое решение может быть получено из неё при некотором значении постоянной C .	УК-2.У.1
3	Является ли функция $x^2 + y^2 - 2x = C$. общим решением дифференциального уравнения $x + yy' = 1$? Ответ: Дифференцируя указанную неявно заданную функцию $x^2 + y^2 - 2x = C$. получаем равенство: $2x + 2yy' - 2 = 0$, то есть $x + yy' = 1$. Т.о. $x^2 + y^2 - 2x = C$ общее решение ДУ.	УК-2.У.3
4	Решите задачу Коши при начальных условиях: $y(1)=2$, т.е. найдите частные решения дифференциальных уравнений, представленных ниже 1. $y' = \frac{1}{x}$ Ответ: $y = \ln x + 2$ 2. $y' = \frac{5}{x}$ Ответ: $y = 5 \ln x + 2$ 3. $y' = \frac{1}{3x}$ Ответ: $y = \frac{1}{3} \ln x + 2$ 4. $y' = \frac{7}{x}$ Ответ: $y = 7 \ln x + 2$ 5. $y' = \frac{3}{x}$ Ответ: $y = 3 \ln x + 2$ 6. $y' = 9$ Ответ: $y = 9 \ln x + 2$ 7. $y' = \frac{12}{x}$ Ответ: $y = 12 \ln x + 2$ 8. $y' = \frac{31}{x}$	УК-2.В.2

OTBET:
$$y = 31 \ln|x| + 2$$

9. $y' = \frac{17}{x}$

OTBET: $y = 17 \ln|x| + 2$

10. $y' = \frac{27}{x}$

OTBET: $y = 27 \ln|x| + 2$

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

таолица то ттримерный перечень вопросов для тестов				
№ п/п	Примерный перечень вопросов для тестов	Код индикатора		
1.	Укажите тип дифференциального уравнения $(2x + 1)y' + y = x$:	УК-2.3.1		
	Ответы:			
	а. с разделяющимися переменными;			
	б. однородное;			
	в. линейное;			
	г. Бурнулли;			
	д. в полных дифференциалах;			
	е. другой тип.			
	Прочитайте текст, выберите правильный ответ и запишите			
	аргументы, обосновывающие выбор ответа.			
2.	Укажите общее решение дифференциального уравнения	УК-2.У.1		
	$(2x+1)dy + y^2dx = 0.$			
	a. $y = 2\ln 2x + 1 + C$;			
	$\delta \qquad v = \ln 2x + C ;$			
	$y = \frac{-1}{2x - c}$;			
	$y = \frac{2}{\ln 2x+1 +C};$			
	$y = \frac{1}{\ln 2x+1 };$			
	$y = 3 \ln x $.			
	Прочитайте текст, выберите правильный ответ и запишите			
	аргументы, обосновывающие выбор ответа.			
3.	Укажите частное решение дифференциального уравнения	УК-2.У.3		
]	y' + 2y = 4, удовлетворяющее начальному условию $y(0) = 5$:			
	, удовлетвориощее паланыюму условию установию			

	-2w . =					
	a. $y = e^{-2x} + 5$;					
	$\delta. \qquad y = \ln C - 2x ;$					
	y = 5 - 2x;					
	$y = 3e^{-2x} + 2;$					
	$y = 6c + 2$, $y = e^{c-2x} + 2$;					
	e. $y = 5e^{2x}$.					
	Прочитайте текст, выберите правильный ответ и запишите					
	аргументы, обосновывающие выбор ответа.					
4.	Среди перечисленных дифференциальных уравнений укажите	УК-2.В.2				
	уравнение с разделяющимися переменными:					
	a. $2xyy' - y^2 + x = 0;$					
	$6. \qquad \mathbf{y}' + \mathbf{y} \mathbf{cos} \mathbf{x} = 0;$					
	B. $(1-x)(y'+y) = e^{-x}$;					
	xy' = y(1 + lnx - lny);					
	xy'' = y'					
	Прочитайте текст, выберите правильный ответ и запишите					
	аргументы, обосновывающие выбор ответа.					
5.	Среди перечисленных дифференциальных уравнений укажите	УК-2.В.2				
	однородное уравнение:					
	a. $2xyy' - y^2 + x = 0;$					
	$(1-x)(y'+y) = e^{-x};$					
	xy' = y(1 + lnx - lny);					
	xy'' = y'					
	Прочитайте текст, выберите правильный ответ и запишите					
	аргументы, обосновывающие выбор ответа.					
<u>L</u>	ap-1					

Система оценивания тестовых заданий:

- 1 тип) Задание комбинированного типа с выбором одного верного ответа из четырех предложенных и обоснованием выбора считается верным, если правильно указана цифра и приведены конкретные аргументы, используемые при выборе ответа. Полное совпадение с верным ответом оценивается 1 баллом, неверный ответ или его отсутствие 0 баллов.
- 2 тип) Задание комбинированного типа с выбором нескольких вариантов ответа из предложенных и развернутым обоснованием выбора считается верным, если правильно указаны цифры и приведены конкретные аргументы, используемые при выборе ответов. Полное совпадение с верным ответом оценивается 1 баллом, если допущены ошибки или ответ отсутствует 0 баллов.
- 3 тип) Задание закрытого типа на установление соответствия считается верным, если установлены все соответствия (позиции из одного столбца верно сопоставлены с позициями другого столбца). Полное совпадение с верным ответом оценивается 1 баллом, неверный ответ или его отсутствие 0 баллов
- 4 тип) Задание закрытого типа на установление последовательности считается верным, если правильно указана вся последовательность цифр. Полное совпадение с верным ответом оценивается 1 баллом, если допущены ошибки или ответ отсутствует 0 баллов.
- 5 тип) Задание открытого типа с развернутым ответом считается верным, если ответ совпадает с эталонным по содержанию и полноте. Правильный ответ за задание оценивается в 3 балла, если допущена одна ошибка \ неточность \ ответ правильный, но не полный 1 балл, если допущено более 1 ошибки \ ответ неправильный \ ответ отсутствует -0 баллов.

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п		Пе	еречень контрольных работ
	Не предусмотрено		

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала – логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- Определения математических терминов.
- Формулировка теоремы.
- Доказательство теоремы.
- Иллюстрирующие примеры.
- 11.2. Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- связанные с получением новой информации путем самостоятельно выбранных обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Функции практических занятий:

- познавательная;
- развивающая;
- воспитательная.

По характеру выполняемых обучающимся заданий по практическим занятиям подразделяются на:

- ознакомительные, проводимые с целью закрепления и конкретизации изученного теоретического материала;
- аналитические, ставящие своей целью получение новой информации на основе формализованных методов;
- творческие, подходов к решению задач.

Формы организации практических занятий:

- в интерактивной форме (решение ситуационных задач, занятия по моделированию реальных условий, групповые дискуссии);
- в не интерактивной форме (выполнение упражнений, решение типовых задач, решение ситуационных задач и другое).

Требования к проведению практических занятий

Практические занятия начинаются с записи в журнал преподавателя присутствующих студентов. Затем объявляется тема практических занятий.

Преподаватель читает условие задачи и предлагает студентам самостоятельно решить задачу, используя знания, полученные студентом на лекции. Студент, который первым решил задачу, вызывается к доске. В случае если студент правильно решил задачу, он получает 5 баллов. Если студент решает задачу с помощью преподавателя, то получает 4 балла. Затем, в конце семестра, оценки студентов (включая оценку посещаемости) переводятся в бонусы (качество) от 0 до 5 баллов. Эти бонусы добавляются к общей сумме баллов в рамках модульно-рейтинговой системы.

Студентам выдается домашнее задание в виде задач, которые они сдают в установленные сроки.

11.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения

и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся являются:

- учебно-методический материал по дисциплине;
- 11.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

В течение семестра в системе дистанционного обучения ГУАП в форме тестирования проводятся две проверочные работы по решению задач и один теоретический опрос (перечень вопросов для тестов размещен в «Банке вопросов» в системе дистанционного обучения ГУАП), на практических занятиях проводятся проверочные работы по разделам курса в письменной форме, рассчитанные как на целое занятие, так и на его часть.

Результаты текущего контроля успеваемости будут учитываться при проведении промежуточной аттестации (при использовании бально-рейтинговой системы оценивания, каждый вид контроля оценивается в баллах, из которых формируется итоговый результат).

11.5. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Промежуточная аттестация проводится в форме дифференцированного зачета: форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Дифференцированный зачет как правило, проводится в период зачетной недели и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой