МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 2

УТВЕРЖДАЮ

Руководитель образовательной программы

д.т.н.,проф. (должность, уч. степень, звание)

А.В. Копыльцов

(инициалы, фамилия)

(подпись)

«<u>10</u>» февраля 20<u>25</u> г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Инженерная и компьютерная графика» (Наименование дисциплины)

Код направления подготовки/ специальности	03.03.01
Наименование направления подготовки/ специальности	Прикладные математика и физика
Наименование направленности	Прикладная физика и информационные технологии в наноиндустрии
Форма обучения	очная
Год приема	2025

Лист согласования рабочей программы дисциплины

Программу составил (а)		
доц.,д.т.н.,доц. (должность, уч. степень, звание)	05.02.2025 (подпись, дата)	А.Г. Федоренко (инициалы, фамилия)
Программа одобрена на заседан	ии кафедры № 2	
« <u>5</u> » <u>февраля</u> 20 <u>25</u> г, про	отокол № _7/24-25_	
Заведующий кафедрой № 2		
д.фм.н.,проф.	05.02.2025	В.Г. Фарафонов
(уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Заместитель директора институ	та ФПТИ по методической р	работе
доц.,к.т.н.	05.02.2025	Н.Ю. Ефремов
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Инженерная и компьютерная графика» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/специальности 03.03.01 «Прикладные математика и физика» направленности «Прикладная физика и информационные технологии в наноиндустрии». Дисциплина реализуется кафедрой «№2».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

УК-2 «Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений»

ОПК-2 «Способен использовать современные информационные технологии и программные средства при решении задач профессиональной деятельности, соблюдая требования информационной безопасности»

Содержание дисциплины охватывает круг вопросов, связанных с развитием пространственного представления студента; стимулирования его воображения; обучением студентов правилам выполнения и оформления графической и технической конструкторской документации в соответствии с основными положениями стандартов ЕСКД.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, лабораторные работы, самостоятельная работа студента, консультации.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме зачета.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы, 108 часов.

Язык обучения по дисциплине «русский»

- 1. Перечень планируемых результатов обучения по дисциплине
- 1.1. Цели преподавания дисциплины

Целью преподавания дисциплины «Инженерная и компьютерная графика» является обучение студентов правилам выполнения и оформления графической и текстовой конструкторской документации в соответствии с основными положениями стандартов ЕСКД, развитие пространственного воображения, логического мышления, навыков проекционного и объемного проектирования, компьютерного моделирования.

- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа)	Код и	Код и наименование индикатора
компетенции	наименование	достижения компетенции
	компетенции	A = 11111111111111111111111111111111111
	УК-2 Способен	
	определять круг	
	задач в рамках	
	поставленной цели	УК-2.3.3 знать возможности и
	и выбирать	ограничения применения цифровых
Универсальные	оптимальные	инструментов для решения
компетенции	способы их	поставленных задач
компетенции	решения, исходя из	УК-2.В.3 владеть навыками
	действующих	использования цифровых средств для
	правовых норм,	решения поставленной задачи
	имеющихся	
	ресурсов и	
	ограничений	
		ОПК-2.3.1 знать современные
	ОПК-2 Способен	информационные технологии и
	использовать	программные средства при решении
	современные	задач профессиональной деятельности,
	информационные	соблюдая требования информационной
	технологии и	безопасности
	программные	ОПК-2.У.1 уметь применять
Общепрофессиональные	средства при	современные информационные
компетенции	решении задач	технологии и программные средства
	профессиональной	при решении задач профессиональной
	деятельности,	деятельности
	соблюдая	ОПК-2.В.1 владеть навыками работы с
	требования	современными информационными
	информационной	технологиями и программными
	безопасности	средствами при решении задач
		профессиональной деятельности

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- Информатика.

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- Преддипломная практика.

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам №2
1	2	3
Общая трудоемкость дисциплины, 3E/ (час)	3/ 108	3/ 108
Из них часов практической подготовки		
Аудиторные занятия, всего час.	68	68
в том числе:		
лекции (Л), (час)	17	17
практические/семинарские занятия (ПЗ), (час)	34	34
лабораторные работы (ЛР), (час)	17	17
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)		
Самостоятельная работа, всего (час)	40	40
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Зачет	Зачет

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий.

Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции (час)	П3 (C3)	ЛР (час)	КП (час)	СРС (час)
Cer	иестр 2				
Раздел 1. Начертательная геометрия	6	10	6		10
Раздел 2. Инженерная графика	6	20	6		10
Раздел 3. Компьютерная графика	5	4	5		20
Итого в семестре:	17	34	17		40
Итого	17	34	17	0	40

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Таолица 4 — Содержание разд	Зделов и тем лекционного цикла		
Номер раздела	Название и содержание разделов и тем лекционных		
4	занятий		
1	Методы проецирования. Комплексный чертеж Монжа		
	точки, прямой, плоскости. Проецирование прямого угла.		
	Взаимное положение точки и прямой, точки и плоскости, двух		
	прямых, двух плоскостей. Преобразование комплексного		
	чертежа. Определение натуральной величины отрезка прямой		
	способом прямоугольного треугольника. Обратная теорема о		
	трех перпендикулярах. Способ замены плоскостей проекций.		
	Метод вращения. Метрические задачи. Кривые линии и		
	поверхности. Пересечение поверхностей. Развертывание		
	поверхностей. Способ триангуляции для развертывания		
	гранных пирамидальных и конических поверхностей. Способ		
	раскатки призматических и цилиндрических поверхностей.		
	Способ нормального сечения. Построение линий пересечения		
	монотонных и гранных поверхностей. Аксонометрические		
	проекции. Ортогональная изометрия. Стандартная		
	косоугольная и ортогональная диметрия. Их использование		
	для выполнения технических рисунков приборов и их узлов.		
2	Проекционное черчение. Сквозные технологии и цифровые		
	инструменты в проекционном черчении. ГОСТ 2.305-80		
	Изображения — виды, разрезы, сечения. Общие правила		
	изображения предметов. Рабочие чертежи деталей.		
	Основные требования к рабочим чертежам деталей.		
	Простановка размеров на чертежах. Обозначение		
	шероховатости поверхности. Нанесение на чертежах		
	обозначений покрытий. Заполнение основной надписи.		
	Указание материала деталей. Соединение деталей.		
	Разъемные и неразъемные соединения. Выполнение		
	сборочных чертежей. Эскизирование. Схемы. Общие		
	требования к выполнению схем Правила выполнения		
	электрических схем. Обозначения буквенно-цифровые,		
	применяемые в электрических схемах. Перечень		
	элементов к принципиальным электрическим схемам.		
	Правила выполнения кинематических схем. Правила		
3	выполнения монтажных электрических схем.		
3	Трехмерное моделирование деталей (объектов) в программных продуктах. Правила выполнения конструкторской		
	документации в электронном виде. Электронные модели		
	объектов. Электронные модели схем.		

Пакеты графических программ	КОМПАС-3D, ACAD-3D,
Autodesk 3dsMax, Autodesk	Inventor, ProENGINEER,
SolidWorks, Blender, SketchUp.	
Основы графического программ	ирования.

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

Тиолица 5 Практи теские запитии и их трудоемкоств					1.0
№ п/п	Темы практических занятий	Формы практических занятий	Трудоемкость, (час)	Из них практической подготовки, (час)	№ раздела дисцип лины
		Семестр 2	2		
1	Построение 3-х проекций детали. Использование КОМПАС-3D, ACAD-3D.	Расчетно- графическая работа	8		2
2	Моделирование трехмерных объектов. Использование КОМПАС-3D, ACAD-3D.	Расчетно- графическая работа	8		2
3	Разъемные и неразъёмные соединения. Сборочный чертеж. Использование КОМПАС-3D, ACAD-3D.	Расчетно- графическая работа	8		3
4	Эскизирование. Комплект технической документации изделия.	Расчетно- графическая работа	10		3
Всего 34					

4.4. Лабораторные занятия Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

1 400111	таолица о этаоораторные запитии и их трудоемкость					
			Из них	$N_{\underline{0}}$		
No	Наименование лабораторных работ	Трудоемкость,	практической	раздела		
Π/Π	паименование лаоораторных раоот	(час)	подготовки,	дисцип		
			(час)	лины		
	Семестр 2					

1	Определение натуральной величины отрезка прямой способом прямоугольного треугольника. Использование КОМПАС-3D, ACAD-3D.	4	1
2	Проецирование прямого угла Определение точки пересечения нормали к плоскости . Использование КОМПАС-3D, ACAD-3D.	4	1
3	Пересечение геометрических фигур. Пересечение двух плоскостей. Использование КОМПАС-3D, ACAD-3D.	4	2
4	Определение натуральных величин геометрических фигур. Развертывание поверхности. Использование КОМПАС-3D, ACAD-3D.	5	3
	Всего	17	

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 2,
Вид самостоятельной работы	час	час
1	2	3
Изучение теоретического материала дисциплины (TO)	20	20
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)	10	10
Выполнение реферата (Р)		
Подготовка к текущему контролю успеваемости (ТКУ)		
Домашнее задание (ДЗ)	10	10
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной		
аттестации (ПА)		
Всего:	40	40

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8— Перечень печатных и электронных учебных изданий

1 аолиц	(a 8– 11ep	ечень печатных и электронных учебных изданий	
	ифр/ , адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)
УДК	•	Федоренко А.Г. Инженерная и компьютерная графика.	5
Ф33	744 РУБ 744	Часть 1. Начертательная геометрия. Учебнометодическое пособиеСПб.: ГУАП, 2022-77с.	
УДК	004.9 2 РУБ 004	Федоренко А.Г., Голубков В.А. Инженерная и компьютерная графика. Проекционное черчение. Соединение деталей. Электронные модели. Учебнометодическое пособиеСПб.: ГУАП, 2023-50с.	5
УДК	744 РУБ 744	Фарафонов В.Г., Федоренко А.Г., Голубков В.А, Майоров Е.Е., М.В. Соколовская М.В. Инженерная и компьютерная графика. Методические указания к выполнению лабораторных работ. Часть 1 СПб.: ГУАП, 2022-63с.	5
УДК	744 РУБ 744	Федоренко А.Г., Голубков В.А,. Инженерная и компьютерная графика. Методические указания к выполнению лабораторных работ. Часть 2 СПб.: ГУАП, 2022-86с.	5
УДК	004.9 РУБ 004	Федоренко А.Г., Голубков В.А Проекционное черчение в среде ACAD16: методические указания по выполнению домашнего задания - СПб.: Изд-во ГУАП, 2021 60 с.	5
УДК	004.9 РУБ 004	В. Г. Фарафонов, А. Г. Федоренко, В. А. Голубков. Начертательная геометрия в среде ACAD16 : [Электронный ресурс] : методические указания по выполнению домашнего задания. ч. 1 / СПетерб. гос. унтаэрокосм. приборостроения; - Электрон. текстовые дан Санкт-Петербург: Изд-во ГУАП, 2021 70 с.	Эл.ресурс
УДК	004.9 РУБ 004	В. Г. Фарафонов, А. Г. Федоренко, В. А. Голубков. Начертательная геометрия в среде ACAD16: [Электронный ресурс]: методические указания по выполнению домашнего задания. ч. 2 / СПетерб. гос. унтаэрокосм. приборостроения; - Электрон. текстовые дан Санкт-Петербург: Изд-во ГУАП, 2021 82 с.	Эл.ресурс
УДК Н 36	514 РУБ	Фарафонов В.Г., Федоренко А.Г., Голубков В.А., Соколовская М.В. Начертательная геометрия в среде ACAD16. Часть 1. Методические указания по	5

	514	выполнению домашнего задания. СПб. : Изд-во ГУАП 2021., -82с.	
УДК Ф33	514 РУБ 514	Федоренко А.Г., Голубков В.А., Начертательная геометрия в среде ACAD16. Часть 2. Методические указания по выполнению домашнего задания. СПб. : Издво ГУАП 2021., -82c.	5
УДК	514 РУБ 514	Федоренко А.Г., В. А. Голубков В.А. ЭЛЕКТРОННАЯ КОНСТРУКТОРСКАЯ ДОКУМЕНТАЦИЯ В СРЕДЕ АСАD : методические указания к выполнению курсовой работы СПб. : Изд-во ГУАП, 2018 69 с.	5
https://vc.ru/li fe/276699- sboard- onlayn- platforma- dlya- repetitorov		sBoard — онлайн платформа для репетиторов	
https://www.is pring.ru/elear ning- insights/mood le		Система электронного обучения и тестирования Moodle: обзор возможностей	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 — Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование
http://e.lanbook.com/books	Доступ в ЭБС «Лань» осуществляется по договору № 695-
	7 от 30.11.2011
http://znanium.com/bookread	Доступ в ЭБС «ZNANIUM» осуществляется по договору
	№ 186-ЭБС от 08.02.2012

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование	
1	Компас 3D V18 - Лицензия бессрочная Договор 809-3 от 04.07.2017	
2	АСАD16 Предоставляется для университетов бесплатно.	

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п		Наименование
	Не предусмотрено	

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория общего назначения	12-01, 12-02,12-03
2	Компьютерный класс	13-12, 13-10, 22-08

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Зачет	Список вопросов;
	Тесты;
	Задачи.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

таолица 14 - критерии оценки уровня сформированности компетенции		
Оценка компетенции	Характеристика сформированных компетенций	
5-балльная шкала		
«отлично» «зачтено»	 – обучающийся глубоко и всесторонне усвоил программный материал; – уверенно, логично, последовательно и грамотно его излагает; – опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; – умело обосновывает и аргументирует выдвигаемые им идеи; – делает выводы и обобщения; – свободно владеет системой специализированных понятий. 	
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; 	

Оценка компетенции	Характеристика сформированных компетенций	
5-балльная шкала	таристернетики сформирования компетенции	
	делает выводы и обобщения;владеет системой специализированных понятий.	
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 	
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 	

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
	Учебным планом не предусмотрено	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 — Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
1.	Перечислите методы проецирования , используемые в графических редакторах КОМПАС-3D и ACAD3-D.	УК-2.3.3
2.	Перечислите методы проецирования и выберите метод, используемый в приборостроении.	ОПК-2.3.1
3.	Перечислите разделы курса где используется комплексный чертеж Монжа.	ОПК-2.3.1
4.	Возможно ли использование графических редакторов КОМПАС- 3D и ACAD-3D для построения комплексного чертежа Монжа?	УК-2.3.3
5.	При использовании графических редакторов КОМПАС-3D и ACAD-3D возможно ли определение точки пересечения прямой и плоскости не используя комплексный чертеж Монжа?	УК-2.В.3
6.	Назовите признак принадлежности точки и прямой.	ОПК-2.3.1
7.	На каких плоскостях проекций прямой угол проецируется в натуральную величину?	ОПК-2.3.1
8.	Какие задачи позволяет решать обратная теорема о трех перпендикулярах?	ОПК-2.3.1

9.	Какая теорема используется при построении нормали к плоскости?	ОПК-2.3.1
10.	Какие методы преобразование комплексного чертежа можно использовать в графических редакторах КОМПАС-3D и ACAD-3D?	УК-2.В.3
11.	К какому типу задач относится метод замены плоскостей проекций?	ОПК-2.3.1
12.	Что необходимо сделать для определения точки пересечение прямой с плоскостью?	ОПК-2.3.1
13.	Что необходимо сделать для определения линии пересечения двух плоскостей?	ОПК-2.У.1
14.	Какой метод используется для определения натуральной величины сечения поверхности плоскостью при использовании графических редакторов КОМПАС-3D и ACAD-3D?	УК-2.3.3
15.	Какой метод используется для определения точек пересечения поверхности с прямой линией при использовании графических редакторов КОМПАС-3D и ACAD-3D?	УК-2.3.3
16.	Какой метод используется для построения кривых, образованных от пересечения поверхностей конуса и цилиндра?	ОПК-2.3.1
17.	Какой метод используется для построения разверток гранных и конических поверхностей?	ОПК-2.3.1
18.	Какой метод используется для построения разверток призматических и цилиндрических поверхностей?	ОПК-2.3.1
19.	Перечислите стандартные виды аксонометрических проекций используемые в графических редакторах КОМПАС-3D и ACAD-3D.	УК-2.3.3
20.	У какой стандартной аксонометрической проекции оси Z и X расположены под углом 90 градусов?	ОПК-2.3.1
21.	Какие преобразования необходимо применить к прямой для определения её натуральной величины?	ОПК-2.В.1
22.	Какая прямая на фронтальной плоскости проекций расположена параллельно оси Z23, а на горизонтальной плоскости проекций параллельно Y13?	ОПК-2.3.1
23.	Какая называется прямая расположенная на фронтальной плоскости проекций параллельно оси X12?	ОПК-2.3.1
24.	Перечислите графические редакторы, позволяющие создавать анимационные 3D проекты на основе файлов с использованием языка LISP	УК-2.В.3
25.	Перечислите графические редакторы, с которыми совместим игровой движок Unity	УК-2.В.3
26.	Для каких целей используется графический редактор Unreal Engine?	УК-2.В.3
27.	Какие системы координат используются при работе графического редактора КОМПАС-3D?	УК-2.3.3
28.	Перечислите графические редакторы, использующие растровый способ получения изображения	УК-2.3.3
29.	Каким образом необходимо изменить положение ближайшей к наблюдателю точки А отрезка АВ, чтобы он преобразовался из восходящей прямой общего положения в нисходящую прямую общего положения?	ОПК-2.В.1

30.	Какая прямая изображается на фронтальной плоскости проекций	ОПК-2.3.1
50.	- как точка, а на горизонтальной плоскости проекций	OHK-2.5.1
	перпендикулярно оси X12?	
31.	Каким образом необходимо изменить положение ближайшей к	ОПК-2.В.1
31.	наблюдателю точки А треугольника АВС, чтобы он	OHK-2.D.1
	преобразовался из восходящей плоскости общего положения в	
	нисходящую плоскость общего положения?.	
32.	Какая прямая изображается на горизонтальной плоскости	ОПК-2.3.1
32.	проекций параллельно оси X12?	OHK-2.3.1
33.	Проекции какой прямой изображаются на фронтальной и на	ОПК-2.3.1
55.	горизонтальной плоскостях проекций - как прямые,	01110 2.5.1
	параллельная оси X12?	
34.	Как называется прямая, проекции которой изображаются на	ОПК-2.3.1
<i>5</i>	горизонтальной плоскости проекций - как точка, а на	01111 2.3.1
	фронтальной плоскости проекций - перпендикулярно оси X12?	
35.	На какой угол необходимо развернуть плоскость общего	ОПК-2.У.1
33.	положения на фронтальной плоскости проекций, относительно	OTIK 2.7.1
	фронтали f2, чтобы она превратилась во фронтально-	
	проецирующую плоскость?	
36.	Как называется прямая, изображаемая на фронтальной и	ОПК-2.3.1
50.	горизонтальной плоскостях проекций - как прямые линии	01110 2.5.1
	перпендикулярные оси X12?	
37.	На какой угол необходимо развернуть плоскость общего	ОПК-2.У.1
37.	положения на горизонтальной плоскости проекций, относительно	OTIK 2.7.1
	горизонтали h1, чтобы она превратилась во горизонтально-	
	проецирующую плоскость?	
38.	Как называется плоскость общего положения, у которой	ОПК-2.3.1
20.	ближайшая к наблюдателю точка на горизонтальной плоскости	01111 2.3.1
	проекций является самой низкой по отношению с другими	
	точками на фронтальной плоскости проекций?	
39.	Как называется плоскость общего положения, у которой	ОПК-2.3.1
	ближайшая к наблюдателю точка на горизонтальной плоскости	01111 21011
	проекций является самой высокой по отношению с другими	
	точками на фронтальной плоскости проекций?	
40.	Какая плоскость изображается на профильной плоскости	ОПК-2.3.1
	проекций - как прямая линия?	0.777.0.7
41.	Какая плоскость изображается на фронтальной плоскости	ОПК-2.3.1
10	проекций - как прямая линия?	OHII 2 2 1
42.	Какая плоскость изображается на горизонтальной плоскости	ОПК-2.3.1
1.5	проекций - как прямая линия?	0.777.0.7
43.	Видны ли точки, расположенные на поверхности вращения выше	ОПК-2.3.1
	экватора, на горизонтальной плоскости проекций?.	
44.	Видны ли точки, расположенные на поверхности вращения за	ОПК-2.3.1
	главным меридианом, на фронтальной плоскости проекций?	
45.	Перечислите виды привязок, используемые в редакторе	УК-2.3.3
	KOMΠAC-3D?	
46.	Может ли использоваться в графическом редакторе КОМПАС-	УК-2.В.3
	3D ортогональный режим черчения?	
47.	Каким образом может быть определена точка пересечения	ОПК-2.У.1
	прямой с плоскостью если они являются прямой и плоскостью	
	общего положения?	

48.	Каким образом может быть определена точка пересечения	ОПК-2.У.1
	прямой с плоскостью, если они являются прямой уровня и	
	плоскостью частного положения?	
49.	Каким образом может быть построен перпендикуляр к плоскости	ОПК-2.В.1
	на горизонтальной плоскости проекций?	
50.	Каким образом может быть построен перпендикуляр к плоскости	ОПК-2.В.1
	на фронтальной плоскости проекций?	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

Таоли	да 18 – Примерный перечень вопросов для тестов	
№ п/п	Примерный перечень вопросов для тестов	Код индикатора
1.	Какая прямая изображается на фронтальной плоскости проекций -	ОПК-2.3.1
	параллельно оси Z23, а на горизонтальной плоскости проекций -	
	параллельно Ү13?	
	1) Профильная прямая уровня	
	2) Горизонтальная прямая уровня	
	3) Горизонтальная плоскость уровня	
	4) Горизонтально проецирующая плоскость	
2.	Укажите все правильные варианты ответов.	УК-2.В.3
	Какой из графических редакторов позволяет преобразовывать 2D	
	чертежи в 3D без предварительного преобразования?	
	1) KOMIAC-3D	
	2) ACAD-3D	
	3) Autodesk Inventor4) ProENGINEER	
	5) SolidWorks	
3.	74	УК-2.В.3
3.	Какой из графических редакторов позволяет создавать коды программ на языке LISP?	3 K-2.D.3
	1) ACAD-3D	
	2) KOMIAC-3D	
	3) ProENGINEER	
	4) SolidWorks	
4.	Какая прямая изображается на фронтальной плоскости проекций -	ОПК-2.3.1
	как точка, а на горизонтальной плоскости проекций	
	- перпендикулярно оси X12?	
	1) Фронтально проецирующая прямая	
	2) Прямая общего положения восходящая	
	3) Прямая общего положения нисходящая	
	4) Профильная плоскость уровня	

5	Какая прямая на фронтальной и на горизонтальной плоскостях	ОПК-2.3.1
	проекций имеет разные по знаку углы наклона относительно оси	OTHC 2.5.1
	X12?	
	1) Прямая общего положения нисходящая	
	2) Горизонтальная плоскость уровня	
	3) Горизонтальная прямая уровня	
	4) Горизонтально-проецирующая плоскость	
6.	Какая прямая изображается на горизонтальной плоскости проекций	ОПК-2.3.1
0.	- как точка, а на фронтальной плоскости проекций	O11K-2.5.1
	- перпендикулярно оси X12?	
	1) Горизонтально проецирующая прямая	
	2) Профильная прямая уровня	
	1 7 1 1	
	3) Профильно-проецирующая прямая	
7	4) Прямая общего положение нисходящая	AUG O D O
7.	Для какого 3Dпринтера возможно использование слайсера Cura?	УК-2.В.3
	1) Ultimaker	
	2) PrusaSlicer	
	3) MatterControl 2.0	
	4) 3DPinterOS	
	5) Slic3r.	
8.	Какая плоскость изображается на фронтальной и горизонтальной	ОПК-2.3.1
0.	плоскостях проекций - как прямые линии перпендикулярные оси	2.3.1
	Х12?	
	1) Профильная плоскость уровня	
	2) Горизонтальная плоскость уровня	
	3) Горизонтально-проецирующая прямая	
	4) Горизонтальная прямая уровня	
9.	Укажите все правильные варианты ответов.	УК-2.3.3
٦.	Какой из графических редакторов использует векторный способ	3 K-2.3.3
	получения изображения?	
	1) KOMΠAC-3D	
	2) ACAD-3D	
	3) Autodesk Inventor	
	4) ProENGINEER	
10	5)SolidWorks	OTH 2 2 1
10.	Какая плоскость изображается на профильной плоскости проекций	ОПК-2.3.1
	- как прямая линия?	
	1) Профильно проецирующая плоскость	
	2) Горизонтально проецирующая плоскость	
	3) Горизонтальная прямая уровня	
	4) Горизонтальная плоскость уровня	
11.	Какая плоскость изображается на фронтальной плоскости проекций	ОПК-2.3.1
	- как прямая линия?	
	1) Фронтально проецирующая плоскость	
	2) Горизонтально проецирующая плоскость	
	3) Горизонтальная прямая уровня	
	4) Горизонтальная плоскость уровня	
	/ · · ·	

		_					
12.	Какая плоскость изображается на горизонтальной плоскости	ОПК-2.3.1					
	проекций - как прямая линия?						
	1) Горизонтально проецирующая плоскость						
	2) Профильно-проецирующая плоскость						
	3) Профильная плоскость уровня						
	4) Плоскость общего положения восходящая						
13.	Какие точки, расположенные на поверхностях вращения видимы на	ОПК-2.3.1					
	горизонтальной плоскости проекций?						
	1) Точки, которые на фронтальной плоскости проекций находятся						
	на экваторе или выше						
	2) Точки, которые на горизонтальной плоскости проекций						
	находятся ниже экватора						
	3) Точки, которые на горизонтальной плоскости проекций						
	находятся за главным меридианом						
	4) Точки, которые на горизонтальной плоскости проекций						
	находятся на главном меридиане или перед ним						
14.	Какие точки, расположенные на поверхностях вращения видимы на	ОПК-2.3.1					
	фронтальной плоскости проекций?						
	1) Точки, которые на горизонтальной плоскости проекций						
	находятся на главном меридиане или перед ним						
	2) Точки, которые на фронтальной плоскости проекций находятся						
	на экваторе или выше						
	3) Точки, которые на фронтальной плоскости проекций находятся						
	ниже экватора						
	4) Точки, которые на фронтальной плоскости проекций находятся						
	на экваторе или выше						
15.	Какие системы координат используются при работе графического	УК-2.3.3					
	редактора КОМПАС-3D?						
	1) декартовая						
	2) полярная						
	3) цилиндрическая						
	4) сферическая						
16.	Какое количество вариантов сечений образуется при пересечении	ОПК-2.3.1					
	поверхности цилиндра проецирующей плоскостью?						
	1) 3						
	2) 2						
	3) 4						
	4) 6						
17.	Каким образом может быть определена точка пересечения прямой с	ОПК-2.У.1					
17.	плоскостью если они являются прямой и плоскостью общего	O111X-2.3.1					
	положения?						
	1) С помощью вспомогательной конкурирующей прямой						
	2) Непосредственным способом						
	3) Непосредственно при помощи фронтальной плоскости проекции						
	4) Непосредственно при помощи горизонтальной плоскости						
	проекции						

18.	Каким образом может быть определена точка пересечения прямой с	ОПК-2.У.1
10.	плоскостью если они являются прямой уровня и плоскостью	31111 211 11
	частного положения?	
	1) Непосредственным способом (без преобразования чертежа)	
	2) С помощью фронтальной плоскости проекции	
	3) С помощью фронтальной плоскости проскции 3) С помощью вспомогательной конкурирующей прямой	
	4) С помощью вспомогательной проецирующей плоскости	
19.	Каким образом может быть построен перпендикуляр к плоскости на	ОПК-2.В.1
19.	горизонтальной плоскости проекций?	OHK-2.B.1
	1) Перпендикулярно горизонтальной проекции горизонтальной	
	прямой уровня плоскости	
	2) Параллельно горизонтальной проекции любой прямой,	
	принадлежащей плоскости	
	3) Параллельно горизонтальной проекции любой прямой,	
	принадлежащей плоскости	
	4) Параллельно горизонтальной проекции горизонтальной прямой	
	уровня плоскости	
20.	Каким образом может быть построен перпендикуляр к плоскости на	ОПК-2.В.1
	фронтальной плоскости проекций?	
	1) Перпендикулярно фронтальной проекции фронтальной прямой	
	уровня плоскости	
	2) Параллельно фронтальной проекции горизонтальной прямой	
	уровня плоскости	
	3) Параллельно фронтальной проекции любой прямой,	
	принадлежащей плоскости	
	4) Параллельно фронтальной проекции любой прямой,	
	принадлежащей плоскости	
21.	Какие преобразования необходимо применить к прямой для	ОПК-2.В.1
	определения её натуральной величины?	
	1) Преобразовать в прямую уровня	
	2) Преобразовать в проецирующую кривую	
	3) Преобразовать в проецирующую прямую	
	4) Преобразовать в проецирующую прямую, а затем в прямую	
	уровня	

УК-2 «Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений»

№	Примерный перечень вопросов для тестов	Компетенция
Π/Π		
1	Задание комбинированного типа с выбором одного верного ответа	УК-2
	из четырех предложенных и обоснованием выбора.	
	Инструкция : Прочитайте текст, выберите правильный ответ и	
	запишите аргументы, обосновывающие выбор ответа	
	Какой из графических редакторов позволяет создавать коды	
	программ на языке LISP?	
	1) ACAD-3D	
	2) KOMΠAC-3D	
	3) ProENGINEER	
	4) SolidWorks	

выбор ответов							
	1) Замены плоскостей проекций						
2) Вращения 3) Плоско-параллельного перено	oca						
4)Выдавливание	Jea						
5)Смещение							
3 Задание закрытого типа на устан			УК-2				
Инструкция : Прочитайте тек каждой позиции, данной	ст и усі в лево						
каждой позиции, данной соответствующую позицию в п		,					
coomsementoyiotiqyio nostiquio o n	риоот с	monoge					
На сборочных и рабочих чертеж							
обозначений: Простановка раз							
(РПО), Габаритные размеры (
(ШП), Спецификация(С), Нан покрытий (ОП)	есение	на чертежах ооозначении					
Тип обозначения на		Вид чертежа					
чертеже							
А Простановка размеров и предельных отклонений (РПО)	1	Рабочий Чертеж					
В Габаритные размеры (ГР)	2	Сборочный Чертеж					
С Шероховатости	1	Рабочий Чертеж					
поверхности (ШП)							
D Спецификация(C)	2	Сборочный Чертеж					
Е Нанесение на чертежах обозначений покрытий (ОП)	1	Рабочий Чертеж					
4 Задание закрытого типа на устан	новлени	е последовательности.	УК-2				
Инструкция: Прочитайте		екст и установите					
	пишите	с соответствующую					
последовательность букв сверх							
Расположите в правильной по на чертежах в соответствии с							
А- Вид спереди (Главный вид)	0012	2.505-2000					
В- Вид сверху							
С- Вид слева	± •						
D- Вид справа							
•	Е- Вид снизу						
F – Вид сзади 5 Задание открытого типа с развет	отретом	УК-2					
'' 1	Задание открытого типа с развернутым ответом. <i>Инструкция:</i> Прочитайте текст и запишите развернутый						
обоснованный ответ.							
Дайте определение понятию «	Сбороч	ные чертежи изделий»					

ОПК-2 «Способен использовать современные информационные технологии и программные средства при решении задач профессиональной деятельности, соблюдая требования информационной безопасности»

№ п/п		Компетенция						
1	Задан из чен Инсп запии	ОПК-2						
	Како редан сооти 1) Ор 2) Це 3) Па							
2	Задан отвен Инст вариа	ее виды проецирования ние комбинированного типа на из предложенных и разверукция: Прочитайте тексинты ответа и запишите ар о ответов	рнут т, вы	ым обоснованием выбора. берите правильные	ОПК-2			
	издел 1)Эле 2)Эле 3)Эле		едини часте	й				
3	Задан <i>Инси</i> <i>кажд</i>	ие закрытого типа на устано прукция: Прочитайте текст	овлен т и ус лес	ие соответствия становите соответствие. К вом столбце, подберите	ОПК-2			
	В сборочных чертежах используются изображения разъемных и неразъемных соединений в состав которых входят: Винтовая пара (ВП), Сварное соединение (СвС), Шпилечное соединение (ШС), Клеевое соединение (КлС), Болтовое соединение (БС),							
		Тип соединения		Вид соединения				
	A	Винтовая пара (ВП)	1	Разъемное соединение				
	В							
	С							
	D							
	E Болтовое соединение 1 Разъемное соединение (БС)							
4	Задан	ие закрытого типа на устано	влен	ие последовательности.	ОПК-2			

	Инструкция: Прочин	пайте	текст	и	установите	
	последовательность.	Запии	иите	coome	ветствующую	
	последовательность	буке	3	сверху	вниз	
	Расположите в прави спецификации, определя				-	
	А- Документация		-			
	В- Сборочные единицы					
	С- <u>Детали</u>					
	D- <u>Стандартные изделия</u>					
	E- <u>Прочие изделия</u>					
	F – <u>Материалы</u>					
5	Задание открытого типа с	разверну	тым ответ	OM.		ОПК-2
	Инструкция: Прочитайт	іе текст	и запиши	пе развер	онутый	
	обоснованный ответ.					
	Дайте определение поня	тию «Эл	ектронна	я струк	тура изделия	
	(ЭСИ)».		-	1.0		

Примечание. Система оценивания тестовых заданий:

- 1. Задание комбинированного типа с выбором одного верного ответа из четырех предложенных и обоснованием выбора считается верным, если правильно указана цифра и приведены конкретные аргументы, используемые при выборе ответа. Полное совпадение с верным ответом оценивается 1 баллом, неверный ответ или его отсутствие 0 баллов.
- 2. Задание комбинированного типа с выбором нескольких вариантов ответа из предложенных и развернутым обоснованием выбора считается верным, если правильно указаны цифры и приведены конкретные аргументы, используемые при выборе ответов. Полное совпадение с верным ответом оценивается 1 баллом, если допущены ошибки или ответ отсутствует 0 баллов.
- 3. Задание закрытого типа на установление соответствия считается верным, если установлены все соответствия (позиции из одного столбца верно сопоставлены с позициями другого столбца). Полное совпадение с верным ответом оценивается 1 баллом, неверный ответ или его отсутствие 0 баллов.
- 4. Задание закрытого типа на установление последовательности считается верным, если правильно указана вся последовательность цифр. Полное совпадение с верным ответом оценивается 1 баллом, если допущены ошибки или ответ отсутствует 0 баллов.
- 5. Задание открытого типа с развернутым ответом считается верным, если ответ совпадает с эталонным по содержанию и полноте. Правильный ответ за задание оценивается в 3 балла, если допущена одна ошибка \ неточность \ ответ правильный, но не полный 1 балл, если допущено более 1 ошибки \ ответ неправильный \ ответ отсутствует 0 баллов.

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

	-,	rr	
№ п/п	Перечень контрольных работ		
	Не предусмотрено	редусмотрено	

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и

процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

11.2. Методические указания для обучающихся по участию в семинарах. Учебным планом не предусмотрено.

11.3. Методические указания для обучающихся по прохождению практических занятий.

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;

– обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

<u>Требования к проведению практических занятий содержатся в следующих</u> методических указаниях:

Инженерная графика. Схемы: методические указания к выполнению домашнего задания / С.-Петерб. гос. ун-т аэрокосм. приборостроения ; сост.: **В.П. ДядькинВ.П., И.Н. Лукьяненко, Т.А.Лексаченко, А. Г. Федоренко** -СПб. : Изд-во ГУАП, 2009. - 67 с.

Электронная конструкторская документация в среде ACAD: методические указания к выполнению домашнего задания / С.-Петерб. гос. ун-т аэрокосм. приборостроения; сост.: А. Г. Федоренко, В. А. Голубков. - СПб. : Изд-во ГУАП, 2018. - 69 с.

11.4. Методические указания для обучающихся по выполнению лабораторных работ.

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ, структура и форма отчета о лабораторной работе, требования к оформлению отчета о лабораторной работе содержатся в следующих методических указаниях:

Инженерная и компьютерная графика. Методические указания к выполнению лабораторных работ. Часть 1. Сост: В.Г. Фарафонов, А.Г. Федоренко, В.А. Голубков, Е.Е. Майоров, М.В. Соколовская. СПб.: ГУАП, 2022-64с.

Инженерная и компьютерная графика. Методические указания к выполнению лабораторных работ. Часть 2. Сост: **А.Г. Федоренко, В.А. Голубков**. СПб.: ГУАП, 2022-85 с.

11.5. Методические указания для обучающихся по прохождению курсового проектирования/выполнения курсовой работы.

Учебным планом не предусмотрено.

11.6.Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по **заочной форме** обучения, самостоятельная работа может включать в себя **контрольную работу**, приведенных в **таблице 19**.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся являются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).

<u>Методическими материалами, направляющими самостоятельную работу обучающихся</u> являются:

Проекционное черчение в среде ACAD16: методические указания по выполнению домашнего задания/ С.-Петерб. гос. ун-т аэрокосм. приборостроения; Сост: А. Г. Федоренко, В.А. Голубков - СПб.: Изд-во ГУАП, 2021. - 60 с.

11.7. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Положительный результат текущего контроля успеваемости дает студенту дополнительный балл при проведении промежуточной аттестации.

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Проведение текущего контроля успеваемости осуществляется с помощью практических работ приведенных в таблице 5 и вопросов к тесту, приведенных в таблице 18. Оценивание текущего контроля успеваемости, осуществляется по системе зачет/ не зачет.

11.8. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— зачет — это форма оценки знаний, полученных обучающимся в ходе изучения учебной дисциплины в целом или промежуточная (по окончании семестра) оценка знаний обучающимся по отдельным разделам дисциплины с аттестационной оценкой «зачтено» или «не зачтено».

Вопросы для проведения зачета представлены в таблице 16.

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Промежуточная аттестация оценивается по результатам текущего контроля успеваемости. В случае, если студент по уважительной причине не выполнил требования

текущего контроля, ему предоставляется возможность сдать задолженности по пропущенным темам. Форма проведения промежуточной аттестации – устная.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой