МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 5

УТВЕРЖДАЮ

Руководитель образовательной программы

д.т.н.,доц.

(должность, уч. степень, двание)

Е.А. Фролова

(инициалы фамилия)

(подпись)

«10» февераля 2025 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Автоматизированные производственные системы» (Наименование дисциплины)

Код направления подготовки/ специальности	27.03.02	
Наименование направления подготовки/ специальности	Управление качеством	
Наименование направленности	Цифровое качество и проектирование продукции	
Форма обучения	заочная	
Год приема	2025	

Санкт-Петербург- 2025

Лист согласования рабочей программы дисциплины

Программу составил (а)	16.001/	
Доц., к.т.н.	the luyer	А.А. Дзюбаненко
(должность, уч. степень, звание)	(подпись, дага 10.02.2025)	(инициалы, фамилия)
	L	
Программа одобрена на засе	едании кафедры № 5	
«10» февраля 2025 г, прото	окол № 01-02/2025	
Заведующий кафедрой № 5		
д.т.н.,доц.		Е.А. Фролова
(уч. степень, звание)	(подпись, дата 10.02.2025)	(инициалы, фамилия)
Заместитель директора инст	итута ФПТИ по методической	работе
доц.,к.т.н.	11/19	Н.Ю. Ефремов
(должность, уч. степень, звание)	(подпись, дата 10.02.2025)	(инициалы, фамилия)

Аннотация

Дисциплина «Автоматизированные производственные системы» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 27.03.02 «Управление качеством» направленности «Цифровое качество и проектирование продукции». Дисциплина реализуется кафедрой «№5».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-4 «Способен осуществлять анализ передового национального и международного опыта по разработке и внедрению систем управления качеством, подготовку аналитических отчетов по возможности его применения в организации»

ПК-10 «Способен осуществлять разработку проектов методик и локальных нормативных актов по обучению работников организации в области качества»

Содержание дисциплины охватывает круг вопросов, связанных с проектированием, разработкой, внедрением и эксплуатацией автоматизированных систем в производственных процессах.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме дифференцированного зачета.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 часа.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Цель преподавания дисциплины — сформировать у студентов знания, умения и навыки в области методов и средств автоматизации инновационных производственных систем, закономерностей автоматизации, цифровизации и интеллектуализации технологических процессов для достижения качества продукции и услуг.

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Профессиональные компетенции	ПК-4 Способен осуществлять анализ передового национального и международного опыта по разработке и внедрению систем управления качеством, подготовку аналитических отчетов по возможности его применения в организации	ПК-4.3.1 знать основные методы разработки, внедрения и функционирования систем управления качеством
Профессиональные компетенции	ПК-10 Способен осуществлять разработку проектов методик и локальных нормативных актов по обучению работников организации в области качества	ПК-10.У.1 уметь применять актуальную нормативную документацию в области управления качеством при управлении ресурсами организации ПК-10.В.1 владеть навыками подготовки и представления руководству отчета об оперативном контроле при управлении человеческими ресурсами

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- « Методы и средства измерений, испытаний и контроля»,
- « Статистические методы в управлении сложными техническими системами».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- «Технологии цифровизации процессов в управлении организацией»;
- «Производственная преддипломная практика».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам №8
1	2	3
Общая трудоемкость дисциплины, ЗЕ/ (час)	4/ 144	4/ 144
Из них часов практической подготовки	8	8
Аудиторные занятия, всего час.	16	16
в том числе:		
лекции (Л), (час)	8	8
практические/семинарские занятия (ПЗ), (час)		
лабораторные работы (ЛР), (час)	8	8
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)		
Самостоятельная работа, всего (час)	128	128
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Дифф. Зач.	Дифф. Зач.

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции (час)	ПЗ (СЗ) (час)	ЛР (час)	КП (час)	СРС (час)
Сем	естр 8				
Раздел 1. Основные понятия, определения и показатели автоматизации. Основы автоматизации производства: — Принципы автоматизации технологических процессов. — Классификация автоматизированных систем. — Этапы развития автоматизации в	1		1		20
промышленности.					
Раздел 2. Жизненный цикл и структура производственных процессов. Технологические процессы и оборудование: Изучение современных производственных технологий. Автоматизированное оборудование: станки, роботы, конвейерные линии. Гибкие производственные системы (ГПС).	1		1		20

D 10		I		1	
Раздел 3. Основы системной концепции и					
классификация производственных систем.					
Системы управления:					
-Программируемые логические контроллеры					
(ПЛК).					
-Системы SCADA (диспетчерское управление и					
сбор данных).					
-ЧПУ (числовое программное управление)	•		•		2.4
станками.	2		2		24
Программное обеспечение для автоматизации:					
 Среды разработки и моделирования (например, 					
— Среды разраобтки и моделирования (например, MATLAB, Simulink, TIA Portal).					
 Программирование для автоматизированных 					
систем.					
– Интеграция программного обеспечения с					
аппаратными средствами.					
Раздел 4. Автоматизация, цифровизация и					
интеллектуализация производственных систем					
Робототехника в производстве:					
 Промышленные роботы и их применение. 					
– Манипуляторы, автоматизированные					
транспортные системы.					
Коллаборативные роботы (коботы).	2		2		24
Интеграция и киберфизические системы:	_		_		
 Интеграция автоматизированных систем в единую 					
производственную среду.					
производственную среду. – Киберфизические системы и Интернет вещей (IoT)					
в промышленности.					
– Цифровые двойники и их использование.					
Раздел 5. Управление качеством и стандартизация в					
автоматизированных производственных системах					
Энергоэффективность и экологичность:					
 Оптимизация энергопотребления в 					
автоматизированных системах.					
– Экологические аспекты автоматизации.					
Безопасность и надежность:					
– Обеспечение безопасности автоматизированных	1		1		20
систем.					
 Надежность и отказоустойчивость оборудования. 					
 Защита от киберугроз в промышленных системах. 					
Экономические аспекты:					
1.1					
автоматизированных систем.					
Оценка затрат и окупаемости.					
Раздел 6. Технологические инновации					
Тенденции и инновации:					
- Искусственный интеллект и машинное обучение в	٠		_		
производстве.	1		1		20
Аддитивные технологии (3D-печать) и их					
интеграция.					
– Умные фабрики (Smart Factory) и Industry 4.0.					
Итого в семестре:	8		8		128
Итого	8	0	8	0	128
ИПОГО	0	U	0	U	120

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий.

Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

таолица 4	 Содержание разделов и тем лекционного цикла
Номер	Uоррания и одновующие вознанов и том накумения и разлитий
раздела	Название и содержание разделов и тем лекционных занятий
1	Основные понятия, определения и показатели автоматизации.
	1.1 Понятие автоматизации производственных систем.
	1.2 Термины и определения
	1.3 Технико-экономические предпосылки для автоматизации производственных
	систем
	1.4 Показатели качества автоматизации
	1.5 Основы автоматизации производства:
	 Принципы автоматизации технологических процессов.
	 Классификация автоматизированных систем.
	– Этапы развития автоматизации в промышленности.
2	Жизненный цикл и структура производственных процессов
	2.1 Понятие и определение жизненного цикла
	2.2 Модели стадий ЖЦ электронной и приборной продукции
	2.3 Особенности перехода к цифровым стадиям ЖЦ
	2.4 Технологические процессы и оборудование:
	– Изучение современных производственных технологий.
	– Автоматизированное оборудование: станки, роботы, конвейерные линии.
	– Гибкие производственные системы (ГПС).
3	Основы системной концепции и классификация производственных систем
	3.1 Основные термины, понятия и определения
	3.2 Определение и свойства сложных систем
	3.3 Киберфизические системы
	3.4 Архитектура систем интернета вещей
	3.5 Системы управления:
	–Программируемые логические контроллеры (ПЛК).
	-Системы SCADA (диспетчерское управление и сбор данных).
	-ЧПУ (числовое программное управление) станками.
	3.6 Программное обеспечение для автоматизации:
	– Среды разработки и моделирования (например, MATLAB, Simulink, TIA Portal).
	 Программирование для автоматизированных систем.
	- Интеграция программного обеспечения с аппаратными средствами.
4	Автоматизация, цифровизация и интеллектуализация производственных систем
	4.1 Автоматизированные и автоматические системы
	4.2 Цифровизация в производственных системах
	4.3 Мониторинг состояния и интеллектуализация производства
	4.4 Робототехника в производстве:
	–Промышленные роботы и их применение.
	-Манипуляторы, автоматизированные транспортные системы.
	–Коллаборативные роботы (коботы).
	Интеграция и киберфизические системы:
	-Интеграция автоматизированных систем в единую производственную среду.
	 –Киберфизические системы и Интернет вещей (IoT) в промышленности.

	 –Цифровые двойники и их использование.
5	Управление качеством и стандартизация в автоматизированных
	производственных системах
	5.1 Методы, средства и системы менеджмента качества
	5.2 Стандарты оценки и статистического управления качеством
	5.3 Обеспечение бездефектного производства
	5.4 Энергоэффективность и экологичность:
	– Оптимизация энергопотребления в автоматизированных системах.
	– Экологические аспекты автоматизации.
	5.5 Безопасность и надежность:
	– Обеспечение безопасности автоматизированных систем.
	– Надежность и отказоустойчивость оборудования.
	– Защита от киберугроз в промышленных системах.
	5.6 Экономические аспекты:
	-Экономическая эффективность внедрения автоматизированных систем.
	-Оценка затрат и окупаемости.
6	Технологические инновации
	6.1 Концепция «Индустрия 4.0» и стратегия цифрового развития
	6.2 Нововведения и инновации на стадиях ЖЦ
	6.3 Виды технологических инноваций
	6.4 Тенденции и инновации:
	– Искусственный интеллект и машинное обучение в производстве.
	Аддитивные технологии (3D-печать) и их интеграция.
	–Умные фабрики (Smart Factory) и Industry 4.0.

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

				Из них	$N_{\underline{0}}$
№	Темы практических	Формы практических	Трудоемкость,	практической	раздела
Π/Π	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
	Учебным планом не предусмотрено				
	Всего				

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

	= :		Из них	№
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	раздела
п/п	паименование лаоораторных раоот	(час)	подготовки,	дисцип
			(час)	лины
	Семестр 8	3		
1	Организация производственных процессов	1	1	2
	во времени. Анализ качества поточного			
	производства монтажа печатных плат			
2	Организация производственных процессов	1	1	2
	во времени. Анализ качества сборочного			
	производства приборов			

3	Разработка технологических процессов в			3
	автоматизированном производстве			
4	Моделирование работы	1	1	4
	автоматизированных систем.			
5	Применение компонентов И4.0 в	1	1	4
	автоматизированных производственных			
	системах			
6	Моделирование процессов обеспечения	1	1	5
	качества			
7	Оценка достоверности контроля качества в	1	1	5
	автоматизированных производственных			
	системах			
8	Анализ перехода от автоматизированных к	1	1	6
	цифровым интеллектуальным			
	производственным системам			
	Всего	8	8	

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

тавища / виды вамовтоительной равоты и ве трудовиковть				
Вид самостоятельной работы	Всего,	Семестр 8,		
Вид самостоятсявной расств	час	час		
1	2	3		
Изучение теоретического материала	40	40		
дисциплины (ТО)	40	40		
Курсовое проектирование (КП, КР)				
Расчетно-графические задания (РГЗ)				
Выполнение реферата (Р)				
Подготовка к текущему контролю	20	20		
успеваемости (ТКУ)	20	20		
Домашнее задание (ДЗ)	48	48		
Контрольные работы заочников (КРЗ)				
Подготовка к промежуточной	20	20		
аттестации (ПА)	20	20		
Всего:	128	128		

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8– Перечень печатных и электронных учебных изданий

Шифр/ URL адрес	Библиографическая ссылка Технологическое и нормативное обеспечение	Количество экземпляров в библиотеке (кроме электронных экземпляров) Большая
К 70	производства электроники : учебное пособие / Г. И. Коршунов, А. А. Дзюбаненко ; С Петерб. гос. ун-т аэрокосм. приборостроения Санкт-Петербург : Изд-во ГУАП, 2022 132 с	Морская, 67 (5)
004 K 70	Создание и развитие киберфизических систем: учебное пособие / Г. И. Коршунов, А. А. Дзюбаненко; СПетерб. гос. ун-т аэрокосм. приборостроения Санкт-Петербург: Изд-во ГУАП, 2022 122 с	Большая Морская, 67 (5)
004 K 70	Сложные киберфизические системы: учебное пособие / Г. И. Коршунов, И. А. Пастушок, А. А. Петрушевская; СПетерб. гос. ун-т аэрокосм. приборостроения Санкт-Петербург: Изд-во ГУАП, 2021 141 с.: рис., табл Библиогр. в конце глав ISBN 978-5-8088-1578-0	Большая Морская, 67 (4)
https://znanium.com /catalog/document?id=373497	Бедердинова, О. И. Автоматизированное управление ІТ-проектами: учебное пособие / О.И. Бедердинова, Ю.А. Водовозова. — Москва: ИНФРА-М, 2021. — 92 с ISBN 978-5-16-109404-4.	
https://znanium.com /catalog/document?id=358335	Эффективное управление организационными и производственными структурами: монография / О. В. Логиновский, А. В. Голлай, О. И. Дранко [и др.]; под ред. О. В. Логиновского. — Москва: ИНФРА-М, 2020. — 450 с. — (Научная мысль) ISBN 978-5-16-016217-1.	
https://znanium.com /catalog/document?id=373660	Бедердинова, О. И. Создание приложений баз данных в среде Visual Studio: учебное пособие / О.И. Бедердинова, Т.А. Минеева, Ю.А. Водовозова. — Москва: ИНФРА-М, 2021. — 94 с ISBN 978-5-16-109411-2.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9. Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

Шифр/URL адрес	Наименование
https://avtprom.ru/	Журнал «Автоматизация в промышленности»
https://aimpu.ru/?page_id=68	Журнал «Автоматизация и моделирование в
	проектировании и управлении»
https://guap.ru/m/inps/archive	Журнал «Инновационное приборостроение»

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10– Перечень программного обеспечения

	· · · · · · · · · · · · · · · · · · ·
№ п/п	Наименование
	MS Office

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Учебная аудитория для проведения занятий	
	лекционного типа – укомплектована специализированной	
	(учебной) мебелью, набором демонстрационного	
	оборудования и учебно-наглядными пособиями,	
	обеспечивающими тематические иллюстрации,	
	соответствующие рабочим учебным программам	
	дисциплин (модулей).	
2	Учебная аудитории для проведения лабораторных занятий -	
	укомплектована специализированной мебелью, оснащено\а	
	компьютерной техникой с возможностью подключения к	
	сети «Интернет» и обеспечена доступом в электронную	
	информационно-образовательную среду ГУАП	
3	Помещение для самостоятельной работы –	
	укомплектовано специализированной (учебной) мебелью,	
	оснащено компьютерной техникой с возможностью	
	подключения к сети "Интернет" и обеспечено доступом в	
	электронную информационно-образовательную среду	

	организации.	
4	Учебная аудитория для текущего контроля и	
	промежуточной аттестации - укомплектована	
	специализированной (учебной) мебелью, техническими	
	средствами обучения, служащими для представления	
	учебной информации.	

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Дифференцированный зачёт	Список вопросов;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

	оценки уровня сформированности компетенции		
Оценка компетенции	Характеристика сформированных компетенций		
5-балльная шкала	ларактеристика сформированных компетенции		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 		
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 		
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 		

Оценка компетенции	Vanagranuarius ahangun nya kangarangun			
5-балльная шкала	Характеристика сформированных компетенций			
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 			

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
	Учебным планом не предусмотрено	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

No॒	Перечень вопросов (задач) для экзамена	Код
п/п		индикатора
1	Сформулировать определения ЖЦ и его стадий в соответствии со стандартами.	ПК-4.3.1
2	Сформулировать Требования к моделям в задачах цифровизации производства.	ПК-4.3.1
3	Сформулировать Стадии развития инновационной компании – улитка инноваций.	ПК-4.3.1
4	Сформулировать Этапы реализации концепции «Индустрия 4.0» на промышленном предприятии.	ПК-4.3.1
5	Сформулировать Актуальные задачи, которые решаются с применением элементов Индустрии 4.0.	ПК-4.3.1
6	Сформулировать Предпосылки применения цифровых решений.	ПК-4.3.1
7	Сформулировать Этапы развития научно-технологических революций.	ПК-4.3.1
8	Элементы концепции «Индустрия 4.0».	ПК-4.3.1
9	Сформулировать Преимущества использования интернета вещей в производственном процессе.	ПК-4.3.1
10	Сформулировать Определение инноваций и виды технологических инноваций.	ПК-4.3.1
11	Сформулировать Виды технологических инноваций в Индустрии 4.0	ПК-4.3.1
12	Сформулировать Основные признаки кибер-физических систем.	ПК-4.3.1
13	Сформулировать Определение и типы систем автоматизированного проектирования.	ПК-4.3.1
14	Сформулировать Определение и типы автоматизированных систем технологической подготовки производства	ПК-4.3.1
15	Сформулировать Взаимодействие автоматического технологического оборудования и специалистов на цифровом производстве.	ПК-4.3.1

16	Сформулировать Модели автоматизированных предприятий и их ключевые технологии.	ПК-10.У.1
17	Сформулировать Состав производственного процесса изготовления электроники.	ПК-10.У.1
18	Сформулировать Возможности программ моделирования процессов производства.	ПК-10.У.1
19	Сформулировать Жизненный цикл устройств электронной продукции.	ПК-10.У.1
20	Сформулировать Цифровые методы контроля и испытаний электронной и приборной продукции	ПК-10.У.1
21	Сформулировать Технико-экономические предпосылки для автоматизации производственных процессов.	ПК-10.У.1
22	Сформулировать Автоматические и автоматизированные процессы и оборудование.	ПК-10.У.1
23	Сформулировать Степень автоматизации производства.	ПК-10.У.1
24	Сформулировать Сущность и этапы автоматического сборочного процесса.	ПК-10.У.1
25	Сформулировать Выявление технической возможности автоматизации производства электроники.	ПК-10.У.1
26	Сформулировать Методы и средства автоматизации производства электроники.	ПК-10.У.1
27	Сформулировать Оптимизация структуры автоматизированного производства электроники.	ПК-10.В.1
28	Сформулировать Средства автоматизации процессов контроля качества изделий.	ПК-10.В.1
29	Сформулировать Особенности технологической подготовки автоматизированного производства электроники. Технологический процесс как основа любого производства.	ПК-10.В.1
30	Сформулировать Уровни управления в производственной системе.	ПК-10.В.1
31	Сформулировать Задачи автоматизации управления на технологическом уровне.	ПК-10.В.1
32	Сформулировать Классификация систем управления по степени автоматизации.	ПК-10.В.1
33	Сформулировать Структуры и основные компоненты автоматизированного производства электроники.	ПК-10.В.1
34	Сформулировать понятия Электрическая, информационная и конструктивная совместимости элементов	ПК-10.В.1

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.
Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

	Примерный перечень вопросов для тестов	
1	Требования к моделям в задачах цифровизации производства.	индикатора ПК-4.3.1
	OTBET:	
	адекватность,	
	полнота,	
2	синхронизация	ПИ 4 2 1
2	Стадии развития инновационной компании – улитка инноваций. ОТВЕТ:	ПК-4.3.1
	12 стадий от идеи до деградации или изменения, выбираются	
	руководителем,	
	зависят от вида бизнеса	
3	Принципы реализации концепции «Индустрия 4.0» на промышленном предприятии. ОТВЕТ:	ПК-4.3.1
	функциональная совместимость, прозрачность информации,	
	помощь машин человеку, способность систем принимать	
	решения,	
	внедрение инноваций,	
	внедрение искусственного интеллекта	
4	Актуальная задача, которая решаются с применением элементов	ПК-4.3.1
	Индустрии 4.0.	
	OTBET:	
	Создание интеллектуальных производств,	
	Автоматизация производства,	
	Устранение человеческого фактора	
5	Предпосылки применения цифровых решений. ОТВЕТ:	ПК-4.3.1
	Готовность оборудования, наличие инновационных технологий и	
	подготовленных кадров	
	Решение руководства,	
	Участие в государственных программах	
6	Этапы развития научно-технологических революций. ОТВЕТ:	ПК-10.У.1
	Механизация, конвейры, ИТ-технологии, кибер-физические	
	системы,	
	Первобытный, феодальный, капиталистический,	
	Ручной, автоматизированный, автоматический	
7	Основные элементы концепции «Индустрия 4.0». ОТВЕТ:	ПК-10.У.1
	Кибер-физические системы, интернет вещей, большие данные,	
	Умные производства,	
	Цифровизация	
8	Преимущества использования интернета вещей в производственном процессе.	ПК-10.У.1
	Объединение датчиков и оборудования в единую сеть управления,	

	Устранение человеческого фактора,	
	Обеспечение автоматизации	
9	Основные признаки кибер-физических систем.	ПК-10.У.1
10	Типы систем автоматизированного проектирования. OTBET: MATLAB, SOLIWORKS, PCAD, ALTIUM,	ПК-10.В.1
	Моделирование, Станки с ЧПУ	
11	Модели автоматизированных предприятий ОТВЕТ:	ПК-10.В.1
	Умное предприятие, Заводы, ориентированные на клиента, Мобильные предприятия	
12	Состав производственного процесса автоматического монтажа электронных плат. ОТВЕТ: Нанесение паяльной пасты, установка компонентов, оплавление,	ПК-10.В.1
	контроль, Осмотр платы, подбор компонентов, припаивание, Программирование автоматической линии и выполнение монтажа	
13	Определение и типы систем автоматизированного проектирования. OTBET: MATLAB, SOLIWORKS, PCAD, ALTIUM, Моделирование, Станки с ЧПУ	ПК-10.В.1
14	Определение и типы автоматизированных систем технологической подготовки производства. ОТВЕТ: Полностью автоматизированные отсутствуют DFM DFA	ПК-10.В.1
15	Взаимодействие автоматического технологического оборудования и специалистов на цифровом производстве. ОТВЕТ: Должно быть минимизировано Предусмотрено регламентом По мере необходимости	ПК-10.В.1
16	Модели автоматизированных предприятий и их ключевые технологии. ОТВЕТ: Умное предприятие, Заводы, ориентированные на клиента, Мобильные предприятия	ПК-10.В.1
17	Состав производственного процесса монтажа печатных плат ОТВЕТ: Нанесение паяльной пасты, установка оплавление компонентов, Припайка элементов Запуск автоматики	ПК-10.В.1

18	Возможности программ моделирования процессов производства.	ПК-10.В.1
	OTBET:	
	Ограничены знаниями постановщика задач	
	Только для конкретного применения	
	Безграничны при включении ИИ	
19	Возможность сквозной цифровизации ЖЦ	ПК-10.В.1
	OTBET:	
	Возможна при цифровизации и совместимости этапов	
	В настоящее время невозможна	
	Требуется ИИ	
20	Возможность сквозной цифровизации производства	ПК-10.В.1
	OTBET:	
	Имеются многочисленные примеры	
	Нежелательно, повысит дефектность	
	Все равно нужны операторы	

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровенкоторых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;

- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- лекционный материал может сопровождаться раздаточным материалом;
- по ходу лекции студенты могут задавать вопросы преподавателю, дождавшисьокончания текущей фразы (прерывать преподавателя недопустимо);
- если после объяснения преподавателя остались невыясненные положения, то ихследует уточнить;
 - материал, излагаемый преподавателем, следует конспектировать.
- 11.2. Методические указания для обучающихся по выполнению лабораторных работ.

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание к выполнению лабораторной работы выдается преподавателем в начале занятия в соответствии с планом занятий. Темы лабораторных работ приведены в табл. 6 данной программы.

Выполнение лабораторной работы состоит из трех этапов:

- аналитического;
- расчетно-графического;
- контрольного в виде защиты отчета.

Структура и форма отчета о лабораторной работе.

Отчет о лабораторной работе должен содержать: титульный лист, основную часть, выводы по результатам исследований.

На титульном листе должны быть указаны: название дисциплины, название лабораторной работы, фамилия и инициалы

преподавателя, фамилия и инициалы студента, номер его учебной группы и дата защиты работы.

Основная часть должна содержать задание, результаты экспериментальнопрактической работы, расчетно-аналитические материалы, листинг кода/скрин экрана. Выводы по проделанной работе должны содержать основные результаты по работе.

Требования к оформлению отчета о лабораторной работе

Титульный лист отчета должен соответствовать шаблону, приведенному в секторе нормативной документации ГУАП https://guap.ru/regdocs/docs/uch

Оформление основной части отчета должно быть оформлено в соответствии с ГОСТ 7.32-2017. Требования приведены в секторе нормативной документации ГУАП https://guap.ru/regdocs/docs/uch

При формировании списка источников студентам необходимо руководствоваться требованиями стандарта ГОСТ 7.0.100-2018. Примеры оформления списка источников приведены в секторе нормативной документации ГУАП. https://guap.ru/regdocs/docs/uch

При формировании списка источников студентам необходимо руководствоваться требованиями стандарта ГОСТ 7.0.100-2018. Примеры оформления списка источников приведены в секторе нормативной документации ГУАП. https://guap.ru/regdocs/docs/uch

11.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся, являются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

В течение семестра студенты:

- защищают лабораторные работы;
- выполняют тестирования по материалам лекции в среде LMS.

Для текущего контроля успеваемости используются тесты, приведенные в таблице 18.

11.5 Методические указания для обучающихся по прохождению промежуточной аттестации

В течение семестра студенту необходимо сдать не менее 50% лабораторных работ, выполнить тестирования в среде LMS не ниже оценки "удовлетворительно". В случае невыполнении вышеизложенного, студент, при успешном прохождении промежуточной аттестации в форме диф.зачета, не может получить аттестационную оценку выше "хорошо"

Система оценок при проведении текущего контроля и промежуточной аттестации осуществляется в соответствии с руководящим документом организации РДО ГУАП. СМК 3.76 «Положение о текущем контроле успеваемости и промежуточной аттестации студентов и аспирантов, обучающихся по образовательным программам высшего образования в ГУАП» https://docs.guap.ru/smk/3.76.pdf

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой