МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

образования "САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 13

УТВЕРЖДАЮ Руководитель образовательной программы доц.,к т.н. (должность, уч. степень, ввание) Н.Ю Ефремов (подпись) «18» февраля 2025 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Электроника» (Наименование дисциплины)

Код направления подготовки/ специальности	27 03 01
Наименование направления подготовки/ специальности	Стандартизация и метрология
Наименование направленности	Цифровая метрология и стандартизация
Форма обучения	очная
Год приема	2025

Санкт-Петербург- 2025

Лист согласования рабочей программы дисциплины

Программу составил (а)	11	
К.т.н., доцент	1 Juny	А.С. Голосий
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Программа одобрена на заседани	и кафедры № 13	
«18» февраля 2025 г, протокол М	2 7	
Заведующий кафедрой № 13	OHUA	
к.т.н.,доц.	((/////	Н.А. Овчинникова
(уч степень, звание)	(подпись, пата)	(инициалы, фамилия)
Заместитель директора институт	а ФПРИло методической	і работе
доц.,к.т.н.	/ HS	Н.Ю. Ефремов
доц.,к.т.п.		тто Ефремов

Аннотация

Дисциплина «Электроника» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 27.03.01 «Стандартизация и метрология» направленности «Цифровая метрология и стандартизация». Дисциплина реализуется кафедрой «№13».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ОПК-1 «Способен анализировать задачи профессиональной деятельности на основе положений, законов и методов в области естественных наук и математики»

ОПК-2 «Способен формулировать задачи профессиональной деятельности на основе знаний профильных разделов математических и естественно-научных дисциплин»

Содержание дисциплины охватывает круг вопросов, связанных с изучением элементной базы современных электронных устройств, с рассмотрением основ проектирования аналоговых блоков на базе микросхем операционных усилителей, а также с изучением принципов построения цифровых устройств комбинационного и последовательностного типов.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, практические занятия, семинары, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы, 108 часов.

Язык обучения по дисциплине «русский »

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Основной целью дисциплины «Электроника» является изучение студентами теоретических и практических основ современной полупроводниковой схемотехники, используемой при проектировании информационно-вычислительных систем, авиационных приборов и средств автоматики, что позволит им успешно решать теоретические и практические задачи в их профессиональной деятельности, связанной с проектированием, испытаниями и эксплуатацией различных электронных устройств.

- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и инликаторов их достижения

Категория (группа) компетенции	Код и наименование	Код и наименование индикатора достижения компетенции
	компетенции ОПК-1 Способен	
	анализировать	
	задачи	
	профессиональной	ОПК-1.У.1 уметь применять базовые
Общепрофессиональные	деятельности на	естественнонаучные и математические
компетенции	основе положений,	знания для решения и анализа задач
	законов и методов	профессиональной деятельности
	в области	
	естественных наук	
	и математики	OHIC 2.2.1
		ОПК-2.3.1 знать профильные разделы
	ОПК-2 Способен	математических и естественно-научных
	формулировать	дисциплин
	задачи	ОПК-2.У.1 уметь формулировать задачи
	профессиональной	профессиональной деятельности,
0.5	деятельности на	применять знания профильных разделов
Общепрофессиональные	основе знаний	математических и естественно-научных
компетенции	профильных	дисциплин
	разделов	ОПК-2.В.1 владеть навыками
	математических и	формулировки и постановки
	естественно-	профессиональных задач на основе
	научных	базовых знаний в области
	дисциплин	рассматриваемой инженерной
		деятельности

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Математика. Математический анализ»,
- «Физика»,
- «Электротехника»,
- «Авиационные и космические комплексы и системы»,
- «Физика»,

- «Информационные технологии».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- «Теория и расчет измерительных преобразователей и приборов»,
- «Цифровая метрология»,
- «Приборы дозиметрической и радиационной безопасности»,
- «Цифровые методы и средства измерений»,
- «Методы исследования с использованием сканирующей зондовой микроскопии»,
 - «Методы и приборы контроля окружающей среды»,
 - «Компьютерные средства проектирования электронных устройств».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам
		№4
1	2	3
Общая трудоемкость дисциплины,	3/ 108	3/ 108
ЗЕ/ (час)	3/ 100	3/ 108
Из них часов практической подготовки		
Аудиторные занятия, всего час.	51	51
в том числе:		
лекции (Л), (час)	17	17
практические/семинарские занятия (ПЗ),	17	17
(час)		17
лабораторные работы (ЛР), (час)	17	17
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)	36	36
Самостоятельная работа, всего (час)	21	21
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.	Экз.

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы лисциплины, их трудоемкость

таолица 3 — газделы, темы дисциплины, их трудосикость						
Doorows marry marry marry	Лекции	ПЗ (СЗ)	ЛР	КΠ	CPC	
Разделы, темы дисциплины		(час)	(час)	(час)	(час)	
Семестр 4						
Раздел 1. Полупроводниковые приборы Тема 1.1. Диоды	3	3	3		3	

m 10 P		F	1	1	
Тема 1.2. Биполярные транзисторы.					
Тема 1.3. Полевые транзисторы.					
Тема 1.4. Тиристоры.					
Раздел 2. Усилители					
Тема 2.1. Классификация, параметры и					
характеристики.					
Тема 2.2. Усилители постоянного тока.	2	2	2		3
Тема 2.3. Усилители мощности.	2	2	2		3
Тема 2.4.Операционные усилители.					
Тема 2.5. Избирательные усилители. Активные					
фильтры.					
Раздел 3. Источники питания					
Тема 3.1. Структура вторичных источников питания	•				2
Тема 3.2. Выпрямители, фильтры, стабилизаторы	2	2	2		3
Тема 3.3. Интегральные стабилизаторы напряжения					
Раздел 4. Основы алгебры логики					
Тема 4.1. Основные понятия алгебры логики.	_	_	_		_
Тема 4.2. Цифровые устройства последовательного	2	2	2		2
типа.					
Раздел 5. Цифровые устройства комбинационного					
типа					
Тема 5.1. Понятие о комбинационных устройствах.					
Задачи синтеза.	2	2	2		3
Тема 5.2. Сумматоры, компараторы, шифраторы и	2				3
дешифраторы, мультиплексоры, преобразователи					
кодов.					
Раздел 6. Микроэлектронные запоминающие	2	2	2		2
устройства	_	_	_		_
Раздел 7. Микропроцессоры	2	2	2		2
Раздел 8. Эволюция элементной базы электроники					
Тема 8.1. Электронные компоненты.	2	2	2		3
Тема 8.2. Элементы интегральных схем.					
Итого в семестре:	17	17	17		21
Итого	17	17	17	0	21
		L		<u> </u>	

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Название и содержание разделов и тем лекционных занятий					
название и содержание разделов и тем лекционных запитии					
Раздел 1. Полупроводниковые приборы					
Тема 1.1. Диоды					
Основные понятия зонной теории. р-п переход, его вольтамперная					
характеристика. Типы диодов, их характеристики и параметры.					
Стабилитрон, варикап, туннельный диод. Свето- и фотодиоды.					
Тема 1.2. Биполярные транзисторы.					
Классификация транзисторов. Принцип действия, параметры и					

характеристики биполярного транзистора. Три схемы включения. Методы расчета схем на биполярных транзисторах (эквивалентные схемы, графический метод, представление в виде 4-х полюсника).

Тема 1.3. Полевые транзисторы.

Полевые транзисторы с затвором в виде p-n перехода и $MO\Pi$ – транзисторы. Их принцип действия, характеристики и параметры.

Тема 1.4. Тиристоры.

Четырехслойные полупроводниковые структуры. Динисторы, тринисторы и симисторы. Характеристики и параметры. Применение в силовой электронике

2 Раздел 2. Усилители

Тема 2.1. Классификация, параметры и характеристики.

Принцип построения усилительного каскада. Классификация электронных усилителей. Режимы работы усилительного элемента. Параметры и характеристики. Обратная связь в усилителях и ее влияние на параметры усилителя. Усилители переменного тока на транзисторах.

Тема 2.2. Усилители постоянного тока.

Дрейф нуля в усилителях постоянного тока. Причины и методы борьбы с дрейфом. Дифференциальный каскад. Подавление синфазной помехи. Усилители с преобразованием частоты входного сигнала.

Тема 2.3. Усилители мощности (самостоятельно).

Особенности построения мощных усилительных каскадов. Двухтактные бестрансформаторные усилители мощности на комплементарных транзисторах.

Тема 2.4.Операционные усилители.

Структура, параметры и характеристики операционного усилителя (ОУ). Схемы включения. Расчет параметров каскада на ОУ. Примеры использования ОУ (интегратор, дифференциатор, сумматор, умножитель и т.д.).

Тема 2.5. Избирательные усилители. Активные фильтры (самостоятельно).

Резонансный усилитель с LC-контуром Активные фильтры на операционных усилителях с различными RC-звеньями в обратной связи. Использование 2T-моста в обратной связи для низкочастотных избирательных усилителей.

3 Раздел 3. Источники питания

Тема 3.1. Структура вторичных источников питания.

Параметры и структурная схема источника питания. Назначение блоков и требования к ним. Бестрансформаторные источники питания.

Тема 3.2. Выпрямители, фильтры, стабилизаторы.

Типы выпрямителей и сглаживающих фильтров. Параметрические стабилизаторы напряжения. Стабилизаторы компенсационного типа с последовательным и параллельным включением регулирующего элемента импульсные. Импульсные источники питания.

Тема 3.3. Интегральные стабилизаторы напряжения.

	Структура и параметры интегральных стабилизаторов. Возможность					
p	регулирования выходного напряжения. Схемы включения.					
4 F	Раздел 4. Основы алгебры логики					
Г	Гема 4.1. Основные понятия алгебры логики.					
	Операции конъюнкции, дизъюнкции и инверсии. Таблицы истинности.					
	Совершенные нормальные формы. Аксиомы, теоремы и законы двоичной					
a	лгебры.					
Г	Гема 4.2. Цифровые устройства последовательного типа.					
Г	Григгеры, регистры. Двоичные счетчики.					
5 F	Раздел 5. Цифровые устройства комбинационного типа					
Г	Гема 5.1. Понятие о комбинационных устройствах. Задачи синтеза.					
Г	Гема 5.2. Сумматоры, компараторы, шифраторы и дешифраторы,					
N	мультиплексоры, преобразователи кодов.					
6 F	Раздел 6. Микроэлектронные запоминающие устройства					
l F	Классификация микросхем памяти. Статическая и динамическая					
С	оперативная память. Принципы организации и виды ПЗУ.					
7 Раздел 7. Микропроцессоры						
l A	Аппаратный и программный способы реализации алгоритма. Достоинства					
И	и недостатки. Структура гипотетического микропроцессорного					
В	вычислительного устройства. Микропроцессорные комплекты.					
	Микроконтроллеры.					
	Раздел 8. Эволюция элементной базы электроники					
Γ	Гема 8.1. Электронные компоненты.					
3	Электронные лампы, транзисторы, интегральные микросхемы. Степень					
	интеграции.					
	Гема 8.2. Элементы интегральных схем.					
	Основные интегральные технологии. Уровень сложности микросхем.					
	Перспективные направления.					
	Гема 8.3. Программируемые аналоговые интегральные схемы					
	Возможности программирования параметров аналоговых микросхем.					
	Особенности структуры и перспективы применения.					

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

№ п/п	Темы практических занятий	Формы практических занятий	Трудоемкость, (час)	Из них практической подготовки, (час)	№ раздела дисцип лины
		Семестр 4			
1	Расчет схем,	Расчет и	3	1	1.1
	включающих диоды (10	моделирование			
	задач).				
2	Разработка схемы	Расчет и	2	1	2.4
	решения	моделирование			
	дифференциального				

	уравнения на ОУ				
3	Расчёт	Расчет и	2	1	3.2
	параметрического	моделирование	_	_	
	стабилизатора	подотпровить			
	напряжения Основные				
	этапы расчета				
	вторичного источника				
	питания.				
4	Перевод чисел из одной	Расчет и	2	1	4.1
	системы счисления в	моделирование	_	_	
	другую	моденирование			
5	Разработка схемы	Расчет и	2	1	5.1
	цифрового устройства,	моделирование	_	_	0.1
	реализующего таблицу	моденирование			
	истинности с помощью				
	СДНФ.				
6	Программируемые	Расчет и	2	1	6
	логические	моделирование	_	-	
	интегральные схемы	og will pobulific			
	(ПЛИС). Структура и				
	особенности				
	применения ПЛИС.				
	Параметры и				
	перспективы				
	использования.				
7	Отечественные	Семинар	2	1	7
	микропроцессоры	r	_	_	·
	(1B577, 1B578, 1B579,).				
	Семейство ЭВМ				
	«Багет», «Эльбрус».				
	Производители,				
	устройство.				
	Отечественные лидеры				
	(центры)				
	проектирования и				
	производства				
	микропроцессоров				
	(интегральных схем).				
8	8.1.Функциональная	Семинар	2	1	8
	микроэлектроника.	·r			-
	Нейристорная				
	электроника.				
	8.2.Оптоэлектроника,				
	акустоэлектроника.				
	8.3. Магнетоэлектроника,				
	биоэлектроника.				
	8.4.Мировые центры				
	полупроводниковой				
	индустрии. Показатели				
	развития, прогноз.				
	Фирма «Fairchild				
	Semiconductor» и ее роль				
	в становлении и				
	развитии электроники.				
L			ı	l	l

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

	пица о знаобраториме запитим и их трудоемк		TT	3.0
			Из них	№
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	раздела
Π/Π	Transferrobatine succeptifolist pacer	(час)	подготовки,	дисцип
			(час)	лины
	Семестр 4	4		
1	Исследование транзисторов	3	1	1.2, 1.3
	1. Исследование биполярных транзисторов в			
	схеме с общим эмиттером.			
	2. Исследование основных параметров			
	полевого транзистора в схеме с общим			
	истоком.			
2	Исследование операционного усилителя.	2	1	2.4
3	Исследование однофазных неуправляемых и	2	1	3.2
	управляемых выпрямителей.			
4	Интегральные триггеры.	2	1	4.2
5	Исследование счетчиков на интегральных	2	1	4.2
	элементах.			
6	Исследование регистров на интегральных	2	1	4.2
	элементах.			
7	Исследование комбинационных устройств	2	1	5.2
	(сумматор, компаратор, мультиплексор).			
8	Исследование цифро-аналоговых	2	1	5.1
	преобразователей.			
	Всего	17		

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 4,
Вид самостоятсявной расоты	час	час
1	2	3
Изучение теоретического материала дисциплины (TO)	17	17
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)	4	4
Подготовка к текущему контролю		
успеваемости (ТКУ)		
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		

Подготовка к промежуточной аттестации (ПА)			
	Всего:	21	21

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8- Перечень печатных и электронных учебных изданий

Tuesting of Trepe tens in turnsmin estern permissing reconstituting			
Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)	
621.38 Γ 96	Гусев В.Г., Гусев Ю.М. Электроника и микропроцессорная техника. Учебн. для вузов/ М.:Высш.шк., 2008,- 799с.	18	
621.396. O-60	Опадчий Ю.Ф., Глудкин О.П.,Гуров А.И. Аналоговая и цифровая электроника. Учебн.для вузов,М.: Горячая линия-Телеком,2005,-768 с.	62	
004 (075) У-27	Угрюмов Е.П. Цифровая схемотехника. Изд. БХВ-Петербург, 2010,- 816 с.	22	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование
	Не предусмотрено

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

<u>№</u> п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Мультимедийная лекционная аудитория	12-03, Гастелло, 15
2	Специализированная лаборатория «Электроники и микропроцессорной техники»	12-08, Гастелло, 15
3	Лабораторная установка «Исследование биполярного транзистора»	12-08, Гастелло, 15
4	Лабораторная установка «Исследование полевого транзистора»	12-08, Гастелло, 15
5	Стенд «НТЦ-02.05.1»	12-08, Гастелло, 15
6	Стенд «Лабораторная установка УМ 11»	12-08, Гастелло, 15

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

11111	
Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Экзаменационные билеты;
	Задачи;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	Vanavaranyaryara ahamaranyaryaryaryaryaryaryaryaryaryaryaryaryary		
5-балльная шкала	Характеристика сформированных компетенций		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 		

Оценка компетенции	Vonoverous obon ma pour visco grandani		
5-балльная шкала	Характеристика сформированных компетенций		
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 		
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 		
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 		

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

Mo =/=	Hamayayy naumaaan (aayay) yyg nayara / yydd nayara	Код
№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	индикатора
1	Диод, определение, контакты, обозначение, материалы	ОПК-1.У.1
1	изготовления.	
2	Свойства р-п перехода.	ОПК-1.У.1
3	ВАХ р-п перехода.	ОПК-1.У.1
4	Усилитель постоянного тока. Определение.	ОПК-1.У.1
5	Основы систем счисления.	ОПК-1.У.1
6	Основные понятия алгебры логики.	ОПК-1.У.1
7	Операции конъюнкции, дизъюнкции и инверсии. Таблицы	ОПК-1.У.1
/	истинности.	
8	Элементарные формы алгебры логики	ОПК-1.У.1
9	Нормальные формы алгебры логики	ОПК-1.У.1
10	Совершенная дизъюнктивная нормальная форма	ОПК-1.У.1
11	Совершенная конъюнктивная нормальная форма	ОПК-1.У.1
12	Аксиомы (тождества) алгебры логики: аксиомы операции	ОПК-1.У.1
12	отрицания, аксиомы операций с константами 0 и 1;	
13	Переместительный, Сочетательный и Распределительный	ОПК-1.У.1
13	законы.	
14	Резонансный усилитель. Определение.	ОПК-1.У.1
15	Колебательный контур.	ОПК-1.У.1
16	Биполярный транзистор. Определение, выводы, УГО.	ОПК-2.3.1
17	Биполярный транзистор. Основные характеристики.	ОПК-2.3.1

18	Биполярный транзистор. Режимы работы.	ОПК-2.3.1
19	Динистор. Определение, основные характеристики, ВАХ.	ОПК-2.3.1
20	Тринистор. Определение, основные характеристики, ВАХ.	ОПК-2.3.1
21	Полевой транзистор. Определение, выводы, УГО.	ОПК-2.3.1
22	Полевой транзистор. Основные характеристики.	ОПК-2.3.1
23	УГО усилителей.	ОПК-2.3.1
24	Классификация усилителей.	ОПК-2.3.1
25	Основные характеристики усилителя.	ОПК-2.3.1
26	Обратная связь в усилителях. ПОС.	ОПК-2.3.1
27	Обратная связь в усилителях. ООС.	ОПК-2.3.1
28	Усилитель постоянного тока. АЧХ.	ОПК-2.3.1
29	УПТ. Дрейф нуля.	ОПК-2.3.1
30	УПТ. Методы уменьшения дрейфа нуля.	ОПК-2.3.1
31	Дифференциальный усилитель.	ОПК-2.3.1
32	Подавление синфазной помехи.	ОПК-2.3.1
33	Усилитель мощности. Определение.	ОПК-2.3.1
34	УМ. Класс «А».	ОПК-2.3.1
35	УМ. Класс «А». УМ. Класс «В».	ОПК-2.3.1
36	Ум. класс «в». Операционный усилитель. Определение.	ОПК-2.3.1
37	1 1	ОПК-2.3.1
38	ОУ. Амплитудная характеристика. ОУ. АЧХ.	ОПК-2.3.1
38		ОПК-2.3.1
39	ОУ. Коэффициент усиления без ОС. Коэффициент ослабления синфазной помехи.	OHK-2.5.1
40	ОУ. Входное и выходное сопротивления.	ОПК-2.3.1
41	ОУ. Эксплуатационные параметры.	ОПК-2.3.1
42	Интегратор на ОУ.	ОПК-2.3.1
43	Дифференциатор на ОУ.	ОПК-2.3.1
44	Сумматор на ОУ.	ОПК-2.3.1
45	Умножитель на ОУ.	ОПК-2.3.1
	Условие резонанса в последовательном колебательном	ОПК-2.3.1
46	контуре.	OTHC 2.5.1
47	АЧХ фильтра нижних частот.	ОПК-2.3.1
48	Фильтры. Определение. Типы.	ОПК-2.3.1
49	АЧХ фильтра верхних частот.	ОПК-2.3.1
50	Фильтры. Полоса пропускания и подавления.	ОПК-2.3.1
51	АЧХ гребенчатого фильтра.	ОПК-2.3.1
52	Эволюция элементной базы. Основные события.	ОПК-2.3.1
53	Эволюция элементной базы. Закон Мура.	ОПК-2.3.1
54	Основные технологические операции создания ИМС.	ОПК-2.3.1
55	Направления развития микроэлектроники.	ОПК-2.3.1
56	Суть ПЛИС. Особенности создания.	ОПК-2.3.1
57	Сложные логические выражения. Штрих Шеффера.	ОПК-2.3.1
58	Сложные логические выражения. Стрелка Пирса.	ОПК-2.3.1
	Сложные логические выражения. Импликация,	ОПК-2.3.1
59	эквивалентность, строгая дизъюнкция.	
60	Типы логик. Эмиттерно-связанная логика.	ОПК-2.3.1
61	Типы логик. Транзисторно-транзисторная логика.	ОПК-2.3.1
62	Типы логик. Диодно-транзисторная логика.	ОПК-2.3.1
63	Типы логик. Резисторно-транзисторная логика и	ОПК-2.3.1
	резисторно-емкостная транзисторная логика.	
64	Типы логик. Технология КМОП.	ОПК-2.3.1

65	Асинхронный RS-триггер.	ОПК-2.3.1
66	Синхронный RS-триггер.	
67	D-триггер.	
68		
69	1 1	
70		
71	Счетчик и его основные параметры.	ОПК-2.3.1
72	Оперативная память.	ОПК-2.3.1
73	Структурная схема ОЗУ.	ОПК-2.3.1
74	Временные диаграммы записи и чтения статического ОЗУ.	ОПК-2.3.1
75	Шинный формирователь.	ОПК-2.3.1
76	ПЗУ. Принципы организации и виды.	ОПК-2.3.1
77	РROM-ПЗУ.	ОПК-2.3.1
78	Репрограммируемые постоянные запоминающие устройства.	ОПК-2.3.1
79	Общие сведения о комбинационных и последовательных	ОПК-2.3.1
	логических устройствах.	OHE 221
80	Сумматор. Алгоритм двоичного арифметического сложения.	ОПК-2.3.1
81	Таблицы истинности полусумматора и полного двоичного одноразрядного сумматора.	ОПК-2.3.1
82	Компаратор.	ОПК-2.3.1
83	Шифратор.	ОПК-2.3.1
84	Дешифратор.	ОПК-2.3.1
85	Общие сведения о ЦАП и АЦП.	ОПК-2.3.1
86	Критерий дискретизации по Котельникову.	ОПК-2.3.1
87	АЦП. Схема временного преобразования.	ОПК-2.3.1
88	АЦП последовательного счета.	ОПК-2.3.1
89	АЦП последовательного приближения.	ОПК-2.3.1
90	АЦП параллельного действия.	ОПК-2.3.1
91	ЦАП с двоично взвешенными резисторами и суммированием токов.	ОПК-2.3.1
92	ЦАП с резистивной матрицей R-2R.	ОПК-2.3.1
93	Классификация ПЛИС.	ОПК-2.3.1
94	Программируемые логические матрицы.	ОПК-2.3.1
95	Сложные программируемые логические устройства.	ОПК-2.3.1
96	Понятие алгоритма.	ОПК-2.3.1
97	Классификация микропроцессоров.	ОПК-2.3.1
98	Микроконтроллеры.	ОПК-2.3.1
99	Команды микропроцессора.	ОПК-2.3.1
100	СІSС процессоры.	ОПК-2.3.1
100	RISC процессоры.	ОПК-2.3.1
	Трёхшинная структура операционного блока	ОПК-2.3.1
102	микропроцессора.	O11K-2.5.1
103	Двухшинная структура операционного блока	ОПК-2.3.1
	микропроцессора.	ОПК-2.3.1
104	Одношинная структура операционного блока	OHK-2.3.1
105	микропроцессора.	ОПК-2.У.1
	105 Схемы включения биполярных транзисторов: с ОБ.	
106	Схемы включения биполярных транзисторов: с ОЭ.	ОПК-2.У.1 ОПК-2.У.1
107/	107 Схемы включения биполярных транзисторов: ОК.	

108	Усилитель. Общая структурная схема. Определение.	
109	Усилитель постоянного тока. Схема (пример).	ОПК-2.У.1
110	10 Операционный усилитель. Функциональная схема.	
111	111 Интегральная микросхема, микроэлектроника. Определения.	
112	Параплельный регистр Суема 4-разрядного параплельного	
113	Ствигающий регистр Суема и обозначение	
114	Функционирование сдвигающего регистра.	ОПК-2.У.1
115	Последовательные двоичные счетчики. Схема последовательного счетчика на ЈК-триггерах.	ОПК-2.У.1
116	Поспелорательные проминые счетники	
117	Параллельные проминые счетими. Суема параллельного	
118		
119	Определение и классификация микросхем памяти.	
120	Типовая структура микросхемы памяти.	ОПК-2.У.1
121	Применение совершенной дизъюнктивной нормальной	
122	Принципиальная схема цифрового устройства, реализующая таблицу истинности с помощью СДНФ.	ОПК-2.У.1
123	Усилитель. Принцип действия.	ОПК-2.В.1
124	Собрать схему и продемонстрировать работу асинхронного RS-триггера.	ОПК-2.В.1
125		
126	<u> </u>	
127		
128		
129 Собрать схему сумматора и продемонстрировать работу.		ОПК-2.В.1
130 Собрать схему ЦАП и продемонстрировать работу.		ОПК-2.В.1

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	
	Учебным планом не предусмотрено	индикатора

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

таолиц	а 10— Примерный перечень вопросов для тестов	
$N_0 \Pi/\Pi$	Примерный перечень вопросов для тестов	Код индикатора
1	Физические основы полупроводников. р-п переход при отсутствии и	ОПК-1.У.1
	наличии внешнего поля.	OFFIC 1 V 1
2	Полупроводниковые диоды	ОПК-1.У.1
3	Полевой транзистор с затвором в виде р-п перехода	ОПК-1.У.1
4	МОП- транзисторы	ОПК-1.У.1
5	Тиристоры	ОПК-1.У.1
6	Усилители. Классификация, основные параметры и характеристики	ОПК-1.У.1
7	Назначение элементов. Построение нагрузочных характеристик. Элементы расчета	ОПК-1.У.1
8	Обратная связь в усилителях. Классификация. Влияние ОС на коэффициенты усиления (вывод).	ОПК-1.У.1
9	Влияние ОС на параметры усилителя. Повторители.	ОПК-1.У.1
10	Устойчивость усилителя с OC.	ОПК-1.У.1
11	УПТ. Дрейф нуля. Дифференциальный каскад. УПТ с преобразованием частоты сигнала	ОПК-1.У.1
12	Операционный усилитель (ОУ). Структура, характеристики и параметры. Частотная коррекция	ОПК-1.У.1
13	Реализация основных логических операций с помощью элементов И- НЕ, ИЛИ- НЕ	ОПК-1.У.1
14	Типы логический элементов	ОПК-1.У.1
15	Параметры логических элементов	ОПК-1.У.1
16	Двухступенчатые RS и Т-триггеры	ОПК-1.У.1
17	D и IK-триггеры	ОПК-1.У.1
18	Регистры хранения	ОПК-1.У.1
19	Сдвиговые регистры	ОПК-1.У.1
20	Пассивные элементы электронных схем (R,C,L)	ОПК-2.3.1
21	Биполярные транзисторы. Принцип действия. Статические характеристики.	ОПК-2.3.1
22	LC- генераторы гармонических колебаний	ОПК-2.3.1
23	RC-генераторы	ОПК-2.3.1
24	Двоично-десятичный счетчик	ОПК-2.3.1
25	Программируемые делители	ОПК-2.3.1
26	Сумматоры и цифровые компараторы	ОПК-2.3.1
27	Шифратор и дешифратор	ОПК-2.3.1
28	Мультиплексор и демультиплексор	ОПК-2.3.1
29	Цифро-аналоговые преобразователи	ОПК-2.3.1
30	Аналого-цифровые преобразователи	ОПК-2.3.1
31	Аппаратный и программный способы реализации алгоритма.	ОПК-2.3.1
32	Достоинства и недостатки. Микропроцессоры. Элементная база. Структура микроЭВМ.	ОПК-2.3.1
33	Обобщенная структурная схема микропроцессора	ОПК-2.3.1
34	Классификация триггеров на логических элементах. RS и RST- триггеры	ОПК-2.3.1
35	Кольцевой и реверсивный регистры	ОПК-2.3.1
36	Логические операции (основные и комбинированные)	ОПК-2.3.1

37	ОУ в качестве усилителя переменного тока, интегратора и	ОПК-2.У.1
37	дифференциатора	
38	Избирательные усилители	ОПК-2.У.1
39	Трансформаторные усилители мощности	ОПК-2.У.1
40	Бестрансформаторные усилители мощности	ОПК-2.У.1
41	Компенсационные стабилизаторы напряжения	ОПК-2.У.1
42	Аксиомы, законы, тождества и теоремы алгебры логики	ОПК-2.У.1
43	Последовательный и параллельный двоичные счетчики	ОПК-2.У.1
44	Реверсивный двоичный счетчик	ОПК-2.У.1
45	ОУ в качестве сумматора, логарифматора, умножителя	ОПК-2.У.1
46	Структурная схема электронного устройства. Понятие об аналоговом и	ОПК-2.В.1
40	цифровом методах.	
47	Три схемы включения биполярных транзисторов. Частотные свойства	ОПК-2.В.1
48	Режимы работы усилительного элемента. Принцип построения	ОПК-2.В.1
40	усилительного каскада	
49	RC-усилитель на биполярных транзисторах. Типовая схема.	ОПК-2.В.1
50	Схемы включения ОУ	ОПК-2.В.1
51	Автогенераторы гармонических колебаний. Условие автогенерации.	ОПК-2.В.1
	Структурная схема.	
52	Структурная схема источника питания. Выпрямители и фильтры.	ОПК-2.В.1
53	Способы построения недвоичных счетчиков	ОПК-2.В.1

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ	
	Не предусмотрено	

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;

- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- контрольный опрос предыдущего материала;
- наименование лекции, введение в лекцию, перечень рассматриваемых вопросов;
- изложение вопросов лекции, основные выводы по каждому вопросу;
- подведение итогов, контрольный опрос;
- ответы на вопросы;
- объявление вопросов следующей лекции.

11.2. Методические указания для обучающихся по участию в семинарах.

Основной целью для обучающегося является систематизация и обобщение знаний по изучаемой теме, разделу, формирование умения работать с дополнительными источниками информации, сопоставлять и сравнивать точки зрения, конспектировать прочитанное, высказывать свою точку зрения и т.п. В соответствии с ведущей дидактической целью содержанием семинарских занятий являются узловые, наиболее трудные для понимания и усвоения темы, разделы дисциплины. Спецификой данной формы занятий является совместная работа преподавателя и обучающегося над решением поставленной проблемы, а поиск верного ответа строится на основе чередования индивидуальной и коллективной деятельности.

При подготовке к семинарскому занятию по теме прослушанной лекции необходимо ознакомиться с планом его проведения, с литературой и научными публикациями по теме семинара.

Требования к проведению семинаров

- наименование семинара, введение в занятие, перечень рассматриваемых вопросов;
- обсуждение вопросов семинара, основные выводы по каждому вопросу;
- рассмотрение рефератов, обсуждение;
- подведение итогов, контрольный опрос;
- ответы на вопросы;
- объявление вопросов следующего семинара.

11.3. Методические указания для обучающихся по прохождению практических занятий.

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

- контрольная оценка степени усвоения теоретического материала, относящегося к
 ПЗ;
 - объявление цели ПЗ, порядка проведения и отчетности;
- изложение сути ПЗ (решение практических задач, разработка схем, составление алгоритмов и т.п.);
 - подготовка отчетных материалов;
 - проверка результатов, выставление оценок.
- 11.4. Методические указания для обучающихся по выполнению лабораторных работ.
- В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Лабораторные работы проводятся в соответствии методическими указаниями для каждой работы. Перед выполнением лабораторных работ проводится инструктаж по технике безопасности и предварительный опрос студентов на усвоение методики проведения экспериментов с использованием лабораторного оборудования и измерительных приборов. По результатам проведенных экспериментов составляется протокол, который заверяется преподавателем.

Структура и форма отчета о лабораторной работе

- 1. Титульный лист;
- 2. Цель лабораторной работы;
- 3. Описание исследуемой системы;
- 4. Структура исследуемых параметров;

- 5. Методика проведения экспериментальных исследований;
- 6. Протокол эксперимента;
- 7. Результаты обработки экспериментальных данных;
- 8. Выводы по работе.

Требования к оформлению отчета о лабораторной работе

Отчет оформляется по ГОСТ 7.32-2017. Титульный лист оформляется по утвержденной форме. Форма титульного листа размещена на сайте ГУАП.

На кафедре имеется учебно-методическая литература для выполнения лабораторных работ:

- 1. Дмитриев Ю.И. Неделин П.Н. Исследование электронных устройств наоперационных усилителях. Метод.указ. к вып.лаб.работ/ГУАП,СПб,2008-43с.
- 2. Дмитриев Ю.И., Неделин П.Н. Исследование цифровых схем. Метод.указ. к вып.лаб.работ/ ГУАП,СПб,2013-39 с.
- 11.5. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.6. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Контролю подлежат выполнение и сдача, предусмотренных настоящей программой лабораторных, практических и контрольных работ. При полном и успешном прохождении текущего контроля обучающийся допускается к промежуточной аттестации. Результаты текущего контроля учитываются наравне с ответами на вопросы билета промежуточной аттестации.

11.7. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

– экзамен – форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой