МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 1

УТВЕРЖДАЮ

Ответственный за образовательную

программу

д.ф.-м.н.,доц.

(должность, уч. степень. звание)

А.О. Смирнов

«10» февраля 2025 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Вычислительная математика» (Наименование дисциплины)

Код направления подготовки/ специальности	01.03.02	
Наименование направления подготовки/ специальности	Прикладная математика и информатика	
Наименование направленности	Прикладная математика и информатика в наукоемко производстве	
Форма обучения	очная	
Год приема	2025	

Санкт-Петербург- 2025

Лист согласования рабочей программы дисциплины

программу составил (а)	Tu -	
д-р физмат. наук	Muryma	Ю.А Пичугин
(должность, уч. степень, звание)	(подпись, дата) 03.02.25	(инициалы, фамилия)
Программа одобрена на засед	ании кафедры № 1	
«03» февраля 2025 г, протокол	1 № 02/1	
Заведующий кафедрой № 1	11	
д.фм.н.,доц.	4/1	А.О. Смирнов
(уч. степень, звание)	(подпись, дата) 03.02.21	(инициалы, фамилия)
Заместитель директора инстит	ута ФПТИ по методической раб	боте
ДОЦ.,К.Т.Н.	1302 03.02.25	Н.Ю. Ефремов
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Вычислительная математика» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 01.03.02 «Прикладная математика и информатика» направленности «Прикладная математика и информатика в наукоемком производстве». Дисциплина реализуется кафедрой «№1».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ОПК-2 «Способен использовать и адаптировать существующие математические методы и системы программирования для разработки и реализации алгоритмов решения прикладных задач»

ОПК-5 «Способен разрабатывать алгоритмы и компьютерные программы, пригодные для практического применения»

Содержание дисциплины охватывает круг вопросов, связанных с основами численных методов решения задач линейной алгебры и дифференциальных уравнений, приемами формализации прикладных задач.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы, 108 часов.

Язык обучения по дисциплине «русский»

- 1. Перечень планируемых результатов обучения по дисциплине
- 1.1. Цели преподавания дисциплины
- 2. Воспитать достаточно высокую математическую культуру, научить студентов методам решения задач, использующих аппарат вычислительной математики. Дисциплина базируется на математических разделах, необходимых студентам соответствующих специальностей при изучении общеинженерных и специальных дисциплин, при расчетах, связанных с выполнением курсовых и дипломных работ.
- 2.1. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП BO).
- 2.2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Общепрофессиональные компетенции	ОПК-2 Способен использовать и адаптировать существующие математические методы и системы программирования для разработки и реализации алгоритмов решения прикладных задач	ОПК-2.3.1 знать математические методы, математические пакеты и системы программирования для разработки и реализации алгоритмов решения прикладных задач ОПК-2.У.1 уметь адаптировать математические методы и системы программирования для разработки и реализации алгоритмов решения прикладных задач ОПК-2.В.1 владеть навыками выбора математического метода для решения задачи и оценки границ применимости метода
Общепрофессиональные компетенции	ОПК-5 Способен разрабатывать алгоритмы и компьютерные программы, пригодные для практического применения	ОПК-5.3.1 знать основные алгоритмы и компьютерные программы, пригодные для практического применения при решении задач цифровизации в области профессиональной деятельности ОПК-5.У.1 уметь разрабатывать и применять алгоритмы и компьютерные программы, пригодные для практического применения при решении задач цифровизации в области профессиональной деятельности ОПК-5.В.1 владеть практическими навыками разработки и применения алгоритмов и компьютерных программ, пригодных для практического применения при решении задач цифровизации в области профессиональной деятельности

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Аналитическая геометрия и линейная алгебра»,
- «Математический анализ»,
- «Информатика».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- «Математическое моделирование»,
- «Анализ данных»,
- «Теория управления».

4. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

		Трудоемкость по
Вид учебной работы	Всего	семестрам
		<u>№</u> 4
1	2	3
Общая трудоемкость дисциплины,	3/ 108	3/ 108
ЗЕ/ (час)	3/ 108	3/ 100
Из них часов практической подготовки		
Аудиторные занятия, всего час.	34	34
в том числе:		
лекции (Л), (час)	17	17
практические/семинарские занятия (ПЗ),		
(час)		
лабораторные работы (ЛР), (час)	17	17
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)	27	27
Самостоятельная работа, всего (час)	13	13
Вид промежуточной аттестации: зачет,		
дифф. зачет, экзамен (Зачет, Дифф. зач,	Экз.	Экз.
Экз.**)		

Примечание: **кандидатский экзамен

5. Содержание дисциплины

5.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции (час)	ПЗ (СЗ) (час)	ЛР (час)	КП (час)	СРС (час)
Сем	естр 4				
Раздел 1 Введение в вычислительную математику	1	1			17
Раздел 2 Численные методы линейной алгебры	4	4			16
Раздел 3 Решение нелинейных уравнений и систем	3	3			17
Раздел 4 Методы приближения функций	6	6			16

Раздел 5 Численное интегрирование	3	3			17
Итого в семестре:	17	17			83
Итого	17	17	0	0	83

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

5.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий	
1	Элементарная теория погрешностей	
	Погрешности чисел, арифметических операций и функций,	
	корректность и обусловленность вычислительной задачи,	
	классификация вычислительных методов	
2	Приближение функций	
	Задача приближения функций. Интерполяция обобщёнными	
	многочленами. Полиноминальная интерполяция. Многочлен	
	Лагранжа. Погрешность интерполяции. Конечные и	
	разделённые разности. Интерполяционный многочлен	
	Ньютона	
3	МНК и специальные интерполяционные многочлены	
	Постановка задачи и вывод формул МНК. Глобальная	
	полиноминальная интерполяция. Чувствительность к	
	погрешностям вводных данных	
4	Численное дифференцирование и интегрирование	
	Формулы численного дифференцирования для первой и	
	второй производной. Формулы численного	
	дифференцирования, основанные на интерполяции	
	алгебраическими многочленами.	
5		
5	алгебраическими многочленами.	
5	алгебраическими многочленами. Численные методы решения линейных и нелинейных	
5	алгебраическими многочленами. Численные методы решения линейных и нелинейных систем уравнений	
5	алгебраическими многочленами. Численные методы решения линейных и нелинейных систем уравнений Нормы векторов и матриц и их свойства. Метод Гаусса.	
5	алгебраическими многочленами. Численные методы решения линейных и нелинейных систем уравнений Нормы векторов и матриц и их свойства. Метод Гаусса. Метод простых итераций. Метод Зейделя. Собственные числа. Локализация собственных значений. Вычисление собственных векторов методом обратных итераций.	
5	алгебраическими многочленами. Численные методы решения линейных и нелинейных систем уравнений Нормы векторов и матриц и их свойства. Метод Гаусса. Метод простых итераций. Метод Зейделя. Собственные числа. Локализация собственных значений. Вычисление	
5	алгебраическими многочленами. Численные методы решения линейных и нелинейных систем уравнений Нормы векторов и матриц и их свойства. Метод Гаусса. Метод простых итераций. Метод Зейделя. Собственные числа. Локализация собственных значений. Вычисление собственных векторов методом обратных итераций.	
6	алгебраическими многочленами. Численные методы решения линейных и нелинейных систем уравнений Нормы векторов и матриц и их свойства. Метод Гаусса. Метод простых итераций. Метод Зейделя. Собственные числа. Локализация собственных значений. Вычисление собственных векторов методом обратных итераций. Подобные матрицы. Решение нелинейных уравнений. Метод Ньютона и его модификации. Численные методы решения задачи Коши для	
	алгебраическими многочленами. Численные методы решения линейных и нелинейных систем уравнений Нормы векторов и матриц и их свойства. Метод Гаусса. Метод простых итераций. Метод Зейделя. Собственные числа. Локализация собственных значений. Вычисление собственных векторов методом обратных итераций. Подобные матрицы. Решение нелинейных уравнений. Метод Ньютона и его модификации. Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений	
	алгебраическими многочленами. Численные методы решения линейных и нелинейных систем уравнений Нормы векторов и матриц и их свойства. Метод Гаусса. Метод простых итераций. Метод Зейделя. Собственные числа. Локализация собственных значений. Вычисление собственных векторов методом обратных итераций. Подобные матрицы. Решение нелинейных уравнений. Метод Ньютона и его модификации. Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений Задача Коши для дифференциального уравнения первого	
	алгебраическими многочленами. Численные методы решения линейных и нелинейных систем уравнений Нормы векторов и матриц и их свойства. Метод Гаусса. Метод простых итераций. Метод Зейделя. Собственные числа. Локализация собственных значений. Вычисление собственных векторов методом обратных итераций. Подобные матрицы. Решение нелинейных уравнений. Метод Ньютона и его модификации. Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений	

5.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

6. Таблица 5 – Практические занятия и их трудоемкость

	-			Из них	$N_{\underline{0}}$
No	Темы практических	Формы практических	Трудоемкость,	практической	раздела
п/п	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
	Семестр 4				
	Учебным планом не предусмотрено				
	Bcero				

6.1. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	$N_{\underline{0}}$
$N_{\underline{0}}$	Панианородина поборатории у робот	Трудоемкость,	практической	раздела
Π/Π	Наименование лабораторных работ	(час)	подготовки,	дисцип
			(час)	лины
1	Вычисление определенного интеграла	2		4
	методами прямоугольников, трапеций и			
	Симпсона.			
2	Вычисление корня уравнения (метод	2		5
	половинного деления и метод хорд)			
3	Вычисление корня уравнения (метод	2		5
	Ньютона, модифицированный метод			
	Ньютона, метод итераций)			
4	Решение системы нелинейных уравнений	2		5
	(метод Ньютона, модифицированный			
	метод Ньютона)			
5	Решение системы линейных уравнений	2		5
	(метод Гаусса, метод итераций и метод			
	Зейделя)			
6	Численное решение дифференциального	2		6
	уравнения (методы Эйлера, Рунге-Кутты и			
	Эйлера-Коши)			
	Всего	12		

Курсовое проектирование

6.2. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

6.3. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

1		
Вид самостоятельной работы	Всего,	Семестр 4,
Вид самостоятельной расоты	час	час
1	2	3
Изучение теоретического материала	6	6
дисциплины (ТО)	O	U
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю	1	1
успеваемости (ТКУ)	4	4
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной	2	2
аттестации (ПА)	3	3
Всего:	13	13

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

8. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8– Перечень печатных и электронных учебных изданий

		Количество экземпляров
Шифр/	Библиографическая ссылка	в библиотеке
URL адрес		(кроме электронных
		экземпляров)
https://www.studmed.ru/shaporev-	Шапорев С.Д. Методы	
sd-metody-vychislitelnoy-	вычислительной математики и их	
matematiki-i-ih-	приложения. СПб.: СМИОПресс,	
prilozheniya_230a96d9055.html	2003. – 232 c.	

9. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование	
http://www.math-net.ru	Общероссийский математический портал	
http://e.lanbook.com/view	ЭБС «Лань»	

10. Перечень информационных технологий

10.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

10.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование	
	Не предусмотрено	

11. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	
2	Компьютерная аудитория	24-12

12. Оценочные средства для проведения промежуточной аттестации

12.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Tweetings to Court of the Court	in posterior in position of the interior and in
Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;

12.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	Vanagranyaryura ahanyarnanayu waxarrayuyu	
5-балльная шкала	Характеристика сформированных компетенций	
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 	

Оценка компетенции	Характеристика сформированных компетенций		
5-балльная шкала	ларактеристика сформированных компетенции		
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 		
- обучающийся усвоил только основной программный мат по существу излагает его, опираясь на знания только основной программный мат по существу излагает его, опираясь на знания только основной инеточности; - допускает несущественные ошибки и неточности; - испытывает затруднения в практическом применении знаправления; - слабо аргументирует научные положения; - затрудняется в формулировании выводов и обобщений; - частично владеет системой специализированных понятий.			
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 		

12.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
1	 Можете назвать главную причину погрешности вычислений? Объясните, чем знание относительной погрешности удобнее знания абсолютной? Сформулируйте условие, которым определяется верная значащая цифра. Можете ли вы назвать понятие математического анализа, которое лежит в основе формулы погрешности, которая возникает при вычислении значений функции 	ОПК-2.3.1
	нескольких переменных? 5. Объясните в двух словах какое геометрическое сходство метода наименьший квадратов и ортогональной проекции вектора?	
2	 6. Можно ли построить два различных интерполяционных многочлена <i>n</i>-ой степени, принимающих заданные значения в <i>n</i>+1 точке? 7. Напишите формулу интерполяционного многочлена Лагранжа. 8. В чем состоит смысл перехода от конечных разностей к разделенным разностям? 9. С чем можно сравнить интерполяционный многочлен 	ОПК-2.У.1

	Ньютона?	
	10. Решение нелинейных уравнений методом половинного	
	деления.	
3	11. Нарисуйте иллюстрацию к методу хорд для решения	ОПК-2.В.1
3		OHK-2.B.1
	нелинейных уравнений и дайте объяснение.	
	12. Нарисуйте иллюстрацию к методу Ньютона для	
	решения нелинейных уравнений и дайте объяснение.	
	13. В чем суть модификации метода Ньютона для решения	
	нелинейных уравнений?	
	14. Сформулируйте условие сходимости метода простых	
	итераций для решения нелинейных уравнений.	
	15. Перечислите известные вам нормы вектора.	OFFIC 5 D 1
4	16. Верно ли, что все векторные нормы эквивалентны?	ОПК-5.3.1
	17. Можно ли определить норму матрицы используя	
	норму вектора?	
	18. Дает ли какое-либо преимущество использование	
	метода Гаусса-Жордана по сравнению с методом Гаусса	
	при решении системы линейных уравнений?	
	19. Объясните, в чем преимущество метода Зейделя над	
	методом простых итераций для решения системы	
	линейных уравнений?	
	20. Верно ли, что спектр вещественной симметричной	
	матрицы всегда вещественен?	
5	21. Назовите известные вам методы вычисления спектра	ОПК-5.У.1
	симметричной матрицы.	
	22. Объясните геометрический смысл сингулярного	
	разложения произвольной квадратной вещественной	
	матрицы.	
	23. Сформулируйте определение сжимающего	
	отображения.	
	24. Напишите итерационную формулу решение систем	
	нелинейных уравнений методом Ньютона.	
	25. Объясните в двух словах суть модификации метода	
	Ньютона для решения систем нелинейных уравнений.	
6	26. Какая простая идея лежит в основе численной	ОПК-5.В.1
	аппроксимации производных?	
	27. Порядок метода Рунге-Кутты решения задачи Коши	
	определяется максимальной (закончите фразу).	
	28. Объясните почему формулы численного	
	интегрирования называются «квадратурными»?	
	29. Назовите известные вам квадратурные формулы.	
	30. С какой целью применяются численные методы?	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 — Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	а 18 – Примерный перечень вопросов для Примерный перечень вопро		Код
1	Прочитайте текст, выберите правильный о	отрет и запините апгументы	индикатора
1	обосновывающие выбор ответа.		
	Формулы численного интегрирования (в		
	интеграла) применяют в тех случаях, ког		
	(неопределенный) интеграл взять невозм		
	называются:	южно. Эти формулы	
	А) квадратурными; В) квадратичными; (кваликами: 	ОПК-2.3.1
	D) квадратическими.	у квадриками,	OTIK-2.5.1
2	Прочитайте текст, выберите правильный с	ответ и запишите аргументы	
_	обосновывающие выбор ответа.	in summing up y member,	
	Ошибки вычислений возникают по причи	не	
	А) округления; В) невнимательности; С) н		
	D) плохого качества компьютера.	7.1 7.10	
3	Инструкция: Прочитайте текст и установи	те соответствие. К каждой	ОПК-5.3.1
	позиции, данной в левом столбце, подбери		011K 3.5.1
	позицию в правом столбце и дайте объясн		
	А) вычисление спектра симметричной	А) метод Жордана-	
	матрицы;	Гаусса;	
	В) интерполяционный многочлен	Б) метод вращений;	
	Ньютона;	С) разделенные	
	С) решение системы линейных	разности.	
	уравнений		
4	Прочитайте текст и установите последова	-	
	сходимости. Запишите соответствующую	последовательность букв	
	слева направо.	A) D)	
	Методы решения нелинейных уравнений:	А) метод хорд; В) метод	
5	касательных; С) метод простых итераций.		
3	Прочитайте текст и запишите развернуты При решении систем линейных уравнений		
	при решении систем линеиных уравнении методы: метод простых итераций и метод		
	условием сходимости этих методов, чем п		
	метод Зейделя от обычного метода итерац		
6	Прочитайте текст, выберите правильный с		
O	обосновывающие выбор ответа.	The in summing up y went bi,	
	λ называется собственным числом матрицы A , если для некоторого		ОПК-2.В.1
	ненулевого вектора Х выполняется равенс	0111C 2.D.1	
	всех собственных чисел матрицы называе		
	А) следом; В) спектром; С) характер		
	А) следом, В) спектром, С) характеристикой,D) детерминантом.		
7	Прочитайте текст, выберите правильный с	ответ и запишите аргументы	1
,	обосновывающие выбор ответа.		ОПК-5.3.1
	Спектр симметричной матрицы можно вычислить		
	А) методом итераций; Б) методом прогонн		

	Г) методом Гаусса.	
8	К каждой позиции, данной в левом столбце, подберите соответствующую позицию в правом столбце, где указана оценка погрешности, и объясните все элементы формул правого столбца (M_n -максимум модуля n -й производной на $[a;b]$, h - шаг интегрирования). A) Метод прямоугольников; A) $M_2(b-a)h^2/12$; B) Метод трапеций; B) $M_2(b-a)h^2/24$; C) Метод парабол. C) $M_4(b-a)h^4/2880$.	
9	Один цикл вычисления итерационным методом собственных значений симметричной матрицы C состоит из следующих действий. Запишите соответствующую правильному порядку этих действий последовательность букв слева направо. $\ \mathbf{X}_0\ = 1$ A) $\cos(\phi_m) \coloneqq \mathbf{X}_m^T \mathbf{X}_{m+1}$; Б) $l_m \coloneqq \mathbf{X}_m^T \mathbf{X}_{m+1}$;	
	B) $\mathbf{X}_{m+1} \coloneqq \ \mathbf{X}_{m+1}\ ^{-1}\mathbf{X}_{m+1}; \ \Gamma) \ \mathbf{X}_{m+1} \coloneqq \mathbf{C}\mathbf{X}_{m}.$	
10	Сформулируйте теорему о неподвижной точке и приведите примеры ее применения в вычислительной математике.	
11	Порядок метода Рунге-Кутты численного решения задачи Коши определяется (выберите правильный ответ): А) количеством элементов формулы; В) максимальной степенью шага интегрирования; С) минимальной степенью шага интегрирования; D) числом	
	вхождений шага интегрирования в итерационную формулу.	ОПК-5.У.1
12	Предположим, что дана таблица значений функции. Какими методами можно построить интерполяционный многочлен степени равной n-1, где n — число табличных значений? A) Чебышева; B) Ньютона; C) Гаусса; D) Лагранжа.	ОПК-5.В.1
13	Пусть I – единичная матрица; A - диагональная; P и Q – различные ортогональные матрицы матрица. Каждой позиции, данной в левом столбце, подберите соответствующую позицию в правом столбце и дайте объяснение. А) диагональная матрица; А) PAP ^T ; В) симметричная недиагональная матрица; С) PIP ^T .	
14	Дана последовательность векторных норм. Расположите буквы слева направо так, чтобы между этими нормами выполнялось неравенство \leq . A) $\ \mathbf{X}\ _1$; B) $\ \mathbf{X}\ _2$; C) $\ \mathbf{X}\ _{\infty}$.	
15	По таблице содержащей <i>п</i> значений функции строится интерполяционный многочлен (<i>n</i> -1)-й степени. 1) Сколько различных многочленов можно построить? 2) Какую роль в этом вопросе играет определитель Вандермонда? Дайте развернутые ответы на эти вопросы	

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

	· - · - · · · · · · · · · · · · · · · ·
№ п/п	Перечень контрольных работ
	Не предусмотрено

12.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

13. Методические указания для обучающихся по освоению дисциплины

13.1. Методические указания для обучающихся по освоению лекционного материала (если предусмотрено учебным планом по данной дисциплине).

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- Определения математических терминов.
- Формулировка теоремы.
- Доказательство теоремы.
- Иллюстрирующие примеры.
- 13.2. Методические указания для обучающихся по выполнению лабораторных работ (если предусмотрено учебным планом по данной дисциплине)

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.
- 13.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 13.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

13.5. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

– экзамен – форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой