МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 23

УТВЕРЖДАЮ

Руководитель образовательной программы

Старший преподаватель

(должность, уч. степень, звание)

Е.П. Виноградова

(инициалы, фамилия)

«17» февраля 2025 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Физические основы электроники» (Наименование дисциплины)

Код направления подготовки/ специальности	11.03.04	
Наименование направления подготовки/ специальности	Электроника и наноэлектроника	
Наименование направленности	Промышленная электроника	
Форма обучения	ренеро	
Год приема	2025	

Санкт-Петербург- 2025

Лист согласования рабочей программы дисциплины

Программу составил (а)	
доц.,к.т.н.,доц.	В.Г.Нефедов
(должность, уч. степень, звание) (памись, дата)	(инициалы, фамилия)
Программа одобрена на заседании кафедры № 23	
«17» февраля 2025 г, протокол № 6/25	
Заведующий кафедрой № 23	
д.т.н.,проф. 17.02.25	А.Р. Бестугин
(уч. степень, звание) (подпись, дата)	(инициалы, фамилия)
Заместитель директора института №2 по меродической рабо	те
(01)	
доц, к.т.н., доц 17.02.25	Н.В. Марковская
(должность, уч. степень, звание) (подпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Физические основы электроники» входит в образовательную программу высшего образования по направлению подготовки/ специальности 11.03.04 «Электроника и наноэлектроника» направленности «Промышленная электроника». Дисциплина реализуется кафедрой «№23».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-5 «Способен строить простейшие физические и математические модели приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения.»

Содержание дисциплины охватывает круг вопросов, связанных с использованием современные достижения электроники в разрабатываемых системах различного функционального назначения, формированием научной основы для осознанного и целенаправленного использования полученных знаний при создании элементов, приборов и устройств электроники.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, самостоятельная работа обучающихся.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме зачета.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы, 108 часов.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

- 1.1. Цель преподавания дисциплины формирование у студентов знаний о фундаментальных физических процессах, лежащих в основе функционирования полупроводниковых приборов, о физических явлениях и эффектах, используемых в микроволновых функциональных устройствах, а также о современной элементной базе радиоэлектронной аппаратуры.
- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Профессиональные компетенции	ПК-5 Способен строить простейшие физические и математические модели приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения.	ПК-5.3.1 знает методику построения физических и математических моделей устройств электроники и наноэлектроники различного функционального назначения. ПК-5.В.1 владеет математическим аппаратом, необходимым для построения моделей электронных устройств различного назначения.

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «физика»,
- « математика»,
- «кимих»,
- «электротехника»
- «информатика»,
- «инженерная и компьютерная графика»

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- «наноэлектроника»,
- «квантовая и оптическая электроника»,
- «энергетическая электроника»,
- «основы теории сигналов»

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам №4
1	2	3
Общая трудоемкость дисциплины, 3E/ (час)	3/ 108	3/ 108
Из них часов практической подготовки	34	34
Аудиторные занятия, всего час.	51	51
в том числе:		
лекции (Л), (час)	17	17
практические/семинарские занятия (ПЗ), (час)		
лабораторные работы (ЛР), (час)	34	34
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)		
Самостоятельная работа, всего (час)	57	57
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Зачет	Зачет

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

таолица з тазделы, темы диециплины, их труд					
Разделы, темы дисциплины	Лекции	ПЗ (СЗ)	ЛР	КΠ	CPC
т азделы, темы дисциплины		(час)	(час)	(час)	(час)
Сем	естр 4				
Раздел 1. Структура материалов электронной	1		6		8
техники	4		6		8
Раздел 2. Физические основы квантовой	6		8		8
механики	6		8		8
Раздел 3. Физика полупроводников	2		12		11
Раздел 4 Контактные явления	2		8		10
Раздел 5. Физические свойства систем с	2				20
пониженной размерностью	3				20
Итого в семестре:	17		34		57
Итого	17	0	34	0	57

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4. Таблица 4 - Содержание разделов и тем лекционных занятий

1 TT	тт
Номер раздела	Название и содержание разделов и тем лекционных занятий
1	Структура материалов электронной техники.
	1.1. Элементы структурной кристаллографии Кристаллическая,
	жидкокристаллическая и аморфная структуры материалов.
	Математическое описание кристаллической решетки: основные типы
	решеток, индексы узлов, направлений и плоскостей, точечная и
	пространственная группы симметрии, формулы симметрии. Дефекты
	кристаллического строения.
	1.2. Тензорное описание физических свойств кристаллов. Понятие о
	тензоре. Определение свойства кристалла в заданном направлении
2	Физические основы квантовой механики
2	2.1. Применение уравнения Шредингера для описания состояния
	<u> </u>
	движения свободной микрочастицы, движения микрочастицы через
	потенциальный барьер. Туннельный эффект. Движение микрочастицы в
	потенциальной яме. Понятие о квантовании состояния. Вырожденные
	состояния. Движение электрона в атоме.
	2.2. Элементы зонной теории. Основные понятия зонной теории:
	энергетические зоны, уровень Ферми, работа выхода, зоны Бриллюэна,
	эффективная масса носителя. Зонная структура проводников,
	полупроводников, диэлектриков. Температурная зависимость
	концентрации, подвижности и электропроводности.
3	Физика полупроводников
	3.1. Статистика носителей в полупроводниках. Основные типы
	полупроводников: собственные и примесные полупроводники.
1	Сооственные полупроводники: равновесная концентрация носителеи,
	Собственные полупроводники: равновесная концентрация носителей, положение уровня Ферми, температурная зависимость концентрации и
	положение уровня Ферми, температурная зависимость концентрации и
	положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Примесные полупроводники: равновесная
	положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Примесные полупроводники: равновесная концентрация носителей, положение уровня Ферми, температурная
	положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Примесные полупроводники: равновесная концентрация носителей, положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Закон
	положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Примесные полупроводники: равновесная концентрация носителей, положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Закон действующих масс для основных и неосновных носителей.
	положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Примесные полупроводники: равновесная концентрация носителей, положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Закон действующих масс для основных и неосновных носителей. Вырожденные полупроводники.
	положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Примесные полупроводники: равновесная концентрация носителей, положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Закон действующих масс для основных и неосновных носителей. Вырожденные полупроводники. 3.2. Неравновесные носители в полупроводниках. Равновесные и
	положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Примесные полупроводники: равновесная концентрация носителей, положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Закон действующих масс для основных и неосновных носителей. Вырожденные полупроводники. 3.2.Неравновесные носители в полупроводниках. Равновесные и неравновесные носители: скорость генерации, рекомбинации, время
	положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Примесные полупроводники: равновесная концентрация носителей, положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Закон действующих масс для основных и неосновных носителей. Вырожденные полупроводники. 3.2.Неравновесные носители в полупроводниках. Равновесные и неравновесные носители: скорость генерации, рекомбинации, время жизни носителя; различные типы рекомбинации носителей (зона-зона,
	положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Примесные полупроводники: равновесная концентрация носителей, положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Закон действующих масс для основных и неосновных носителей. Вырожденные полупроводники. 3.2. Неравновесные носители в полупроводниках. Равновесные и неравновесные носители: скорость генерации, рекомбинации, время жизни носителя; различные типы рекомбинации носителей (зона-зона, через примеси и дефекты, поверхностная рекомбинация).
	положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Примесные полупроводники: равновесная концентрация носителей, положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Закон действующих масс для основных и неосновных носителей. Вырожденные полупроводники. 3.2.Неравновесные носители в полупроводниках. Равновесные и неравновесные носители: скорость генерации, рекомбинации, время жизни носителя; различные типы рекомбинации носителей (зона-зона, через примеси и дефекты, поверхностная рекомбинация). 3.3. Кинетические явления в полупроводниках. Диффузионный и
	положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Примесные полупроводники: равновесная концентрация носителей, положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Закон действующих масс для основных и неосновных носителей. Вырожденные полупроводники. 3.2.Неравновесные носители в полупроводниках. Равновесные и неравновесные носители: скорость генерации, рекомбинации, время жизни носителя; различные типы рекомбинации носителей (зона-зона, через примеси и дефекты, поверхностная рекомбинация). 3.3. Кинетические явления в полупроводниках. Диффузионный и дрейфовый токи. Подвижность носителей и ее температурная
	положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Примесные полупроводники: равновесная концентрация носителей, положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Закон действующих масс для основных и неосновных носителей. Вырожденные полупроводники. 3.2.Неравновесные носители в полупроводниках. Равновесные и неравновесные носители: скорость генерации, рекомбинации, время жизни носителя; различные типы рекомбинации носителей (зона-зона, через примеси и дефекты, поверхностная рекомбинация). 3.3. Кинетические явления в полупроводниках. Диффузионный и дрейфовый токи. Подвижность носителей и ее температурная зависимость. Соотношение Эйнштейна. Электропроводность
	положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Примесные полупроводники: равновесная концентрация носителей, положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Закон действующих масс для основных и неосновных носителей. Вырожденные полупроводники. 3.2.Неравновесные носители в полупроводниках. Равновесные и неравновесные носители: скорость генерации, рекомбинации, время жизни носителя; различные типы рекомбинации носителей (зона-зона, через примеси и дефекты, поверхностная рекомбинация). 3.3. Кинетические явления в полупроводниках. Диффузионный и дрейфовый токи. Подвижность носителей и ее температурная зависимость. Соотношение Эйнштейна. Электропроводность собственных и примесных полупроводников и их температурная
	положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Примесные полупроводники: равновесная концентрация носителей, положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Закон действующих масс для основных и неосновных носителей. Вырожденные полупроводники. 3.2.Неравновесные носители в полупроводниках. Равновесные и неравновесные носители: скорость генерации, рекомбинации, время жизни носителя; различные типы рекомбинации носителей (зона-зона, через примеси и дефекты, поверхностная рекомбинация). 3.3. Кинетические явления в полупроводниках. Диффузионный и дрейфовый токи. Подвижность носителей и ее температурная зависимость. Соотношение Эйнштейна. Электропроводность собственных и примесных полупроводников и их температурная зависимость. Уравнение непрерывности.
4	положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Примесные полупроводники: равновесная концентрация носителей, положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Закон действующих масс для основных и неосновных носителей. Вырожденные полупроводники. 3.2.Неравновесные носители в полупроводниках. Равновесные и неравновесные носители: скорость генерации, рекомбинации, время жизни носителя; различные типы рекомбинации носителей (зона-зона, через примеси и дефекты, поверхностная рекомбинация). 3.3. Кинетические явления в полупроводниках. Диффузионный и дрейфовый токи. Подвижность носителей и ее температурная зависимость. Соотношение Эйнштейна. Электропроводность собственных и примесных полупроводников и их температурная
4	положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Примесные полупроводники: равновесная концентрация носителей, положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Закон действующих масс для основных и неосновных носителей. Вырожденные полупроводники. 3.2.Неравновесные носители в полупроводниках. Равновесные и неравновесные носители: скорость генерации, рекомбинации, время жизни носителя; различные типы рекомбинации носителей (зона-зона, через примеси и дефекты, поверхностная рекомбинация). 3.3. Кинетические явления в полупроводниках. Диффузионный и дрейфовый токи. Подвижность носителей и ее температурная зависимость. Соотношение Эйнштейна. Электропроводность собственных и примесных полупроводников и их температурная зависимость. Уравнение непрерывности.
4	положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Примесные полупроводники: равновесная концентрация носителей, положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Закон действующих масс для основных и неосновных носителей. Вырожденные полупроводники. 3.2. Неравновесные носители в полупроводниках. Равновесные и неравновесные носители: скорость генерации, рекомбинации, время жизни носителя; различные типы рекомбинации носителей (зона-зона, через примеси и дефекты, поверхностная рекомбинация). 3.3. Кинетические явления в полупроводниках. Диффузионный и дрейфовый токи. Подвижность носителей и ее температурная зависимость. Соотношение Эйнштейна. Электропроводность собственных и примесных полупроводников и их температурная зависимость. Уравнение непрерывности. Контактные явления 4.1. Контактныя разность потенциалов Природа контактной разности
4	положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Примесные полупроводники: равновесная концентрация носителей, положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Закон действующих масс для основных и неосновных носителей. Вырожденные полупроводники. 3.2.Неравновесные носители в полупроводниках. Равновесные и неравновесные носители: скорость генерации, рекомбинации, время жизни носителя; различные типы рекомбинации носителей (зона-зона, через примеси и дефекты, поверхностная рекомбинация). 3.3. Кинетические явления в полупроводниках. Диффузионный и дрейфовый токи. Подвижность носителей и ее температурная зависимость. Соотношение Эйнштейна. Электропроводность собственных и примесных полупроводников и их температурная зависимость. Уравнение непрерывности. Контактные явления 4.1. Контактная разность потенциалов Природа контактной разности потенциалов, работа выхода, зонные диаграммы контактов металл-
4	положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Примесные полупроводники: равновесная концентрация носителей, положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Закон действующих масс для основных и неосновных носителей. Вырожденные полупроводники. 3.2. Неравновесные носители в полупроводниках. Равновесные и неравновесные носители: скорость генерации, рекомбинации, время жизни носителя; различные типы рекомбинации носителей (зона-зона, через примеси и дефекты, поверхностная рекомбинация). 3.3. Кинетические явления в полупроводниках. Диффузионный и дрейфовый токи. Подвижность носителей и ее температурная зависимость. Соотношение Эйнштейна. Электропроводность собственных и примесных полупроводников и их температурная зависимость. Уравнение непрерывности. Контактные явления 4.1. Контактная разность потенциалов Природа контактной разности потенциалов, работа выхода, зонные диаграммы контактов металл-полупроводник, полупроводник-полупроводник (электронно-дырочный
4	положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Примесные полупроводники: равновесная концентрация носителей, положение уровня Ферми, температурная зависимость концентрации и положения уровня Ферми. Закон действующих масс для основных и неосновных носителей. Вырожденные полупроводники. 3.2.Неравновесные носители в полупроводниках. Равновесные и неравновесные носители: скорость генерации, рекомбинации, время жизни носителя; различные типы рекомбинации носителей (зона-зона, через примеси и дефекты, поверхностная рекомбинация). 3.3. Кинетические явления в полупроводниках. Диффузионный и дрейфовый токи. Подвижность носителей и ее температурная зависимость. Соотношение Эйнштейна. Электропроводность собственных и примесных полупроводников и их температурная зависимость. Уравнение непрерывности. Контактные явления 4.1. Контактная разность потенциалов Природа контактной разности потенциалов, работа выхода, зонные диаграммы контактов металл-

	4.2. Физические процессы в р-п переходе. Физические процессы в р-п	
	переходе при отсутствии внешнего электрического поля: условия	
	равновесия, зонная диаграмма, контактная разность потенциалов,	
	распределение поля и зарядов по р-п переходу, толщина обедненного	
	слоя, резкий и плавный р-п переходы, симметричные и несимметричные	
	р-п- переходы, гетеропереходы. Физические процессы в р-п переходе	
	при наличии внешнего электрического поля: эонные диаграммы,	
	вольтамперная характеристика, пробой р-п перехода (основные типы,	
	вольтамперные характеристики).	
5	Физические свойства систем с пониженной размерностью Методы	
	создания систем с пониженной размерностью. Типы гетероструктур. Их	
	физические свойства. Перенос носителей заряда в тонких пленках.	
	Наноструктуры и наноматериалы.	

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

	<u> </u>			
<u>№</u>	Темы практических	Формы практических занятий	Трудоемкость,	
Π/Π	занятий		(час)	дисцип
				лины
	Учебным планом не предусмотрено			
Всего				

4.4. Лабораторные занятия Темы лабораторных занятий и их трудоемкость приведены в таблице 6. Таблица 6 – Лабораторные занятия и их трудоемкость

No		Труд	№
J1 <u>⊆</u>	Наименование лабораторных работ	оем	раздела
/π	паименование лаоораторных раоот	кост	дисцип
/11		ь, (час)	лины
	Семестр 4		
1	Элементы структурной кристаллографии	4	1
2	Рентгеноструктурный анализ кристаллов 4		1
3	Определение ширины запрещенной зоны 4 1		1
4	Эффект Холла	4	2
5	Исследование <i>p-n</i> перехода	5	2
6	Исследование стабилитрона	5	3
7	Исследование варикапа	4	4
8	Исследование диода	4	4
	Всего:	34	

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работ	Всего,	Семестр 4,
Вид самостоятсявной расот	час	час
1	2	3
Изучение теоретического материала дисциплины (TO)	30	30
Подготовка к текущему контролю успеваемости (ТКУ)	10	10
Подготовка к промежуточной аттестации (ПА)	17	17
Bcc	его: 57	57

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8 – Перечень печатных и электронных учебных изданий

Шифр	Библиографическая ссылка / URL адрес	Количество экземпляров в
—тг	r r	библиотеке
		(кроме электронных
		экземпляров)
[621.3/С65 (ГУАП)]	Сорокин, В. С. Материалы и элементы электронной техники. Радиоэлектроника	51 экз.
	Текст]: учебник: в 2 т. т. 1:	
	Проводники, полупроводники,	
	диэлектрики. / В. С. Сорокин, Б. Л.	
	Антипов, Н. П. Лазарева М.: Академия,	
	2006 - 448 c.	
[621.315.5.61/П30	Петров, К. С. Радиоматериалы, радио-	474
(ГУАП)]	компоненты и электроника: Учебное по-	
	собие / К. С. Петров. – СПб.: Питер, 2003.	
	- 511 c.	
	(СПб.: Питер, 2006. – 522с)	
621.315.5.61/ P15	[Радиоматериалы и радиокомпоненты	100
(ГУАП)]	[Текст] : методические указания к вы-	
	полнению лабораторных работ; сост. В.	
	Г. Нефедов [и др.] СПб. : Изд-во ГУАП,	
	2011 66 с. – 133 экз.	
	Физические основы электроники [Текст]:	200
	методические указания к выполнению	
	лабораторных работ № 1 – 7; сост. В.Г.	
	Нефедов и др. –СПб. : Изд-во ГУАП 2008.	
	_ 70 с 250 экз.	
	В.Л. Ткалич, А.В. Мокеева, Е.Е. Оборина	2
	Физические основы наноэлектрониви:	
	Учебное пособие/СПб. СПбГУ ИТМО,	
	2011-83c	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование
http://e.lanbook.com/books	Доступ в ЭБС «Лань» осуществляется по договору №
	695-7 от 30.11.2011
http://lib.aanet.ru/	Доступ к электронным ресурсам ГУАП (авторизация
	по номеру читательского билета)
http://guap.ru/guap/standart/pravila1.	Правила оформления текстовых документов по ГОСТ
r	7.32-20
http://guap.ru/guap/standart/prim.doc	Примеры библиографического описания по ГОСТ 7.1-200

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

таблице 11.

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине Перечень используемых информационно-справочных систем представлен в

Таблица 11- Перечень информационно-справочных систем

	1 1 1 1	
№ п/п	Наименование	
	Не предусмотрено	

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	
2	Специализированная лаборатория «Электроника»	Гастелло 15 ауд.2209,22-11
3	Лабораторный стенд	Гастелло 15 ауд.2209,22-11

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Зачет	Список вопросов;
	Тесты;.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

1аолица 14 – Критерии оценки уровня сформированности компетенции			
Оценка компетенции 5-балльная шкала	Характеристика сформированных компетенций		
БІГРУПІ КРНЧІПГРО-С			
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 		
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 		
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 		
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 		

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15. Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
	Учебным планом не предусмотрено	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

	Попочения подпочения дифф. за тега	Код
№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	индикатора
1	Основные параметры кристаллических решеток	ПК-5.3.1
2	Индексы узлов, направлений и плоскостей	ПК-5.В.1
3	Понятие о тензоре 2-го ранга	ПК-5.3.1
4	Преобразование компонент тензора 2-го ранга	ПК-5.В.1
5	Тензоры механических напряжений и деформации	ПК-5.3.1
6	Тензоры механических напряжений и деформации	ПК-5.В.1
7	Принцип неопределенности Гейзенберга	ПК-5.3.1
8	Движение электрона в атоме	ПК-5.В.1
9	Движение электрона в кристалле	ПК-5.3.1
10	Деление веществ на проводники, полупроводники и	ПК-5.В.1
	диэлектрики	
11	Классическая и квантовые статистики носителей заряда	ПК-5.3.1
12	Статистика носителей в металлах	ПК-5.В.1
13	Статистика носителей в собственных и примесных	ПК-5.3.1
	полупроводниках	
14	Собственные, примесные, основные, несновные,	ПК-5.3.1
	равновесные и неравновесные носители	
15	Подвижность носителей	ПК-5.В.1
16	Электропроводность металлов, собственных и примесных	ПК-5.3.1
	полупроводников	
17	Контакт металл-полупроводник, полупроводник-	ПК-5.В.1
	полупроводник	
18	Вольт-амперная характеристика р-п перехода	ПК-5.3.1
19	Понятия о квантовых ямах, квантовых нитях и квантовых	ПК-5.В.1
	точках	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	Код компетенции
1	Инструкция: прочитайте задание и выберите один	ПК-5
	правильный ответ.	
	Какое из перечисленных действий является ключевым этапом в	
	построении физической модели электронного устройства?	

5	вариант ответа.	н данге свои развернутын	
_	Инструкция: прочитайте задание	и лайте свой пазвеннутый	ПК-5
			-
	определённых условиях.		
	потенциальный барьер при		
	частицы могут пройти через		
	квантового эффекта, когда	/	
		. Туннельный	
	спруктуры и снижению сопротивления.		
	приводит к изменению структуры и снижению		
	материалами, которая		
	с химической реакцией между		
		. Поверхностный	
	поверхности.		
	поля, концентрированного на		
	пробой из-за электрического		
	материала, что вызывает		
	напряжении на поверхности	•	
	1	. Электрохимический	
		Іазвание пробоя	
	Какие описания соответствуют разл	ичным типам пробоя?	
	позицию в правом столбце.	nogocpare coordererby longito	
•	каждой позиции в левом столбце		
4	Инструкция: прочитайте текст и	устяновите соответствие К	ПК-5
	(BACD)		
	D) Пробой перехода, сопровождают тока	циися резким увеличением	
	дополнительному ионизационному		
	С) Ускорение электронов в электри		
	лавинное умножение носителей зар		
	В) Повышение напряжения до значе		
	столкновении с атомами в области р		
	А) Возникновение высокоэнергетич	ных электронов при	
	Этапы образования лавинного проб		
	ответа в правильной последовате		
3	Инструкция: прочитайте задание		ПК-5
	D) С помощью термоэлектрической	эмиссии	
	тока		
	С) С помощью измерения напряжен		
	В) С помощью метода динамическо	ого сопротивления	
	А) С помощью метода фототока		
	в р-п-переходе?	1	
	Как можно определить контактную	разность потенциалов	
_	несколько правильных ответов.	и выобрите один или	ПК-5
2	D) Настройка стандартного программного обеспечения Инструкция: прочитайте задание и выберите один или		
	С) Оптимизация ПО для моделиров		
	,		
	В) Составление математического уг	авнения	

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п		Пе	речень контрольных работ
	Не предусмотрено		

- 10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.
 - 11. Методические указания для обучающихся по освоению дисциплины (Ниже приводятся рекомендации по составлению данного раздела)
- 11.1. Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- структура материалов электронной техники;
- физика полупроводников;
- контактные явления;
- физические свойства систем с пониженной размерностью.

Методические материалы приведены в списке литературы

11.2. Методические указания для обучающихся по участию в семинарах (не предусмотрено учебным планом по данной дисциплине)

- 11.3. Методические указания для обучающихся по прохождению практических занятий (не предусмотрено учебным планом по данной дисциплине)
- 11.4. Методические указания для обучающихся по выполнению лабораторных работ (если предусмотрено учебным планом по данной дисциплине)
- В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Исследование характеристик полупроводниковых приборов. Лабораторная работа выполняется бригадой из двух-трех студентов на универсальных измерительных стендах. Проведение исследований осуществляется в соответствии с заданием и в указанной последовательности. Результаты измерений заносятся в протокол испытаний, который по окончании исследований должен быть представлен для проверки преподавателю

Структура и форма отчета о лабораторной работе

Отчет должен содержать: наименование и цель работы; схемы измерений; таблицы измеренных данных; графики характеристик исследуемых объектов; рассчитанные значения параметров исследуемых объектов; краткие выводы. Отчет выполняется на белой бумаге формата 297 х 210 кв. мм.

Требования к оформлению отчета о лабораторной работе

Образец оформления титульного листа приведен на сайте: http://standarts.guap.ru/ Графики строятся на отдельных листах формата отчета. Иллюстрации малых размеров размещаются на одном листе. Все графики и рисунки должны иметь нумерацию и поясняющие подписи с указанием типа исследуемого объекта. Принципиальные схемы вычерчиваются в соответствии с требованиями ЕСКД.

Методические указания для обучающихся по прохождению лабораторных работ

- 1. В.Г. Нефедов Физические основы электроники. Методические указания к выполнению лабораторных работ № 1 7./О.Н. Новикова, Э.А. Суказов СПб.: Изд-во ГУАП 2008. 70 с. 250 экз.
- 2. 2. В.Г. Нефедов. Радиоматериалы и радиокомпоненты. Методические указания к выполнению лабораторных работ. / О.Н. Новикова, Э.А. Суказов, Н.Г. Туркин . СПб. : Изд-во ГУАП, 2011. 66 с. 133 экз.

11.5. Методические указания для обучающихся по прохождению курсового проектирования/выполнения курсовой работы (непредусмотрено учебным планом по данной дисциплине)

Курсовой проект/ работа проводится с целью формирования у обучающихся опыта

11.6. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ
- 11.7. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Текущий контроль успеваемости включает в себя:

- контроль знаний при защите лабораторных работ
- контроль знаний с помощью тестов
- 11.8. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— зачет — это форма оценки знаний, полученных обучающимся в ходе изучения учебной дисциплины в целом или промежуточная (по окончании семестра) оценка знаний обучающимся по отдельным разделам дисциплины с аттестационной оценкой «зачтено» или «не зачтено».

Промежуточная аттестация осуществляется при проведении зачетных занятий, путем проверки знаний по контрольным вопросам.

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой