МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

образования "САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 24

УТВЕРЖДАЮ Руководитель образовательной программы доц. к.т.н. (должность. уч степсик, званик) Е.В. Силяков (подпись) (подпись) (подпись)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Интегрированные системы локации» (Наименование ансинтации)

Код направления подготовки/ специальности	11.05.01	
Наименование направления подготовки/ специальности	Радиоэлектронные системы и комплексы	
Наименование направленности	Радиоэлектронные системы передачи информации	
Форма обучения	очная	
Год приема	2025	

Санкт-Петербург- 2025

Лист согласования рабочей программы дисципли	НЫ
--	----

Ірограмму составил (а)	1/ _	
Доцент, к.т.н.	and the second	Е.В. Силяков
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Трограмма одобрена на заседании	я кафедры № 24	
«6»02 2025 г, протокол	I № 2/25	
Заведующий кафедрой № 24	0.50	
ст.н. доц.	CRESTA	О.В. Тихоненкова
(уч степень, звание)	(подпись, дата)	(интициалы, фамилия)
	na Asserta	afora
Ваместитель директора института	№2 по методической р	aoore
лоп к т.н. доп	1/1/-	Н.В Марковская
(польшесть за степень мание)	(no anyey, aara)	(инициалы, фамилия)

Аннотация

Дисциплина «Интегрированные системы локации» входит в образовательную программу высшего образования — программу специалитета по направлению подготовки/специальности 11.05.01 «Радиоэлектронные системы и комплексы» направленности «Радиоэлектронные системы передачи информации». Дисциплина реализуется кафедрой «№24».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-1 «Способен определять цели и выполнять постановку задач проектирования»

ПК-2 «Способен знать технологию и разрабатывать структурные и функциональные схемы радиоэлектронных систем и комплексов, а также принципиальные схемы радиоэлектронных устройств с применением современных САПР и пакетов прикладных программ»

ПК-4 «Способен разрабатывать радиоэлектронные устройства на современной элементной базе с использованием современных пакетов прикладных программ»

Содержание дисциплины охватывает круг вопросов, связанных с принципов построения радиолокационных систем и комплексов обнаружения и сопровождения целей, методов и техники распознавания целей.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции и лабораторные работы, а также самостоятельная работа, коллоквиумы и консультации

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 часа.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью преподавания дисциплины является изучение студентами принципов построения радиолокационных систем и их характеристик. Рассматриваются РЛС по назначению, принципы получения радиолокационной информации. Уделяется большое внимание алгоритмам обработки радиолокационных сигналов в условиях активных и пассивных помех.

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Профессиональные компетенции	ПК-1 Способен определять цели и выполнять постановку задач проектирования	ПК-1.В.1 владеть навыками разработки технического задания и этапами проектирования
Профессиональные компетенции	ПК-2 Способен знать технологию и разрабатывать структурные и функциональные схемы радиоэлектронных систем и комплексов, а также принципиальные схемы радиоэлектронных устройств с применением современных САПР и пакетов прикладных программ	ПК-2.У.1 уметь проводить расчеты характеристик радиоэлектронных устройств, радиоэлектронных систем и комплексов
Профессиональные компетенции	ПК-4 Способен разрабатывать радиоэлектронные устройства на современной элементной базе с использованием современных пакетов прикладных	ПК-4.3.1 знать принципы построения и функционирования приемной и передающей аппаратуры, аппаратно-программные средства цифровой обработки сигналов, основные принципы радиолокации и радионавигации, средства связи

THAT	namm	
HOOL	Damm	

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Математика»,
- «Физика»,
- «Устройства СВЧ и антенны»;
- «Устройства приема и преобразования сигналов»;
- «Теоретические основы радиолокации»
- «Радиотехнические цепи и сигналы»

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- «Физические основы когерентной обработки сигналов
- «Интегрированный системы навигации»,

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

	Трудоемкость по	
Всего	семестрам	
	№8	
2	3	
4/144	4/ 144	
4/ 144	4/ 144	
34	34	
68	68	
34	34	
34	34	
36	36	
40	40	
Экз.	Экз.	
	2 4/144 34 68 34 34 36 40	

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

таолица 3—1 азделы, темы диециплины, их труд	LOCMIKOC I	Ь			
Разделы, темы дисциплины	Лекции (час)	ПЗ (СЗ) (час)	ЛР (час)	КП (час)	СРС (час)
Семестр 8					
Раздел 1. Интегрированные РЛС Тема 1.1. Вторичные РЛС	14		10		10

Тема 1.2. Обзорные РЛС					
Тема 1.3. Специализированные РЛС.					
Тема 1.4. Эхолокаторы					
Раздел 2 Обработка сигналов в РЛС					
Тема 2.1. Основные принципы оценивания					
сигналов в РЛС системах					
Тема 2.2. Обнаружение сигналов с неизвестными	20		24		30
параметрами					30
Тема 2.3. Обнаружение сигналов на фоне помех					
Тема 2.4. Алгоритмы оценивания параметров					
сигналов.					
Итого в семестре:	34		34		40
Итого	34	0	34	0	40

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий
Раздел 1	Рассматриваются принципы построения радиолокационных
	систем, виды используемых сигналов и способов извлечения
	информации. Рассмотрены вопросы совместного
	использования средств радиолокационного контроля и
	наблюдения.
Раздел 2	Рассматриваются зондирующие и принимаемые сигналы.
	Способы обнаружения РЛС сигналов на фоне помех.
	Основные принципы оценивания сигналов в РЛС системах
	на фоне помех. Алгоритмы обработки сигналов в РЛС
	системах

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

				Из них	$N_{\underline{0}}$		
$N_{\underline{0}}$	Темы практических	Формы практических	Трудоемкость,	практической	раздела		
Π/Π	занятий	занятий	(час)	подготовки,	дисцип		
				(час)	лины		
	Учебным планом не предусмотрено						
	Bcer	0					

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

$N_{\underline{0}}$	Наименование лабо	раторных работ	Трудоемкость,	Из них	$N_{\underline{0}}$

п/п		(час)	практической	раздела
			подготовки,	дисцип
			(час)	лины
	Семестр 8	3		
1	Оценка параметров радиосигналов	8	4	1,2
2	Селекция движущихся целей	6	2	2
3	Исследование корреляционных свойств	6	2	1,2
	сигналов и флюктуационных помех			
4	Исследование системы автоматического	6	2	2
	сопровождения по дальности			
5	Исследование алгоритма обработки	8	4	2
	сигнала			
	Всего	34	14	

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 8,	
Вид самостоятсльной расоты	час	час	
1	2	3	
Изучение теоретического материала	28	28	
дисциплины (ТО)		20	
Курсовое проектирование (КП, КР)			
Расчетно-графические задания (РГЗ)			
Выполнение реферата (Р)			
Подготовка к текущему контролю	6	6	
успеваемости (ТКУ)	U	U	
Домашнее задание (ДЗ)			
Контрольные работы заочников (КРЗ)			
Подготовка к промежуточной	6	6	
аттестации (ПА)	O		
Всего:	40	40	

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8- Перечень печатных и электронных учебных изданий

Шифр/ URL адрес	Библиографическая ссылка	Кол. экз. в библиотеке (кроме
-----------------	--------------------------	-------------------------------------

		электр.экз.)
621.396.96 (075)-C66	Ю.Г. Сосулин Теоретические основы радиолокации и радионавигации. – М.: Радио и связь, 1992. – 304 с.	55
621.396- P 15	Радиотехнические системы: учебник/ Ю. М. Казаринов [и др.]; ред. Ю. М. Казаринов М.: Академия, 2008 589 с.	110
621.396.96 (075)-C12	Сборник задач по курсу «Радиолокационные системы» : учеб. пособие / [П. А. Бакулев, А. В Бруханский, Г. А. Волкова и др. – Москва Радиотехника, 2007. – 208 с	20
https://e.lanbook.com/book/10881.	Денисов, В.П. Радиолокационные системы [: учеб метод. пособие – Электрон. дан. – Москва : ТУСУР, 2012. – 21 с. Электронный ресурс]	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

электронных образовательных ресурсов Перечень информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование
http://www.intuit.ru/.	Национальный открытый университет «ИНТУИТ»
https://e.lanbook.com/	Электронно-библиотечная система «Лань»
http://www.edu.ru/.	Федеральный портал. Российское образование
http://www.rsl.ru/.	Российская Государственная Библиотека (Информационно-
	поисковая система РГБ), Москва
http://www.nlr.ru/	Российская национальная библиотека (РНБ), Санкт-Петербург

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10– Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем,используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11– Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории
11/11	л	
1	Мультимедийная лекционная аудитория	
2	2 Специализированная лаборатория с установленным на компьютеры	
	программного обеспечения «MultiSim», «Matlab»	

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Экзаменационные билеты;
	Задачи;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	оценки уровня сформированности компетенции	
5-балльная шкала	Характеристика сформированных компетенций	
3-Оалльная шкала	-E	
	- обучающийся глубоко и всесторонне усвоил программный	
	материал;	
	– уверенно, логично, последовательно и грамотно его излагает;	
«ОТЛИЧНО»	– опираясь на знания основной и дополнительной литературы,	
«зачтено»	тесно привязывает усвоенные научные положения с практической	
	деятельностью направления;	
	– умело обосновывает и аргументирует выдвигаемые им идеи;	
	– делает выводы и обобщения;	
	– свободно владеет системой специализированных понятий.	
	– обучающийся твердо усвоил программный материал, грамотно и	
	по существу излагает его, опираясь на знания основной	
	литературы;	
«хорошо»	– не допускает существенных неточностей;	
«зачтено»	– увязывает усвоенные знания с практической деятельностью	
	направления;	
	– аргументирует научные положения;	
	– делает выводы и обобщения;	
	– владеет системой специализированных понятий.	
	- обучающийся усвоил только основной программный материал,	
	по существу излагает его, опираясь на знания только основной	
	литературы;	
«удовлетворительно»	– допускает несущественные ошибки и неточности;	
«зачтено»	- испытывает затруднения в практическом применении знаний	
	направления;	
	– слабо аргументирует научные положения;	
	– затрудняется в формулировании выводов и обобщений;	
	– частично владеет системой специализированных понятий.	

Оценка компетенции	Характеристика сформированных компетенций		
5-балльная шкала	ларак геристика сформированных компетенции		
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 		

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код
1	• • • • • • • • • • • • • • • • • • • •	индикатора
$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	Задачи и методы статистического обнаружения сигналов.	ПК-1.В.1
$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	Показатели обнаружения, критерии оптимизации	
3	обнаружения сигналов.	
4	Теория проверки гипотез Неймана-Пирсона.	
5	Обнаружение сигналов с известными параметрами.	
6	Отношение правдоподобия (ПД).	
7	Оценка качества приема сигналов.	
8	Алгоритм обнаружения сигналов на фоне гауссовского	
9	шума.	
	Алгоритм обнаружение сигналов при негауссовых	
10	помехах	
11	Обнаружение когерентных (КГ) сигналов.	
	Правило ПД.	
12	Обнаружение не когерентных (НКН) сигналов.	
13	Модель и правило ПД.	
15	Функция неопределённости, ее свойства.	ПК-2.У.1
16	Проблемы боковых лепестков.	
17	Содержание диаграммы неопределённости сигнала	
18	Селекция воздушных объектов	
19	Потенциальная точность измерения и способы ее	
	повышения	
20	Распознавание целей, селекция воздушных объектов	
21	Показатели обнаружения, критерии оптимизации	
	обнаружения сигналов.	
22	Теория проверки гипотез Неймана-Пирсона.	
23	Обнаружение сигналов с известными параметрами.	
24		
25		
26		
27	<u> </u>	
28	помехах	
29		ПК-4.3.1
30		
-		
24 25 26 27 28	Отношение правдоподобия (ПД). Оценка качества приема сигналов. Алгоритм обнаружения сигналов на фоне гауссовского шума. Алгоритм обнаружение сигналов при негауссовых	ПК-4.3.1

31	Методы защиты от активных и пассивных маскирующих	
	помех	
32	Корреляционный обнаружитель с известными, не	
	известными и случайными параметрами.	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

1	таолица 18 – примерный перечень вопросов для тестов					
№ п/п	Примерный перечень вопросов для тестов					
Вопросы с выбором одного правильного ответа						
1	Какой критерий оптимизации используется в теории обнаружения	ПК-1.В.1				
	сигналов Неймана-Пирсона?	ПК-2.У.1				
	А) Минимизация вероятности ложной тревоги					
	В) Максимизация вероятности правильного обнаружения при					
	фиксированной вероятности ложной тревоги					
	С) Минимизация времени обработки сигнала					
	D) Максимизация отношения сигнал/шум					
2	Что характеризует отношение правдоподобия (ПД) в обнаружении					
	сигналов?					
	А) Отношение плотностей вероятности сигнала с шумом и только					
	шума					
	В) Разницу амплитуд сигнала и шума С) Время задержки сигнала D) Частотный спектр помех					
3	Какой алгоритм используется для обнаружения сигналов на фоне					
	гауссовского шума? А) Преобразование Фурье В) Согласованный фильтр					
С) Корреляционный обнаружитель						
	D) Адаптивная фильтрация					
4	Что такое функция неопределённости сигнала?					
	А) График зависимости мощности от частоты					
	В) Характеристика, показывающая разрешающую способность по					
	дальности и скорости					
	С) Вероятность ложного обнаружения					
D) Время накопления сигнала						
5	Какой метод применяется для селекции воздушных объектов?					

	A) Avanua avanuavavavava			
	А) Анализ амплитуды сигнала	NAME OF THE OWNER.		
	В) Использование доплеровской ф			
	С) Увеличение мощности излучен			
-	D) Изменение частоты повторения импульсов			
6	Что является основной проблемой боковых лепестков в			
	радиолокации?			
	А) Увеличение времени обработки			
	В) Появление ложных целей из-за отражений			
	С) Снижение чувствительности приёмника			
-	D) Нарушение синхронизации сигналов			
	ы с выбором нескольких правильны		THE L D I	
1	Какие из перечисленных методов	используются для защиты от	ПК-1.В.1 ПК-2.У.1	
	активных помех?			
	A) Частотная arility			
	В) Согласованная фильтрация			
	С) Увеличение мощности излучения			
	D) Использование узкополосных с		4	
2	Какие параметры влияют на вероя	тность правильного		
	обнаружения?			
	А) Отношение сигнал/шум			
	В) Порог обнаружения			
	С) Длительность импульса			
	D) Частота повторения импульсов			
3	Какие из перечисленных алгоритм	ов применяются для		
	обнаружения сигналов?			
	А) Корреляционный обнаружител			
	В) Правило отношения правдоподобия			
	С) Преобразование Лапласа			
	D) Адаптивная модуляция			
4	Какие свойства характерны для кода Баркера?			
	А) Низкий уровень боковых лепестков			
	В) Хорошая помехоустойчивость			
	С) Широкий спектр частот			
	D) Высокая сложность реализации	Ī		
5	Какие методы используются для о	бработки ЛЧМ-сигналов?		
	А) Сжатие импульса			
	В) Корреляционная обработка			
	С) Амплитудная демодуляция			
	D) Фазовая манипуляция			
6	Какие факторы влияют на функци	ю неопределённости?		
	А) Длительность сигнала			
	В) Частотная модуляция			
	С) Мощность передатчика			
	D) Тип антенны			
Вопросы на установление соответствия				
1	Установите соответствие между то	ерминами и их определениями:	ПК-1.В.1	
	1. Отношение правдоподобия	А) Метод обнаружения	ПК-2.У.1	
		сигналов с известными	ПК-4.3.1	
		параметрами		
	2. Критерий Неймана-Пирсона	В) Характеристика разрешения		
		сигнала по дальности и		
		скорости		
L	<u> </u>	1	ı	

	3. Функция неопределённости	С) Правило максимизации	
	вероятности обнаружения при		
2	Установите соответствие между		
	1. Согласованный фильтр	А) Обнаружение сигналов на	
		фоне гауссовского шума	
	2. ЛЧМ-модуляция	В) Повышение разрешения по	
		дальности	
	3. Код Баркера	С) Снижение уровня боковых	
		лепестков	
3	Установите соответствие между помехами и их источниками:		
	1. Многолучевость А) Отражения от земли и		
		зданий	
	2. Атмосферный шум В) Грозовые разряды и осадки		
	3. Пассивные помехи	С) Дипольные отражатели	
4	Установите соответствие между	параметрами РЛС и их влиянием:	
	1. Частота	А) Разрешение по дальности	
	2. Длительность импульса	В) Проникновение через	
		препятствия	
	3. Мощность	С) Дальность обнаружения	
5	Установите соответствие между		7
	1. Самолёт	A) Очень малая (0,001–0,1 м ²)	
	2. Корабль	В) Средняя (1–10 м²)	
	3. Дрон	С) Большая (100–10 000 м²)	
6	Установите соответствие между методами обработки сигналов и их		1
	назначением:		
	1. Согласованный фильтр	А) Выделение доплеровского	
		сдвига	
	2. Преобразование Фурье	В) Оптимальное обнаружение	
		сигнала	
	3. Корреляционный анализ	С) Измерение схожести	
		сигналов	
	осы на установление последовательн		
1	Расположите этапы обработки си	гнала в радиолокационной	ПК-1.В.1
	системе:		ПК-2.У.1
	А) Фильтрация шумов		ПК-4.3.1
	В) Демодуляция		
	С) Приём сигнала		
	D) Обнаружение цели		_
2	Расположите факторы по степени	и влияния на дальность	
	обнаружения:		
	А) Мощность передатчика		
	В) Чувствительность приёмника		
	С) ЭПР цели		
2	D) Атмосферные условия	-	
3	Расположите методы измерения д		
	наименее точного к наиболее точному):		
	А) Импульсный		
	В) Фазовый		
	С) ЛЧМ		
	D) Корреляционный		

4	Расположите этапы измерения скорости цели:		
	А) Выделение доплеровского сдвига		
	В) Излучение сигнала		
	С) Приём отражённого сигнала		
	D) Расчёт скорости		
5	Расположите методы по возрастанию помехозащищённости:		
	А) Аналоговая фильтрация		
	В) Согласованный фильтр		
	С) Накопление сигнала		
	D) ЛЧМ-модуляция		
6	Расположите этапы обнаружения цели на фоне шумов:		
	А) Сравнение с порогом		
	В) Приём сигнала		
	С) Фильтрация		
	D) Принятие решения		
Вопрос	ы с открытым ответом		
1	Какие преимущества обеспечивает ЛЧМ-модуляция в	ПК-1.В.1	
	радиолокационных системах?	ПК-2.У.1	
2	Опишите принцип работы корреляционного обнаружителя для	ПК-4.3.1	
	сигналов с неизвестными параметрами.		
3	Какие факторы влияют на вероятность ложной тревоги в		
	радиолокационных системах?		
4	Как код Баркера помогает снизить уровень боковых лепестков?		
5	Какие методы используются для компенсации рефракции		
	радиоволн в атмосфере?		
6	Опишите, как доплеровская фильтрация помогает в селекции]	
	движущихся целей.		

Примечание: Система оценивания тестовых заданий:

1 тип) Задание комбинированного типа с выбором одного верного ответа из четырех предложенных и обоснованием выбора считается верным, если правильно указана цифра и приведены конкретные аргументы, используемые при выборе ответа. Полное совпадение с верным ответом оценивается 1 баллом, неверный ответ или его отсутствие – 0 баллов.

Инструкция: прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа.

2 тип) Задание комбинированного типа с выбором нескольких вариантов ответа из предложенных и развернутым обоснованием выбора считается верным, если правильно указаны цифры и приведены конкретные аргументы, используемые при выборе ответов. Полное совпадение с верным ответом оценивается 1 баллом, если допущены ошибки или ответ отсутствует — 0 баллов.

Инструкция: прочитайте текст, выберите правильные варианты ответа и запишите аргументы, обосновывающие выбор ответов.

3 тип) Задание закрытого типа на *установление* соответствия считается верным, если установлены все соответствия (позиции из одного столбца верно сопоставлены с позициями другого столбца). Полное совпадение с верным ответом оценивается 1 баллом, неверный ответ или его отсутствие –0 баллов.

Инструкция: прочитайте текст и установите соответствие. К каждой позиции, данной в левом столбце, подберите соответствующую позицию в правом столбце.

4 тип) Задание закрытого типа на *установление* последовательности считается верным, если правильно указана вся последовательность цифр. Полное совпадение с верным ответом оценивается 1 баллом, если допущены ошибки или ответ отсутствует – 0 баллов.

Инструкция: прочитайте текст и установите последовательность. Запишите соответствующую последовательность букв слева направо

5 тип) Задание открытого типа с развернутым ответом считается верным, если ответ совпадает с эталонным по содержанию и полноте. Правильный ответ за задание оценивается в 3 балла, если допущена одна ошибка \неточность \ ответ правильный, но не полный - 1 балл, если допущено более 1 ошибки \ ответ неправильный \ ответ отсутствует -0 баллов.

Инструкция: прочитайте текст и запишите развернутый обоснованный ответ

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ	
	Не предусмотрено	·

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала: тема лекции; вопросы лекции и распределение времени по вопросам; цели лекции (учебные и воспитательные); литература; материальное обеспечение лекции; учебно-методические указания по проведению лекции; текст лекции: введении; основная часть; заключение; задание на самостоятельную работу.

Тексты лекций и методические указания к ним по освоению лекционного материала имеются в виде электронных ресурсов библиотеки ГУАП, системы LMS, кафедры и личном кабинете дисциплины.

11.2. Методические указания для обучающихся по выполнению лабораторных работ

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Для проведения лабораторной работы разрабатываются:

- 1. Методические указания для проведения лабораторной работы, которые является основным методическим документом преподавателя. Они состоят, как правило, из семи разделов, которые определяют: учебные и воспитательные цели занятия; содержание и последовательность отработки учебных вопросов и распределение времени; учебноматериальное обеспечение лабораторной работы; методические рекомендации преподавателю по подготовке и проведению лабораторной работы: литература и другие учебно-методические материалы, рекомендуемые преподавателю для подготовки и проведения лабораторной работы; приложения к методической разработке, необходимые для проведения лабораторной работы.
- 2. Задание на лабораторную работу является основным документом обучаемого при подготовке и проведении исследований и связано с соответствующим практическим занятием. Оно состоит, как правило, из четырех разделов: учебные вопросы, подлежащие исследованию при выполнении лабораторной работы; задание обучающимся по подготовке и выполнению лабораторной работы (вопросы теоретического материала, связанного с выполнением данной лабораторной работы; задание, содержание и порядком выполнения работы); изучение мер по технике безопасности при выполнении лабораторной работы; вычерчивание необходимых схем, таблиц и выписку расчетных формул; перечень литературы и учебно-методических материалов, необходимых для самостоятельной работы; сроки, форма отчета по выполненной лабораторной работе и порядок его защиты.

Структура и форма отчета о лабораторной работе

Описание лабораторной работы является основным регламентирующим документом для обучаемых в проведении исследований. Оно включает в себя четыре раздела: учебные вопросы исследования; описание и схема экспериментов, порядок замеров и обработки полученных результатов измерений; определяется содержание отчета по лабораторной работе; меры по технике безопасности при подготовке и выполнении лабораторной работы.

Результаты исследования оформляются отчетом. Отчет должен содержать: титульный лист (тема, вариант, дата, группа, фамилия инициалы); цели, учебные вопросы, схему лабораторной установки и задание на исследования в соответствии с вариантом;

результаты исследования, оформленные пунктуально графиками или таблицами; расчетно-аналитическую часть; выводы по результатам исследования.

Требования к оформлению отчета о лабораторной работе

Отчет о выполненной работе должен быть подготовлен индивидуально и оформлен на стандартных листах в соответствии с требованиями ГОСта. Выводы конкретные по каждому пункту исследования. Зачет по работе студент получает после представления отчета на бумажном носителе и успешного ответа на вопросы преподавателя, задаваемые по тематике защищаемой лабораторной работы.

Задание на лабораторную работу и методические указания к ее выполнению имеются в виде электронных ресурсов библиотеки ГУАП, системы LMS, кафедры и личном кабинете дисциплины.

11.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия. Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся являются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (заочное обучение).

Литература для самостоятельной работы студента указана в таблице 8 и 9, настоящего документа, а также в электронном виде в личном кабинете преподавателя (студента) локальной компьютерной сети по данной дисциплине. Преподаватель в конце занятий указывает источники и страницы по теме изложенного материала для самостоятельной работы студентов.

11.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины. Текущий контроль успеваемости необходимо проводить после изучения каждой темы в форме тестов. В тесте должно быть не менее десяти вопросов, охватывающих всю тему. Тест проводить на лекционном занятии в течении 5 минут. Также, текущий контроль необходимо проводить перед каждой лабораторной работой в форме тестов по вопросам, связанным с тематикой лабораторной работы. Кроме того, студент должен отчитаться по результатам выполнения задания по каждой теме практического занятия и лабораторной работы.

11.5. Методические указания обучающихся по прохождению промежсуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя экзамен — форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Промежуточная аттестация проводится в день указанном в расписании занятий ГУАП на семестр. В зависимости от уровня подготовки группы преподаватель может проводить

экзамен в форме накопления по результатам оценок знаний студентов по каждой теме дисциплины, в форме общего теста в день экзамена, вопросы которого охватывают все темы дисциплины или по классической форме с использованием экзаменационных билетов. Форма проведения промежуточной аттестации зависит от уровня первичной подготовки студентов и объявляется преподавателем за один месяц до сессии. Оценка в первом случае выставляется как среднеарифметическая оценка, во втором случае по результатам теста и в третьем – по результатам знаний при ответе на вопросы билета. При выставлении оценки преподаватель может учитывать своевременность и качество защиты лабораторных работ и выполнения заданий по практическим занятиям. Студент не допускается к экзамену если на начало сессии у него имеется хотя бы одна задолженность по лабораторным работам.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой