МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ фелеральное государственное автономное образовательное учреждение высшего

образования
"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 24

УТВЕРЖДАЮ Руководитель образовательной программы доц.,к.т.н. (должность, уч. степснь, звание) Е.В. Силяков

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Схемотехника аналоговых электронных устройств»

Код направления подготовки/ специальности	11.05.01
Наименование направления подготовки/ специальности	Радиоэлектронные системы и комплексы
Наименование направленности	Радиоэлектронные системы передачи информации
Форма обучения	очная
Год присма	2025

Санкт-Петербург- 2025

Лист согласс	вания рабочей программ	ны дисциплины
Программу составил (а)		
Доцент, к.т.н	K	Е.В. Силяков
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Программа одобрена на заседан	ии кафедры № 24	
«6»02 2025 г, протоко	ол № 2/25	
Заведующий кафедрой № 24	000	
(уч. степень, звание)	ano	О.В. Тихоненкова
(уч. степень, звание)	(подпись, дата)	(иннциалы, фамилия)
Заместитель директора институт	а №2 по метому ре	аботе
юц.,к.т.н.,доц.	(////-	U.B. M

Аннотация

Дисциплина «Схемотехника аналоговых электронных устройств» входит в образовательную программу высшего образования — программу специалитета по направлению подготовки/ специальности 11.05.01 «Радиоэлектронные системы и комплексы» направленности «Радиоэлектронные системы передачи информации». Дисциплина реализуется кафедрой «№24».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ОПК-1 «Способен представить адекватную современному уровню знаний научную картину мира на основе знания основных положений, законов и методов естественных наук и математики»

ОПК-3 «Способен к логическому мышлению, обобщению, прогнозированию, постановке исследовательских задач и выбору путей их достижения, освоению работы на современном измерительном, диагностическом и технологическом оборудовании, используемом для решения различных научно-технических задач в области радиоэлектронной техники и информационно-коммуникационных технологий»

ОПК-5 «Способен выполнять опытно-конструкторские работы с учетом требований нормативных документов в области радиоэлектронной техники и информационно-коммуникационных технологий»

ОПК-7 «Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности»

Содержание дисциплины охватывает круг вопросов, связанных с теорией и практикой аналоговых электронных устройств. Рассматриваются узлы и компоненты аналоговых электронных устройств передачи, приема и обработки информации.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, практические занятия, самостоятельная работа студента.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 часа.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью изучения дисциплины «Схемотехника аналоговых электронных устройств» является получение студентами необходимых компетенций в области аналоговой электроники.

- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП BO).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Общепрофессиональные компетенции	ОПК-1 Способен представить адекватную современному уровню знаний научную картину мира на основе знания основных положений, законов и методов естественных наук и математики	ОПК-1.В.1 владеть навыками использования знаний физики и математики при решении практических задач
Общепрофессиональные компетенции	ОПК-3 Способен к логическому мышлению, обобщению, прогнозированию, постановке исследовательских задач и выбору путей их достижения, освоению работы на современном измерительном, диагностическом и технологическом оборудовании, используемом для решения различных научно-технических задач в области радиоэлектронной техники и информационно-коммуникационных	ОПК-3.3.1 знать методы решения задач анализа и расчета характеристик радиоэлектронных систем и устройств с применением современных средств измерения и проектирования ОПК-3.В.1 владеть навыками использования методов решения задач анализа и расчета характеристик радиоэлектронных систем и устройств

	технологий	
Общепрофессиональные компетенции	ОПК-5 Способен выполнять опытно-конструкторские работы с учетом требований нормативных документов в области радиоэлектронной техники и информационно-коммуникационных технологий	ОПК-5.3.1 знать основные методы проектирования, исследования и эксплуатации специальных радиотехнических систем
Общепрофессиональные компетенции	ОПК-7 Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности	ОПК-7.3.1 знать перспективные методы информационных технологий и искусственного интеллекта, направленных на разработку новых научно-технических решений

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Радиотехнические цепи и сигналы»,
- «Электроника»,
- «Математика, Математический анализ»,
- «Электропитание устройств и систем»,
- «Электротехника».

_

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- «Устройства приема и преобразования сигналов»,
- «Узлы и элементы радиоэлектронных биотехнических систем»,
- «Проектирование разработка и исследование РЭС»,
- «Радиоэлектронные биотехнические системы»

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

D 5 × 5	D	Трудоемкость по
Вид учебной работы	Всего	семестрам №5
1	2	3
Общая трудоемкость дисциплины,	4/ 144	4/ 144

ЗЕ/ (час)		
Из них часов практической подготовки		
Аудиторные занятия, всего час.	68	68
в том числе:		
лекции (Л), (час)	17	17
практические/семинарские занятия (ПЗ), (час)	17	17
лабораторные работы (ЛР), (час)	34	34
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)	36	36
Самостоятельная работа, всего (час)	40	40
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.	Экз.

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Таолица 3 — Газделы, темы дисциплины, их труд	Лекции	ПЗ (СЗ)	ЛР	ΚП	CPC
Разделы, темы дисциплины	(час)	(час)	(час)	(час)	(час)
Сем	естр 5				
Раздел 1.					
Тема 1.1. Предмет и содержание дисциплины.	2	3	4		2
Тема 1.2.Основные понятия.	2	3	4		2
Тема 1.2. Пассивные и активные элементы.					
Раздел 2. Усилители.					
Тема 2.1. Усилители на транзисторах	4	4	10		6
Тема 2.2. Операционные усилители					
Раздел 3. Фильтры					
Тема 3.1. Пассивные фильтры	4	6	10		6
Тема 3.2. Активные фильтры					
Раздел 4. Генераторы и источники питания					
Тема 4.1 Генераторы гармонических колебаний	3	4	10		4
Тема 4.2 Генераторы негармонических	3	4	10		4
колебаний					
Раздел 5. Интегральные микросхемы.	4				3
Итого в семестре:	17	17	34		40
Итого	17	17	34	0	40

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий
---------------	---

Раздел 1.	Тема 1.1. Предмет и содержание дисциплины. Задачи дисциплины. Тема 1.2. Основные понятия. Приводятся основные термины и определения аналоговой электроники, преимущества и недостатки применения аналоговой схемотехники, рекомендации по выбору компонентов для аналоговых схем и измерительных устройств, инструментальные средства для разработки аналоговых схем Тема 1.2. Пассивные и активные элементы. Назначение, физические и электрические свойства, основные характеристики. Классификация, условно-графические обозначения, маркировки.
Раздел 2. Усилители.	Тема 2.1. Усилители на транзисторах. Общие сведения об усилительных устройствах, их основных параметрах и характеристиках, структурные схемы, классификация усилительных устройств. Тема 2.2. Операционные усилители. Общие сведения об операционных усилителях, их основных параметрах и характеристиках, схема замещения операционного усилителя, коррекция частотной характеристики, внутренняя схемотехника операционных усилителей, инвертирующий усилитель, неинвертирующий усилитель, разновидности операционных усилителей, шумы в усилителях.
Раздел 3. Фильтры	Тема 3.1. Пассивные фильтры. Расчет параметров фильтров. Выбор оптимальных компонентов. Тема 3.2. Активные фильтры. Фильтры высоких и низких частот, полосовой фильтр, режекторный фильтр. Структура, параметры, настройка.
Раздел 4. Генераторы и источники питания	Виды генераторов. Структура генераторов. Стабилизация частоты и амплитуды. Основные требования к источникам питания, Обобщенная структура. Основные компоненты.
Раздел 5. Интегральные микросхемы.	Интегральные структуры для обработки и преобразования сигналов

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

No	Tarry vacantiving army	Фотому уческогому	Таууга аз уус ату	Из них	No manuala
П/П	Темы практических занятий	Формы практических занятий	Трудоемкость, (час)	практической подготовки,	дисцип
11/11	запятии	запитии	(4ac)	(час)	лины
		<u> </u>		(luc)	JIIIIDI
	T				
1	Расчет параметров	Решение задач	3	3	1
	RC - цепи				
2	Расчет основных	Решение задач	2	2	2
	параметров				
	усилительного				
	устройства на				
	транзисторе				

3	Схемы включения	Решение задач	2	2	2
	операционного				
	усилителя				
4	Расчет параметров	Решение задач	6	6	3
	фильтра				
5	Моделирование	Решение задач	4	4	4
	генератора				
	гармонических				
	колебаний				
	Bcere	0	17	17	

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	$N_{\underline{0}}$
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	раздела
Π/Π	паименование лаоораторных расот	(час)	подготовки,	дисцип
			(час)	лины
	Семестр 5	5		
	Расчет и моделирование пассивного	4	2	1
	фильтра с заданными параметрами.			
	Исследование параметров усилительного	4	2	2
	устройства.			
	Исследование операционного усилителя.	6	4	2
	Расчёт и моделирование активного	10	6	3
	фильтра на операционном усилителе			
	Исследование генератора периодических	10	3	4
	колебаний			
	Всего	34	17	

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 5,
	час	час
1	2	3
Изучение теоретического материала дисциплины (TO)	30	30
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		

Подготовка к текущему контролю		
успеваемости (ТКУ)		
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной аттестации (ПА)	10	10
Всего:	40	40

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8- Перечень печатных и электронных учебных изданий

Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)
621.372 П	Павлов, В.Н. Схемотехника аналоговых	100
12	электронных устройств – М.: Академия, 2008 с.:	
	рис. – (Высшее профессиональное образование.	
	Радиотехника).	
004.3 B 68	Волович, Г.И. Схемотехника аналоговых и	19
	аналого-цифровых электронных устройств. 2-е	
	изд. – М. : ДОДЭКА-ХХІ, 2007. – 527 с.	
621.38 K	Калашников, В.И. Электроника и	25
17	микропроцессорная техника – М.: Академия,	
	2012. – 268 c.	
621.382 3-	Электронные приборы и устройства: учебное	117
59	пособие / С.И. Зиатдинов. СПб: Изд-во ГУАП,	
	2006 50 c.	
621.38 K	Крекрафт, Д. Аналоговая электроника. Схемы,	10
79 K	системы, обработка сигнала / Д. Крекрафт, С.	
	Джерджли; пер.: А. А. Кузьмичева; ред.: А. А.	
	Лапин М.: Техносфера, 2005 360 с.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 — Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование
https://biblio-online.ru/	Образовательная платформа
https://biblio-online.ru/	Электронная библиотека

https://znanium.com/	Научно-образовательный портал

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	МісгоСар (свободно распространяются студенческие версии с урезанным
	функционалом, достаточным для учебно - ознакомительных целей)

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	52-04
2	Компьютерный класс	14-33, 14-53

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Экзаменационные билеты;
	Задачи;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	V	
5-балльная шкала	Характеристика сформированных компетенций	
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 	
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 	
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 	
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 	

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код
JN2 11/11	перечень вопросов (задач) для экзамена	индикатора
1	Классификация, основные технические характеристики и	ОПК-1.В.1
	показатели усилительных устройств.	
2	Основные характеристики и свойства полупроводниковых	ОПК-3.3.1
	приборов	
3	Прямое и обратное включение р-п-перехода. ВАХ	ОПК-3.В.1
4	Схемы включения биполярных транзисторов.	ОПК-5.3.1
5	Входные и выходные характеристики транзисторов	ОПК-7.3.1
6	Коэффициенты усиления	ОПК-1.В.1
7	Схема замещения биполярного транзистора	ОПК-3.3.1
8	Усилители на биполярных транзисторах.	ОПК-3.В.1
9	Обратные связи в усилителях	ОПК-5.3.1
10	Дифференциальный усилитель	ОПК-7.3.1
11	Усилитель постоянного тока	ОПК-1.В.1

12	Операционный усилитель. Инвертирующий и	ОПК-3.3.1
	неинвертирующий операционный усилители	
13	Внутренняя схемотехника операционного усилителя.	ОПК-3.В.1
14	Основные параметры операционного усилителя	ОПК-5.3.1
15	Пассивные фильтры.	ОПК-7.3.1
16	Активные фильтры	ОПК-1.В.1
17	Диоды.	ОПК-3.3.1
18	Генератор прямоугольного напряжения	ОПК-3.В.1
19	Генератор гармонических колебаний	ОПК-5.3.1
20	Источники питания.	ОПК-7.3.1

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	№ п/п Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Типы тестовых заданий и инструкции для их выполнения:

- 1 тип. Задание комбинированного типа с выбором одного верного ответа из четырех предложенных и обоснованием выбора (инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа);
- 2 тип. Задание комбинированного типа с выбором нескольких вариантов ответа из предложенных и развернутым обоснованием выбора (инструкция: Прочитайте текст, выберите правильные варианты ответа и запишите аргументы, обосновывающие выбор ответов);
- 3 тип. Задание закрытого типа на установление соответствия (инструкция: Прочитайте текст и установите соответствие. К каждой позиции, данной в левом столбце, подберите соответствующую позицию в правом столбце)
- 4 тип. Задание закрытого типа на установление последовательности (инструкция: Прочитайте текст и установите последовательность. Запишите соответствующую последовательность букв слева направо);
- 5 тип. Задание открытого типа с развернутым ответом (Прочитайте текст и запишите развернутый обоснованный ответ).

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	Код
J\ <u>≅</u> 11/11		индикатора
	Вопросы с выбором одного правильного ответа	
1	Какой режим работы усилительного элемента обеспечивает	ОПК-1.В.1
	наименьшие нелинейные искажения?	ОПК-3.3.1
	- A) Режим B	
	- В) Режим С	
	- С) Режим АВ	

	- D) Режим A	
2	Какой параметр усилителя характеризует его способность	ОПК-1.В.1
	усиливать сигналы разной частоты без искажений?	ОПК-3.3.1
	- А) Динамический диапазон	
	- В) АЧХ (амплитудно-частотная характеристика)	
	- С) ФЧХ (фазо-частотная характеристика)	
	- D) КПД	
3	Какой тип обратной связи уменьшает коэффициент усиления, но	ОПК-1.В.1
	повышает стабильность усилителя?	ОПК-3.3.1
	- А) Положительная обратная связь	
	- В) Отрицательная обратная связь	
	- С) Параллельная обратная связь	
	- D) Последовательная обратная связь	
4	Какой из перечисленных усилителей имеет наибольший	ОПК-1.В.1
	коэффициент усиления по напряжению?	ОПК-3.В.1
	- А) С общим коллектором (ОК)	
	- В) С общим эмиттером (ОЭ)	
	- С) С общей базой (ОБ)	
	- D) Дифференциальный усилитель	
5	Какой элемент в схеме интегратора на ОУ определяет постоянную	ОПК-1.В.1
	времени интегрирования?	ОПК-3.3.1
	- А) Резистор в цепи обратной связи	
	- В) Конденсатор в цепи обратной связи	
	- С) Входной резистор	
	- D) Выходной резистор	
6	Какой режим работы усилителя мощности обеспечивает наивысший	ОПК-1.В.1
	КПД?	ОПК-3.В.1
	- А) Режим А	
	- В) Режим АВ	
	- С) Режим В	
	- D) Режим C	
7	Какой параметр операционного усилителя (ОУ) характеризует его	ОПК-1.В.1
	способность усиливать сигналы нулевой частоты?	ОПК-3.3.1
	- А) Скорость нарастания выходного напряжения	
	- В) Коэффициент усиления без обратной связи	
	- С) Входное сопротивление	
	- D) Выходное сопротивление	
8	Какой тип усилителя используется для усиления разности сигналов	ОПК-1.В.1
	на двух входах?	ОПК-3.В.1
	- А) Инвертирующий усилитель	
	- В) Неинвертирующий усилитель	
	- С) Дифференциальный усилитель	
	- D) Усилитель мощности	
9	Какой элемент в схеме дифференциатора на ОУ определяет	ОПК-1.В.1
	постоянную времени дифференцирования?	ОПК-3.3.1
	- А) Конденсатор на входе	
	- В) Резистор в цепи обратной связи	
	- С) Входной резистор	
	- D) Выходной конденсатор	
10	Какой из перечисленных параметров усилителя характеризует его	ОПК-1.В.1
	способность работать с сигналами разной амплитуды?	ОПК-3.В.1
	- A) AYX	

	- В) Динамический диапазон	
	- С) ФЧХ	
	- D) Коэффициент усиления	
	Вопросы с выбором нескольких вариантов ответов	
1	Какие из перечисленных параметров относятся к основным	ОПК-1.В.1
1	характеристикам усилителя?	ОПК-3.В.1
	- А) Коэффициент усиления	31Ht 31B11
	- В) АЧХ и ФЧХ	
	- С) Входное и выходное сопротивление	
	- D) Температурный коэффициент	
2	Какие виды искажений могут возникать в усилителях?	ОПК-1.В.1
	- А) Линейные	ОПК-3.3.1
	- В) Нелинейные	
	- С) Импульсные	
	- D) Шумовые	
3	Какие из перечисленных схем включения транзистора	ОПК-1.В.1
	используются в усилителях?	ОПК-3.3.1
	- А) С общим эмиттером (ОЭ)	
	- В) С общим коллектором (ОК)	
	- С) С общей базой (ОБ)	
	- D) C общим затвором (O3)	
4	Какие из перечисленных элементов могут входить в цепь обратной	ОПК-1.В.1
	связи ОУ?	ОПК-3.В.1
	- А) Резистор	
	- В) Конденсатор	
	- С) Катушка индуктивности	
	- D) Диод	OFFICA DA
5	Какие типы обратной связи применяются в усилителях?	ОПК-1.В.1
	- А) Отрицательная	ОПК-3.В.1
	- В) Положительная	
	- С) Прямая	
6	- D) Обратная	ΟΠΙ 1 D 1
6	Какие из перечисленных устройств могут быть построены на основе ОУ?	ОПК-1.В.1 ОПК-3.3.1
		OHK-3.3.1
	- A) Интегратор - B) Дифференциатор	
	- С) Компаратор	
	- D) Генератор импульсов	
7	Какие параметры характеризуют идеальный операционный	ОПК-1.В.1
,	усилитель?	ОПК 1.В.1
	- А) Бесконечный коэффициент усиления	0111t 3.B.1
	- В) Нулевое входное сопротивление	
	- С) Конечное выходное сопротивление	
	- D) Ограниченная полоса пропускания	
8	Какие из перечисленных характеристик важны для усилителей	ОПК-1.В.1
-	постоянного тока?	ОПК-3.В.1
	- А) Низкий дрейф нуля	
	- В) Широкий динамический диапазон	
	- С) Высокая частота среза	
	- D) Малое входное сопротивление	
	Вопросы на установление соответствия	
1	1) С общим эмиттером (ОЭ) А) Высокий коэффициент	ОПК-3.3.1
		1

		усиления	ОПК-3.3.1
	2) С общим коллектором (ОК)	В) Низкое выходное	
		сопротивление	
	3) С общей базой (ОБ)	С) Хорошие высокочастотные	
		свойства	
2	1) Дифференциальный	А) Усиление разности сигналов	ОПК-3.3.1
	усилитель		ОПК-3.В.1
	2) Усилитель мощности	В) Усиление сигналов для	
		нагрузки	
	3) Операционный усилитель	С) Универсальные схемы	
		обработки сигналов	
3	1) Отрицательная обратная	А) Уменьшает коэффициент	ОПК-3.3.1
	связь (ООС)	усиления, повышает	ОПК-3.3.1
		стабильность	
	2) Положительная обратная	В) Может привести к	
	связь (ПОС)	самовозбуждению усилителя	
	3) Глубокая отрицательная	С) Сильно снижает нелинейные	
	обратная связь	искажения	
4	1) Коэффициент усиления по	А) Зависимость коэффициента	ОПК-3.3.1
	напряжению (Ku)	усиления от частоты сигнала	ОПК-3.3.1
	2) Амплитудно-частотная	В) Отношение максимального	
	характеристика (АЧХ)	выходного напряжения к	
		минимальному	
	3) Динамический диапазон (D)	С) Отношение амплитуды	
		выходного сигнала к входному	
5	1) Резистор в цепи обратной	А) Определяет коэффициент	ОПК-3.3.1
	связи (Roc)	усиления в инвертирующем	ОПК-3.В.1
		включении	
	2) Конденсатор в цепи	В) Формирует интегрирующее	
	обратной связи (Сос)	звено	
	3) Входной резистор (Rвх)	С) Задаёт входное	
_		сопротивление	0774.0.0.1
6	1) Линейные искажения	А) Нелинейность	ОПК-3.3.1
		характеристик активного	ОПК-3.3.1
	2) 11	элемента	
	2) Нелинейные искажения	В) Неравномерность АЧХ	
	3) Частотные искажения	С) Фазовые сдвиги на разных	
7		частотах	OHIC 2 D 1
7	1) Инвертирующий усилитель	А) Выполняет математическое	ОПК-3.3.1
		интегрирование входного	ОПК-3.В.1
	2) 11	сигнала	
	2) Интегратор	В) Инвертирует и усиливает	
	2) II1.1	входной сигнал	
	3) Дифференциатор	С) Формирует выходной	
		сигнал, пропорциональный	
0	1) D	производной входного	ОПИ 2 2 1
8	1) Входное сопротивление	А) Бесконечность	ОПК-3.3.1
	(RBX)	D) How	ОПК-3.3.1
	2) Выходное сопротивление	В) Ноль	
	(Rвых)	С) Опоти болу угоз элементо	
	3) Коэффициент усиления (К)	С) Очень большое значение	

	(≈10^5–10^6)	
6	4 тип Расположите в правильной последовательности	
1	Укажите правильную последовательность основных этапов при разработке принципиальной схемы устройства преобразования сигналов	ОПК-3.3.1 ОПК-5.3.1 ОПК-7.3.1
	 Разработка структурной схемы устройства. Определение входных и выходных параметров устройства. Доработка принципиальной схемы устройства по результатам тестирования макета устройства. 	
	4. Определение входных и выходных параметров отдельных блоков устройства.5. Выбор элементной базы.6. Тестирование макета устройства.	
	7. Выбор или разработка принципиальных схем отдельных блоков устройства. 8. Моделирование работы принципиальных схем отдельных блоков	
	и устройства в целом. 9. Доработка принципиальной схемы по результатам	
	моделирования. 10. Макетирование и отладка устройства.	
	11. Финальное тестирование устройства.	
2	Укажите правильную последовательность основных этапов	ОПК-3.3.1
	моделирования технической системы	ОПК-5.3.1
	1. Технологическая подготовка производства.	ОПК-3.В.1
	2. Схемотехническое (функциональное) проектирование.	ОПК-7.3.1
	3. Техническое проектирование (конструирование) - компоновка и	
	размещение элементов и узлов, выполнения печатных и проводных	
	соединений, теплоотвод, защита от внешних воздействий и т. п.	
	4. Выбор элементной базы, принципиальной схемы, структурный и	
	параметрический синтез радиоэлектронных схем (оптимизация	
	параметров).	
	5. Разработка технической документации для изготовления и	
эксплуатации.		
	6. Системотехническое проектирование.	
3	Укажите правильную последовательность основных этапов	ОПК-3.3.1
	составления технического задания на проектирование устройств	ОПК-5.3.1
	преобразования сигналов	ОПК-3.В.1
	1. Определить основные причины реализации объекта;	ОПК-7.3.1
	2. Определить критерии оценки характеристик конечного продукта	
	и установления соответствия заданным параметрам;	
	3. Сформулировать четкие требования к итоговому продукту;	
	4. Установить основные этапы и сроки выполнения поставленных	
	задач – как по отдельности, так и для проекта в целом;	
	5. Перечислить его необходимые характеристики, свойства,	
	составные элементы и т.д. (перечень качеств зависит от специфики	
	товара или услуги);	
	6. Детально описать обязанности каждой из заинтересованных	
	сторон – исполнителя и заказчика;	
	7. Проверить, насколько компетентен исполнитель.	
4	Укажите правильную последовательность основных этапов	ОПК-3.3.1
	разработки частотного фильтра сигналов	ОПК-5.3.1
	1. Доработка частотного фильтра по итогам его моделирования.	ОПК-3.В.1
	2. Определение передаточной функции частотного фильтра.	ОПК-7.3.1

		1
	3. Разработка принципиальной схемы частотного фильтра.	
	4. Разработка структурной схемы частотного фильтра.	
	5. Моделирование работы частотного фильтра.	
	6. Определение требуемой АЧХ частотного фильтра	
5	Последовательность этапов проектирования усилительного каскада	ОПК-3.3.1
	на биполярном транзисторе:	ОПК-5.3.1
	1. Выбор схемы включения (ОЭ, ОК, ОБ)	ОПК-5.3.1
	2. Расчёт режима по постоянному току (точка покоя)	ОПК-7.3.1
	3. Определение параметров элементов (резисторы, конденсаторы)	
	4. Расчёт коэффициента усиления и входного/выходного	
	сопротивлений	
	5. Моделирование в программе (LTspice, Multisim)	
	6. Корректировка параметров на основе результатов моделирования	
6	Порядок анализа работы дифференциального усилителя:	ОПК-5.3.1
O	1. Подача синфазного сигнала на оба входа	ОПК-3.В.1
	2. Подача дифференциального сигнала	ОПК-5.В.1
	3. Расчёт коэффициента ослабления синфазного сигнала (Кос)	ОПК-3.3.1
	4. Расчёт коэффициента усиления дифференциального сигнала	OHK-7.3.1
	(Кдиф)	
7	5. Оценка влияния ООС на стабильность работы	OFFIC 1 D 1
7	Этапы построения АЧХ усилителя:	ОПК-1.В.1
	1. Задание диапазона частот (например, 10 Гц – 1 МГц)	ОПК-5.3.1
	2. Подача синусоидального сигнала на вход	ОПК-7.3.1
	3. Измерение амплитуды выходного сигнала на каждой частоте	
	4. Построение графика зависимости коэффициента усиления от	
	частоты	
	5. Определение граничных частот (fн и fв)	
8	Этапы проектирования активного фильтра на ОУ:	ОПК-5.3.1
	1. Выбор типа фильтра (НЧ, ВЧ, полосовой)	ОПК-3.В.1
	2. Расчёт частоты среза и добротности	ОПК-7.3.1
	3. Подбор номиналов R и C для звеньев фильтра	
	4. Моделирование АЧХ и ФЧХ	
	5. Корректировка параметров для достижения заданных	
	характеристик	
	Вопросы с открытым ответ	
1	Прочитайте текст и запишите развернутый ответ Приведите	ОПК-3.3.1
	эквивалентную схему прямого и обратного р-п-перехода. Постройте	ОПК-3.В.1
	BAX	ОПК-5.3.1
2	Прочитайте текст и запишите развернутый ответ Приведите	ОПК-3.3.1
	основные характеристики и свойства полупроводниковых приборов	ОПК-3.В.1
3	Прочитайте текст и запишите развернутый ответ Приведите модель	ОПК-3.3.1
_	активного фильтра, опишите принцип его работы	ОПК-5.3.1
4	Прочитайте текст и запишите развернутый ответ Приведите	ОПК-3.3.1
	эквивалентную схему операционного усилителя. Поясните	ОПК-3.В.1
	основные характеристики	ОПК-5.В.1
5	Опишите принцип работы усилительного каскада на биполярном	ОПК-3.3.1
3	транзисторе с общим эмиттером.	ОПК-3.3.1
6		ОПК-3.В.1
U	Каковы основные причины нелинейных искажений в усилителях?	ОПК-3.3.1
7	05	
7	Объясните, как отрицательная обратная связь влияет на параметры	ОПК-3.3.1
0	усилителя.	ОПК-3.В.1
8	Опишите различия между режимами А, В, АВ и С работы	ОПК-3.3.1

усилителей.	ОПК-3.В.1

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ	
	Не предусмотрено	

- 10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.
 - 11. Методические указания для обучающихся по освоению дисциплины (Ниже приводятся рекомендации по составлению данного раздела)
- 11.1. Методические указания для обучающихся по освоению лекционного материала (если предусмотрено учебным планом по данной дисциплине).

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- изложение основных теоретических вопросов в рамках рассматриваемой темы;
- сопровождение мультимедийным материалом;
- отсылки к применению материалов рассматриваемой темы в лабораторных работах;
 - выводы и обобщение изложенного материала;
 - ответы на возникающие у студентов вопросы по теме лекции.

11.2. Методические указания для обучающихся по выполнению лабораторных работ (если предусмотрено учебным планом по данной дисциплине)

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Задание для выполнения лабораторной работы выдается непосредственно перед проведением лабораторной работы.

Структура и форма отчета о лабораторной работе

Структура отчета о лабораторной работе и правила его оформления. По результатам выполнения лабораторной работы студентами оформляется отчет, форма которого утверждается кафедрой. Пример оформления отчета о лабораторной работе выставляется на кафедральном стенде или в локальной сети кафедры. В общем случае отчет о лабораторной работе должен содержать следующие разделы:

- цель лабораторной работы;
- используемые средства;
- основные термины и определения;
- описание задания (постановка задач, подлежащих выполнению в процессе лабораторной работы, осуществляемая студентом);
- описание основной части (краткая характеристика объекта исследования; методика или программа лабораторной работы; результаты расчетов, представленные в форме таблиц, графиков, диаграмм и т.д.);
- выводы (анализ и интерпретация результатов, полученных при выполнении лабораторной работы в виде кратких, но принципиально необходимых доказательств, обоснований, разъяснений, согласованных с целями и темой лабораторной работы).

Прием защиты отчетов о лабораторных работах. Защита отчетов о лабораторных работах является одной из форм текущего контроля успеваемости студентов. Прием защиты отчетов о лабораторных работах осуществляется преподавателем, ведущим лабораторный практикум. Процедура приема отчетов о лабораторных работах включает проверки:

- соответствия оформления предъявляемым требованиям;
- знаний студентом основных понятий, определений и теоретических положений, применяемых при выполнении лабораторных работ;
- знаний студентом методики выполнения лабораторной работы;
- умений студентом объяснить полученные результаты;
- степени самостоятельности выполнения лабораторной работы.

Прием защиты отчетов о лабораторных работах рекомендуется осуществлять в рамках соответствующей лабораторной работы.

Защита лабораторных работ предполагает проведение самооценки и внутригрупповой оценки, критического анализа используемых для оценки методов. Также студенты оценивают разработанную программу дисциплины и формируют свои предложению по ее совершенствованию.

Требования к оформлению отчета о лабораторной работе

По каждой выполненной работе студент оформляет отчёт на стандартных листах формата А4 с обязательным применением персонального компьютера. Содержание отчета приведено в конце каждой лабораторной работы.

Текст документа следует располагать с одной стороны листа. Лист считается заполненным, если расположенный на нем текст, рисунок или схема занимает 2/3 рабочего поля документа. Вложения в документ пустых листов не допускается. Листы готовой работы сшиваются по всей длине по левому краю документа. В случае использования в документе листов с альбомным расположением текста листы подшиваются в документ стороной, с которой расположен заголовок. Скрепление документа с одного угла канцелярской скрепкой или скрепкой скоросшивателя, а также представление работы в виде вложения листов в полиэтиленовый файл не допускается.

Необходимо подчеркнуть значимость данного этапа, так как в отчете отражается полнота и качество проведенного исследования, а также умение студента обобщать и делать выводы, четко и грамотно отчитываться о проделанной работе. Все перечисленные элементы обеспечивают формирование у будущего специалиста необходимых компетенций.

В целях экономии учебного времени отчет рекомендуется выполнять одновременно с проведением исследований.

Обобщения и выводы по каждому пункту задания (программы работы) следует записывать сразу же после полученного графика, характеристики, осциллограммы или таблицы.

При написании выводов следует воздерживаться от объяснений, наблюдаемых или происходящих процессов. В выводе необходимо акцентировать внимание ТОЛЬКО на результате экспериментального исследования.

Коллективные (бригадные) отчеты не допускаются. Каждый студент оформляет свой отчет и отчитывается за него индивидуально.

Защита лабораторной работы организуется в форме индивидуальной беседы и содержит в себе:

- проверку отчета на соответствие требованиям ГОСТ и ЕСКД;
- ответы на вопросы по порядку выполнения лабораторной работы;
- ответы на вопросы по принципу работы электрических принципиальных схем, предложенных студенту для исследования;
 - ответы на контрольные вопросы, приведенные в конце каждой лабораторной работы.

Перечень вопросов, предлагаемых для ответа студенту определяется индивидуально и зависит от успеваемости студента в рамках изучаемой темы.

В случае если в процессе индивидуальной беседы студентом будет продемонстрировано полное непонимание целей, методик и сути исследования ему может быть предложено проведение эксперимента по теме лабораторной работы, но с другими начальными условиями.

Структура и форма отчета о лабораторной работе Изложены на сайте ГУАП (http://guap.ru/guap/standart/ob1_main.shtml).

Требования к оформлению отчета о лабораторной работе Изложены на сайте ГУАП (http://guap.ru/guap/standart/ob1_main.shtml).

11.3. Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

Практические занятия должны обеспечивать: освоение измерительной и

специальной медтехники, овладение методами ее применения, эксплуатации; выработку умений и навыков анализа работы этой техники, решения задач, производства расчетов.

Практические занятия являются основными для закрепления теоретических знаний. Этот вид учебной деятельности студентов призван формировать культуру их умственного труда и самостоятельность в приобретении новых знаний, навыков, умений. Наибольший эффект эти занятия приносят тогда, когда проводятся с учетом дифференцированного подхода к обучающимся, с учетом их способностей, с умелым использованием учебных пособий, натурных образцов, моделей и стендов, различных форм контроля достигнутых знаний, навыков и умений, что и осуществляется при проведении занятий.

Практические занятия проводятся методом, главным содержанием которого является практическая работа каждого студента. В целях качественного и полного выполнения установленного объема работ при проведении занятий с применением материальных средств учебная группа делится на подгруппы 4...5 человек.

Комплекс решаемых на практических занятиях задач охватывает разделы (темы), перечисленные в табл. 4, а также в перечне практических задач — табл. 20. По каждой задаче к концу занятий студенты должны сформулировать выводы. Выводы должны быть четкими и краткими, связанными с проделанной практической работой и пройденным лекционным материалом.

Необходимыми структурными элементами практического занятия, кроме самостоятельной деятельности студентов, является инструктаж, проводимый преподавателем, а также анализ и оценка выполненных работ и степени овладения запланированными умениями.

Подготовка преподавателя к проведению практического занятия включает:

- подбор вопросов, контролирующих знания и понимания обучающимися теоретического материала, изложенного на лекциях и изученного самостоятельно;
- выбор примеров, упражнений, задач, решаемых в ходе практических занятий логическим путем с помощью компьютерного моделирования или изучения реальных схем, элементов и узлов;

- предварительное решение предлагаемых упражнений, задач самим преподавателем;
 - подготовку выводов из решаемых задач, заключения по пройденной теме, разработку итогового выступления;
- распределение времени занятий на запланированные этапы (постановка задач, решение, контроль, обсуждение и т.д.)
- подбор иллюстративного материала, схем, образцов изучаемых элементов и узлов, а также продумывание рационального использования подготовленных материалов.

Структура и форма отчета студента

Письменный отчет о практической работе составляется каждым студентом индивидуально.

При оформлении отчета о работе, проведенной на лабораторной установке, в отчете должен быть оформлен титульный лист, принятого в ГУАП образца, и представлены следующие разделы:

- 1. цель работы;
- 2. схемы установок и исследуемых устройств;
- 3. порядок или методика выполнения работы;
- 4. результаты проведенных измерений, исследований;
- 5. обработка результатов эксперимента;
- 6. анализ результатов и выводов по работе.

Требования к оформлению отчета о практической работе

Графический материал – схемы, графики, таблица, как и текстовый материал отчета, может выполняться:

- традиционным способом с помощью шариковой ручки, карандашей и т.д.;
- автоматизированным способом с применением графических и печатающих устройств вывода ${\rm 3BM}$.

Условные обозначения элементов, узлов на схемах должны соответствовать требованиям действующих нормативных документов.

Отчет о работе должен быть предоставлен в установленные сроки, оговоренные с преподавателем.

На собеседование со студентом, на защиту его отчета преподаватель отводит необходимую часть времени из проводимых занятий.

По результатам собеседования (защиты отчета), по качеству предоставляемого отчета, по пониманию студентом цели и сути проделанной работы преподаватель оценивает работу студента, пользуясь балльной системой оценки, принятой в ГУАП.

Методические указания по прохождению практических занятий имеются в электронном виде в базе локальной компьютерной сети кафедры (ауд. 14-52).

Структура и форма отчета (http://guap.ru/guap/standart/ob1_main.shtml).

Требования к оформлению (http://guap.ru/guap/standart/ob1_main.shtml).

11.4. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения

и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся являются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.5. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

11.6. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

- экзамен форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».
- зачет это форма оценки знаний, полученных обучающимся в ходе изучения учебной дисциплины в целом или промежуточная (по окончании семестра) оценка знаний обучающимся по отдельным разделам дисциплины с аттестационной оценкой «зачтено» или «не зачтено».
- дифференцированный зачет это форма оценки знаний, полученных обучающимся при изучении дисциплины, при выполнении курсовых проектов, курсовых работ, научно-исследовательских работ и прохождении практик с аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программам высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой