МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего

образования "САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 21

УТВЕРЖДАЮ Руководитель образовательной программы доц.,к.т.н. (должность, уч. степень, звание) Е.В. Силяков (инициалы фамилия) 20 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Устройства сверхвысокой частоты и антенны» (Наименование дисциплины)

Код направления подготовки/ специальности	11.05.01
Наименование направления подготовки/ специальности	Радиоэлектронные системы и комплексы
Наименование направленности	Радиоэлектронные системы передачи информации
Форма обучения	квнро
Год приема	2025

Санкт-Петербург- 2025

Лист согласования рабочей программы дисциплины

Программу составил (а)		1 2 10
4. Rago., D. M.K.	14	VI. A. Pedope
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Программа одобрена на заседан		
«Н» шарта 2025 г, прото	OKOH No J	
1, npon	OROSI SIL	
	/	
	/	
Заведующий кафедрой № 21	h	А.Ф. Крячко
Заведующий кафедрой № 21	(подпидь, дата)	А.Ф. Крячко (инициалы, фамилия)
Заведующий кафедрой № 21 д.т.н.,проф.	h	
Заведующий кафедрой № 21 д.т.н.,проф. (уч. степень, звание)	(подпидь, дата)	(килимар, фамилия)
Заведующий кафедрой № 21 д.т.н.,проф. (уч. степень, звание)	(подпидь, дата)	(килимар, фамилия)
Заведующий кафедрой № 21 д.т.н.,проф.	(подпидь, дата)	(килимар, фамилия)

Аннотация

Дисциплина «Устройства сверхвысокой частоты и антенны» входит в образовательную программу высшего образования — программу специалитета по направлению подготовки/ специальности 11.05.01 «Радиоэлектронные системы и комплексы» направленности «Радиоэлектронные системы передачи информации». Дисциплина реализуется кафедрой «№21».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ОПК-2 «Способен выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, и применять соответствующий физикоматематический аппарат для их формализации, анализа и принятия решения»

ОПК-3 «Способен к логическому мышлению, обобщению, прогнозированию, постановке исследовательских задач и выбору путей их достижения, освоению работы на современном измерительном, диагностическом и технологическом оборудовании, используемом для решения различных научно-технических задач в области радиоэлектронной техники и информационно-коммуникационных технологий»

ОПК-6 «Способен учитывать существующие и перспективные технологии производства радиоэлектронной аппаратуры при выполнении научно-исследовательской опытно-конструкторских работ»

Содержание дисциплины охватывает круг вопросов, связанных с параметрами передающих и приемных антенн СВЧ диапазона. В дисциплине рассматриваются принцип действия, геометрические и электрические характеристики различных типов антенн: вибраторных, щелевых, рупорных, линзовых, зеркальных, а также направленные свойства системы излучателей. Приводятся сведения об основных устройствах фидерного тракта СВЧ диапазона: делителях мощности, направленных ответвителях, вращающихся сочленениях, антенных переключателях и др.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, практические занятия, самостоятельная работа студента, консультации, курсовое проектирование

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 часа.

Язык обучения по дисциплине «русский »

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Ознакомление с кругом проблем, стоящих перед разработчиками антеннофидерных систем наземных и бортовых радиолокационных станций; получение практических навыков по экспериментальному исследованию и настройке антенн и устройств СВЧ; получение навыков по расчету и автоматизированному расчету антенн и устройств СВЧ и умение их использования при техническом обслуживании и настройке радиотехнических устройств и систем, в научно-исследовательской и производственной деятельности в областях локационного, навигационного и связного назначения.

- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа)	Код и наименование	Код и наименование индикатора
компетенции	компетенции	достижения компетенции
Общепрофессиональные компетенции	ОПК-2 Способен выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, и применять соответствующий физикоматематический аппарат для их формализации, анализа и принятия	ОПК-2.3.1 знать профильные разделы математических и естественнонаучных дисциплин
Общепрофессиональные компетенции	решения ОПК-3 Способен к логическому мышлению, обобщению, прогнозированию, постановке исследовательских задач и выбору путей их достижения, освоению работы на современном измерительном, диагностическом и технологическом оборудовании, используемом для решения различных	ОПК-3.3.1 знать методы решения задач анализа и расчета характеристик радиоэлектронных систем и устройств с применением современных средств измерения и проектирования

	научно-технических задач в области радиоэлектронной техники и информационно-коммуникационных технологий	
Общепрофессиональные компетенции	ОПК-6 Способен учитывать существующие и перспективные технологии производства радиоэлектронной аппаратуры при выполнении научноисследовательской опытно-конструкторских работ	ОПК-6.У.1 уметь использовать комплексный подход в своей деятельности, в том числе с использованием информационнокоммуникационных технологий ОПК-6.В.1 владеть способами и методами решения теоретических и экспериментальных задач

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Радиотехнические цепи и сигналы» в разделах «Длинные линии»,
 «Колебательные контуры», «Фильтры»,
 - «Электродинамика и распространение радиоволн»,

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- «Радиолокационные системы и комплексы»,
- «Спутниковые системы навигации, связи и наблюдения»,
- «Радионавигационные системы и комплексы»,

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

тиеници 2 — е е в е и труде е инсеетв диединини		
Вид учебной работы	Всего	Трудоемкость по семестрам №6
1	2	3
Общая трудоемкость дисциплины, 3E/ (час)	4/ 144	4/ 144
Из них часов практической подготовки		
Аудиторные занятия, всего час.	68	68
в том числе:		
лекции (Л), (час)	34	34
практические/семинарские занятия (ПЗ), (час)		

лабораторные работы (ЛР), (час)	34	34
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)	36	36
Самостоятельная работа, всего (час)	40	40
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.	Экз.

Примечание: ** кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции (час)	ПЗ (СЗ) (час)	ЛР (час)	КП (час)	CPC (час)
Сем	естр 6				
Раздел 1. Принципы функционирования устройств СВЧ и антенн	3		4		
Раздел 2. Симметричный вибратор в свободном пространстве	3		4		
Раздел 3. Направленные свойства системы излучателей	6				
Раздел 4. Щелевые излучатели	4				
Раздел 5. Основы теории апертурных антенн	4				
Раздел 6.Волноводные излучатели и рупорные антенны	4		12		
Раздел 7. Линзовые антенны	2				
Раздел 8. Зеркальные антенны	4		6		
Раздел 9. Элементы фидерного тракта	4		8		
Итого в семестре:	34		34		40
Итого	34	0	34	0	40
			·		

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

7 1	l ri
Номер раздела	Название и содержание разделов и тем лекционных занятий
	Принципы функционирования устройств СВЧ и антенн
	Тема 1.1. Назначение и роль антенно-фидерных устройств в
	радиотехнических системах
1	Тема 1.2. Классификация линий передачи
	Тема 1.3. Основные электрические характеристики линий
	передачи
	Тема 1.4. Режимы волн в линиях передачи

	Тема 1.5.Общие методы согласования с нагрузкой
	Симметричный вибратор в свободном пространстве
	Тема 2.1. Распределение тока и заряда на тонком вибраторе
	Тема 2.2. Поле излучения симметричного вибратора в
	дальней зоне
2	Тема 2.3. Характеристики излучения симметричного
_	вибратора
	Тема 2.4. Симметрирующие устройства
	Направленные свойства системы излучателей
	Тема 3.1. Поле излучения системы излучателей. Теорема
	перемножения
•	Тема 3.2. Принцип качания луча в неподвижной линейной
3	системе
	Тема 3.3. Направленные свойства антенной решетки с
	осевым излучением (антенна «волновой канал»)
	Тема 3.4. Комплексные входные сопротивления системы вибраторов
	Щелевые излучатели
	Тема 4.1. Принцип двойственности и его применимость в
4	теории щелевых антенн
	Тема 4.2. Щели в волноводе
	Основы теории апертурных антенн
	Тема 5.1. Поле излучения плоской апертуры произвольной
5	формы
	Тема 5.2. Влияние амплитудного и фазового распределения
	на диаграмму направленности
	Волноводные излучатели и рупорные антенны
6	Тема 6.1 Излучение из открытого конца прямоугольного и
v	круглого волновода.
	Тема 6.2. Основные типы электромагнитных рупоров
	Линзовые антенны
7	Тема 7.1. Ускоряющие металлические линзы
	Тема 7.2. Диэлектрические линзовые антенны
	Зеркальные антенны
	Тема 8.1. Определение поля в раскрыве и поля излучения
8	параболоидного зеркала
	Тема 8.2. Коэффициент усиления и оптимальный угол раскрыва параболоида
	Тема 8.3. Двух зеркальные антенны
	Элементы фидерного тракта
	Тема 9.1.Т-образные делители мощности (тройники)
9	Тема 9.2. Волноводные мосты
	Тема 9.3. Антенный переключатель на щелевых мостах
	1

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

				Из них	$N_{\underline{0}}$
№	Темы практических	Формы практических	Трудоемкость,	практической	раздела
Π/Π	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
	Учебным планом не предусмотрено				
	Bcer	0			

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

	man e emechanopuna amanan in ipjacema		Из них	№
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	раздела
Π/Π	паименование лаоораторных расот	(час)	подготовки,	дисцип
			(час)	ЛИНЫ
	Семестр (5		
1	Исследование логарифмической	4		2
1	спиральной антенны	+		2
2	Согласование волновода с нагрузкой	4		1
3	Исследование рупорных антенн с	6		6
3	корректирующими линзами. Часть 1	Ü		U
4	Исследование рупорных антенн с	6		6
4	корректирующими линзами. Часть 2	Ü		U
5	Исследование зеркальных антенн	6		8
	Исследование четырех плечных			
6	волноводных элементов антенных	4		9
	переключателей. Часть 1			
	Исследование четырех плечных			
7	волноводных элементов антенных	4		9
	переключателей. Часть 2			
	Всего	34		

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

1		
Вид самостоятельной работы	Всего,	Семестр 6,
Вид самостоятельной расоты	час	час
1	2	3
Изучение теоретического материала	25	25
дисциплины (ТО)	23	23
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю	5	5
успеваемости (ТКУ)	3	J
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной	10	10
аттестации (ПА)	10	10
Всего:	40	40

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8 – Перечень печатных и электронных учебных изданий

Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)	
621.396.67 K 85	Крячко, А. Ф. Антенны и устройства сверхвысоких частот: учеб. пособие / А. Ф. Крячко, Л. А. Федорова – СПб.: ГУАП, 2017. – 238 с.	20	
621.396.67 Ф 33	Федорова, Л. А. Расчет и проектирование авиационных антенн сверхвысоких частот: учеб. пособие / Л. А. Федорова, Н. А. Гладкий, Б. А. Аюков. – СПб.: ГУАП, 2019. – 145 с.	5	
УДК 621.396.67 (0.75) ББК 32.845 К78	Крячко А.Ф. Основы теории и техники фазированных антенных решеток. учеб. пособие/ Л. А. Федорова, – СПб.: ГУАП, 2017. – 197 с.	Электронная версия	
УДК 621.396.67 (0.75) ББК 32.845 К 85	Высокочастотные антенные переключатели радиолокационных станций. учеб. пособие / Л. А. Федорова, А.Ф. Крячко, Н. А. Гладкий. СПб.: ГУАП, 2019. – 53 с.	Электронная версия	

ББК 32 848 A 72 УДК 621.396.67	Воскресенский Д.И., Гостюхин В.Л., Максимов В.М., Пономарев Л.И. Устройства СВЧ и антенны М: Радиотехника, 2006. – 376 с.	30
УДК 629.735.06 (075) ББК 39.67 .C36	Силяков В.А., Невейкин М.Е., Аюков Б.А. Системы и средства радиосвязи гражданской авиации в метровом диапазоне волн: учеб. пособие. СПб.: ГУАП, 2008. – 180 с.	50
УДК 629.735.06 (075) ББК 39.67 .C36	Красюк В.Н., Платонов О.Ю. Антенное оборудование самолетов и его эксплуатация: учеб. пособие. СПб.: ГУАП, 2002.	50
ББК 32 848 A 72 УДК 621.396.67	Красюк В.Н. Проектирование ФАР прямоугольной формы. Учебное пособие. ГУАП., СПб., 1999	200
УДК 629.386.6 ББК 32.85 .C12	Калашников В.С., Негурей А.В. Расчет параметров пассивных узлов СВЧ методами теории цепей: учеб. пособие. СПб.: ГУАП, 1999. – 99с.	150
УДК 629.386.6 ББК 32.85 .C12	Калашников В.С., Прусов А.В. Техническая электродинамика. Направляющие системы и направляемые волны: учеб. пособие. СПб.: ГУАП, 2002. – 44 с.	100
УДК 629.735.06 (075) ББК 39.67 .C36	Красюк В.Н. Современные принципы построения антенных систем аэропортов: метод. разработка. СПб.: ГУАП, 1999.	40
УДК 621.396.67	Красюк В.Н. Электромагнитная совместимость антенных устройств: учеб. пособие. СПб.: ГУАП, 2002.	100
УДК 621.396.67	Антенны и устройства сверхвысоких частот. Федорова Л.А., Данилов Ю.Н. Программы, контрольные вопросы и методические указания к выполнению контрольных работ. СПб.: ГУАП, 2005. — 22 с.	100
УДК 621.396.67(07 5) ББК 32.845 Б 43	Белоцерковский Г.Б., Красюк В.Н. Задачи и расчеты по курсу «Устройства СВЧ и антенны». СПб., 2002. – 177с.	20
6Ф2 12 Д 72 УДК 621.396.67	А.Л. Драбкин, В.Л. Зузенко, А.Г. Кислов. Антенно-фидерные устройства. М.: Сов. радио, 1974. – 586 с.	33

6Ф2.02. 396.67	Марков Г.Т., Сазонов Д.М. Антенны.	5
M-26	М.: Энергия, 1975. – 528 с	3
	Ю.Н. Данилов, В.Н. Красюк, Б.Т.	
(537(ЛИАП)	Никитин, Л.А. Федорова Техническая	
T38)	электродинамика и антенны.	150
130)	Ч.1.Электродинамика: учеб. пособие. Л.:	
	ЛИАП, 1991. – 165 с.	
	Ю.Н. Данилов, В.Н. Красюк, Б.Т.	
621.37(СПИАП)	Никитин, Л.А. Федорова Техническая	
T-38	электродинамика и антенны. Ч.2.	150
1-36	Антенны: учеб. пособие. Л.: ЛИАП,	
	1992. – 196 с	
621.396.67	Никитин Б.Т. Теория и техника	
(ЛИАП) Н-62	фазированных антенных решеток: учеб.	3
(JIMAII) II-02	пособие. Л.: ЛИАП, 1988. – 64с.	
УДК 629.385.46 ББК 39.46	Воробьев Е.А. Основы конструирования	
	судовых устройств СВЧ. Л.:	20
	Судостроение, 1985. – 240 с.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование
http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_ id=82	Григорьев И.Н. Практические
	конструкции антенн/ ISBN 5-89818-
	061-3
http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=818	Ротхаммель К., Кришке А. Антенны.
	Том 1,11-е изд416 с. ISBN 5-85648-
	715-X
http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_ id=81	Ротхаммель К., Кришке А. Антенны.
	Том 2. DMK
http://e.lanbook.com/books/element.php?pl1_id=25&pl1_id=2689	Кравченко В.Ф.,Сиренко
	Ю.К.,Сиренко Преломление
	электромагнитных волн открытыми
	резонансными. Моделирование и
	анализ переходных и
	установившихся процессов. М.:
	Физматлит; 2011 320 с.
http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=403	Фальковский О.И. Техническая
	электродинамика 2009432 с.

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п		Наименование
	Не предусмотрено	

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Мультимедийная лекционная аудитория	
2	Специализированная лаборатория «Устройства СВЧ и	14-02 (Гаст.)
	антенны»	
3	Класс для практических занятий	11-01 (БМ)

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

	оценки уровня сформированности компетенции	
Оценка компетенции	Характеристика сформированных компетенций	
5-балльная шкала		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 	
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 	
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 	
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 	

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код
		индикатора
1	Характеристики антенн: амплитудная функция направленности, поляризационная характеристика и поляризационная диаграмма, КНД, КПД, КУ, КИП, действующая длина, мощность излучения, сопротивление излучения, входное сопротивление.	ОПК-2.3.1
2	Распределение тока и зарядов в проводах симметричного ОПК-1.У.7 вибратора.	ОПК-2.3.1
3	Поле излучения симметричного вибратора.	ОПК-2.3.1
4	Амплитудная функция направленности вибратора в диапазоне частот.	ОПК-2.3.1
5	Мощность излучения, сопротивление излучения, КНД и	ОПК-2.3.1

	КПД симметричного вибратора.	
6	Входное сопротивление вибратора и широкополосные	ОПК-2.3.1
	вибраторы.	OTIK-2.5.1
7	Симметрирующие устройства для питания проволочных	ОПК-2.3.1
	антенн коаксиальными линиями передачи.	OHK 2.5.1
8	Поле излучения линейной системы эквидистантных	ОПК-2.3.1
	идентичных излучателей. Теорема перемножения.	OTIK 2.5.1
9	Принцип качания луча в неподвижной линейной системе	ОПК-2.3.1
	излучателей.	01111 21011
10	Направленные свойства линейной синфазной системы	ОПК-2.3.1
	излучателей.	
11	Направленные свойства линейной системы с осевым	ОПК-2.3.1
	излучением.	
12	Диаграммы направленности антенны «волновой канал» в	ОПК-2.3.1
12	Е- и Н-плоскостях.	OTH 2 2 1
13	Функция направленности плоскостной антенной решетки.	ОПК-2.3.1
14	Взаимное влияние вибраторов, работающих в системе.	ОПК-3.3.1
	Входное сопротивление, собственное, взаимное	
15	Симметричный горизонтальный вибратор над	ОПК-3.3.1
	поверхностью Земли.	
16	Симметричный вертикальный вибратор над поверхностью Земли.	ОПК-3.3.1
	Несимметричный вертикальный вибратор над	
17	поверхностью Земли. Г- и Т-образные антенны.	ОПК-3.3.1
17	Противовесы и заземления, их конструкция и назначение	O11K-3.5.1
	Принцип двойственности и его применение для	
18	определения характеристик излучения щели в плоском	ОПК-3.3.1
10	безграничном экране.	01110 3.3.1
1.0	Излучающие щели в волноводе. Виды волноводно-	0771.004
19	щелевых антенн.	ОПК-3.3.1
	Методы расчета поля излучения апертурных антенн.	
20	Внутренняя и внешняя задачи. Принцип эквивалентных	ОПК-3.3.1
	токов. Поле излучения площадки произвольной формы.	
	Поле излучения синфазной прямоугольной площадки с	
21	постоянным и косинусоидальным законами	ОПК-3.3.1
	распределения амплитуды поля.	
22	Влияние различных законов распределения фазы по	ОПК-3.3.1
22	раскрыву антенны на диаграмму направленности.	O11K-3.3.1
	Е-плоскостной секториальный рупор. Геометрические	
23	параметры. Оптимальный рупор. Поле в раскрыве и поле	ОПК-3.3.1
	излучения	
	Н-плоскостной секториальный рупор. Геометрические	
24	параметры. Оптимальный рупор. Поле в раскрыве и поле	ОПК-3.3.1
2.	излучения	3111 3.3.1
	Т	
25	Диэлектрическая линзовая антенна. Геометрические	ОПИЗЗЗ
25	параметры. Принцип работы. Уравнение профиля. Поле в	ОПК-3.3.1
	раскрыве и поле излучения.	
26	Металлопластинчатая линзовая антенна. Геометрические	ОПИ 2 2 1
26	параметры. Принцип работы. Уравнение профиля. Поле в	ОПК-3.3.1
	раскрыве и поле излучения.	

	77 1 9	
27	Зонирование линзовых антенн. Уравнения профилей	
27	зонированных линзовых антенн. Преимущества и	ОПК-6.У.1
	недостатки зонирования	
	Параболические зеркальные антенны. Уравнение профиля	
28	параболоида в полярной и декартовой системах	ОПК-6.У.1
	координат. Поле в раскрыве. КУ, КНД, КИП, КПД.	01111 011 11
	Оптимальный угол раскрыва.	
29	Методы устранения реакции зеркала на облучатель.	ОПК-6.У.1
	Зеркало с поворотом плоскости поляризации.	OTIK-0.3.1
30	Способы формирования диаграммы направленности вида	OHE 6 V 1
30	«косеканс».	ОПК-6.У.1
21	Сферическая антенна с широким углом качания луча.	OHIC CVI
31	Принцип работы. Геометрические параметры.	ОПК-6.У.1
	Двух зеркальная антенна Кассегрена. Принцип работы.	
32	Геометрические параметры.	ОПК-6.У.1
	Двух зеркальная антенна Грегори. Принцип работы.	
33	Геометрические параметры.	ОПК-6.У.1
	Двух зеркальная антенна с плоским зеркалом за	
34	облучателем. Принцип работы антенны и зеркала с	ОПК-6.У.1
34	поворотом плоскости поляризации	OHK-0.3.1
	Характеристики и режимы волн в линиях передачи.	
35	Напряжение суммарной волны. Входное сопротивление.	ОПК-6.У.1
	Коэффициенты бегущей и стоячей волны. Условие	
	существования в линии бегущей волны.	
	Линия короткозамкнутая на конце. Распределение	
36	суммарной волны тока и напряжения. Входное	ОПК-6.У.1
	сопротивление. Примеры использования в технике	
	антенн.	
	Разомкнутая на конце линия. Распределение суммарной	
37	волны тока и напряжения. Входное сопротивление.	ОПК-6.У.1
	Примеры использования в антенной технике.	
	Т-образные соединения линий передачи. Е и Н-	
	плоскостные волноводные тройники. Эквивалентные	
38	схемы. Условия внутреннего согласования. Реактивные	ОПК-6.У.1
	элементы, используемые для согласования волноводных	
	тройников. Применение тройников.	
39	Двойной волноводный тройник. Конструкция, принцип	опи с и 1
39	работы и свойства.	ОПК-6.У.1
40	Антенный переключатель импульсной РЛС на двойных	OTH (D 1
40	тройниках.	ОПК-6.В.1
4.1	Дуплексер на двойных Т-мостах при работе РЛС на одну	OHIC CD 1
41	антенну в непрерывном режиме.	ОПК-6.В.1
	Кольцевой волноводный мост. Условие возбуждения	
	плеча, если кольцо свернуто в Е-плоскости (Н-плоскости).	0777
42	Фазы волн на выходах из плеч моста (векторные	ОПК-6.В.1
	диаграммы при питании из разных плеч).	
	Антенный переключатель прием-передача импульсной	
43	РЛС на кольцевых мостах.	ОПК-6.В.1
A A	Щелевой волноводный мост. Конструкция.	OHE CRI
44	Геометрические параметры. Принцип работы. Векторные	ОПК-6.В.1
4.5	диаграммы сигналов на выходах моста.	OHII CD 1
45	Антенный переключатель прием-передача импульсной	ОПК-6.В.1

	РЛС на щелевых мостах.		
46	Дуплексер на щелевых мостах при работе РЛС на одну	ОПК-6.В.1	
40	антенну в непрерывном режиме.	O11K-0.D.1	
	Направленный волноводный ответвитель с двумя		
47	отверстиями связи на узкой стенке. Конструкция геометрические и электрические параметры, принцип		
47			
	работы. Примеры применения НО.		
	НО с тремя отверстиями связи на узкой стенке.		
48	Конструкция, геометрические и электрические параметры,	ОПК-6.В.1	
	принцип работы. Широкополосные свойства.		
49	Фазированные антенные решетки на базе волноводно-	ОПК-6.В.1	
49	щелевых антенн.	O11K-0.B.1	
50	Схема Батлера для питания ФАР.		
51	51 Схема Бласса для питания ФАР.		
52	Ферритовые устройства СВЧ: фазовращатели, вентили,	OTIL (D 1	
32	циркуляторы.	ОПК-6.В.1	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

	F
№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

Таблица	а 18 – Примерный перечень вопросов для тестов	
№ п/п	Примерный перечень вопросов для тестов	Код индикатора
	Какие функции выполняет передающая антенна, если она	ОПК-2.3.1
	подключена к радиопередатчику через фидерный тракт?	ОПК-3.3.1
	1.Преобразует связанные ЭМВ в фидере, несущие информацию от	ОПК-6.У.1
	ПРД, в свободно-распространяющиеся ЭМВ с сохранением	ОПК-6.В.1
	информации и формируют вполне определенные требуемые	0.B.1
1	характеристики излучения (ДН, поляризация в заданном диапазоне	
1	частот)	
	2. Управляет характеристиками поля излучения во времени и	
	пространстве.	
	3. Увеличивает плотность потока мощности в окружающем	
	пространстве.	
	Сформулируйте назначение приемной антенны?	
	1. Обеспечение направленного приема, частотная и поляризационная	
	селекция радиосигналов, а также преобразования	
	распространяющихся ЭМВ в свободном пространстве в связанные	
2	ЭВМ, направленные по фидеру к приемнику с сохранением	
	информации.	
	2. Управление селективными свойствами по частоте, поляризации,	
	направлению.	
	3. Измерительные функции - определение направлений, с которых	
	приходят сигналы и помехи.	
	Какой частотный диапазон относится к длинным волнам?	
3	1. Частотный диапазон 30-300 кГц.	
	2. Частотный диапазон 3-30 кГц.	
	3. Частотный диапазон 3-30 МГц	
	Что называют амплитудной функцией направленности антенны?	
	1.Зависимость амплитуды напряженности электрического поля в	
	дальней зоне от угловых координат θ , ϕ в сферической системе	
	координат при условии, что расстояние от антенны до наблюдателя	
	остается постоянным.	
4	2.Зависимость амплитуды напряженности электрического поля в	
	ближней зоне антенны от угловых координат θ , ϕ в сферической	
	системе координат при условии, что расстояние от антенны до	
	наблюдателя остается постоянным.	
	3.Зависимость распределения амплитуды тока на антенне от ее	
	линейных размеров.	
	Что называют поляризационной характеристикой антенны?	
	1. Кривая, которую описывает конец вектора Е (годограф вектора Е)	
	в плоскости перпендикулярной направлению распространения	
	электромагнитной волны в свободном пространстве.	
5	2. Геометричесукое место максимальных проекций вектора Е на	
3	вращающуюся ось приемной антенны в плоскости	
	перпендикулярной направлению распространения.	
	3. Зависимость амплитуды напряженности электрического поля в	
	дальней зоне от угловых координат θ , ϕ в сферической системе	
	координат.	
	Как определяют ширину диаграммы направленности антенны?	
6	1.Угловой сектор, при котором значение амплитуду напряженности	
	электрического поля уменьшается до значения 0.707 $E_{\text{макс}}$.	

	2. Угловой сектор, при котором значение амплитуду напряженности
	электрического поля уменьшается до значения 0.5 Емакс.
	3.Угловой сектор, при котором значение мощности поля Р
	уменьшается до значения 0.707 Рмакс.
	Что называют коэффициентом бегущей волны в линии передачи?
	1.Отношение амплитуды напряженности суммарной волны в
	минимуме поля в линии передачи к амплитуде напряженности
	суммарной волны в максимуме поля.
7	2.Зависимость амплитуды напряженности электрического поля
	вдоль линии передачи от ее координаты.
	3.Отношение амплитуды напряженности суммарной волны в
	максимуме поля в линии передачи к амплитуде напряженности
	суммарной волны в минимуме поля
	При каких условиях в линии передачи существует режим бегущей
	волны?
0	1.Сопротивление нагрузки должно быть чисто активной величиной
8	и равняться волновому сопротивлению линии передачи.
	2. Сопротивление нагрузки должно равняться нулю.
	3.Линия передачи должна быть нагружена на сопротивление, равное
	волновому сопротивлению свободного пространства 120π
	При каких условиях в линии передачи существует режим стоячих
	волн?
9	1. Сопротивление нагрузки должно равняться нулю или бесконечности.
9	2. Линия передачи должна быть нагружена на сопротивление 120π.
	2. Линия передачи должна оыть нагружена на сопротивление 120л.3. Сопротивление нагрузки должно быть чисто активной величиной
	и равняться волновому сопротивлению линии передачи. Чему равняется входное сопротивление двухпроводной линии
	передачи в сечении z длиной l разомкнутой на конце?
	1.Сопротивление линии чисто реактивная величина и изменяется в
	соответствии с выражением
	<u> </u>
	$z_{sx}(z) = \frac{\dot{V}_{\Sigma}(z)}{\dot{I}_{\Sigma}(z)} = -i \cdot ctg\beta z$
10	$I_{\Sigma}(z)$
10	2. Сопротивление линии чисто реактивная величина и изменяется в
	соответствии с выражением
	$z_{sx}(z) = \frac{V_{\Sigma}(z)}{1} = -i \cdot tg\beta z$
	$I_{\Sigma}(z)$
	3.Сопротивление должно быть чисто активной величиной в любом
	сечении и равняться волновому сопротивлению линии передачи.
	Что собой представляет симметричный вибратор?
	1.Симметричный вибратор представляет собой проволочную
	антенну с плечами равной длины, расположенными вдоль общей
	оси, и у которого в любом сечении, отстоящим на одинаковое
	расстояние от точек питания токи равны по величине и синфазны.
11	2. Симметричный вибратор представляет собой проволочную
	антенну с плечами равной длины, расположенными параллельно
	друг другу, и которая в осевом направлении излучает диаграмму
	друг другу, и которая в осевом направлении излучает диаграмму направленности в виде окружности (ненаправленное излучение)
	друг другу, и которая в осевом направлении излучает диаграмму

	оси, и которая в осевом направлении излучает диаграмму		
	направленности в виде восьмерки.		
	Каким выражением описывается поле излучения симметричного		
	вибратора в дальней зоне?		
	1. $E_1 = i \frac{60I_{m1}}{r_1} f_1(\theta) e^{i(\omega t - kr_1)}$.		
10			
12	2. $E_1 = i60 f_1(\theta) e^{i\omega t} \sum_{p=1}^n I_{m_p} \frac{e^{-ikr_p - i\psi_p}}{r_p}$.		
	$\sum_{p=1}^{\infty} \frac{1}{r_{m_p}} \frac{1}{r_p}$		
	0.01 1.00 1.00 1.00		
	3. $E_1 = i \frac{60I_{m1}}{r_1} \sin(\theta) e^{i(\omega t - kr_1)}$.		
	Каким выражением описывается функция направленности		
	симметричного вибратора в дальней зоне?		
	1. $f(\theta) = \frac{\cos(kl\cos\theta) - \cos kl}{\sin\theta}$.		
13	$\sin \left \frac{n}{2} (kd_2 \cos \theta - \psi) \right $		
	$2. \ f(\theta) = \frac{2}{5}.$		
	$2. \ f(\theta) = \frac{\sin\left[\frac{n}{2}(kd_z\cos\theta - \psi)\right]}{n\sin\left[\frac{1}{2}(kd_z\cos\theta - \psi)\right]}.$		
	$\cos(k \sin \theta)$		
	3. $f(\theta) = \frac{\cos(kl\sin\theta)}{\cos\theta}.$		
	Какой вид имеет амплитудная функция направленности		
	полуволнового симметричного вибратора в Е и Н - плоскостях?		
	1. Амплитудная функция направленности полуволнового		
	симметричного вибратора в Е-плоскости имеет вид восьмерки, а в		
	Н- плоскости – окружности.		
14	2. Амплитудная функция направленности полуволнового		
	симметричного вибратора в Е-плоскости имеет вид окружности, а в		
	Н- плоскости – восьмерки.		
	3. Амплитудная функция направленности полуволнового симметричного вибратора в Е- и Н-плоскостях имеет вид		
	восьмерки.		
	Какой изменится диаграмма направленности симметричного		
	полуволнового вибратора в Е плоскости, если увеличить его длину		
	до $21 = 1,5\lambda$?		
	1.Главный лепесток, ориентированный перпендикулярно оси		
	вибратора, сужается, но появится в каждом квадранте		
15	дифракционный лепесток под углом к оси вибратора.		
	2. Главный лепесток, ориентированный вдоль оси вибратора,		
	сужается, но появятся дифракционные лепестки перпендикулярные		
	оси вибратора.		
	3. Главный лепесток, ориентированный перпендикулярно оси		
	вибратора, сужается.		
	Какой изменится диаграмма направленности симметричного		
	полуволнового вибратора в Е плоскости, если увеличить его длину		
	до 21=λ?		
16	1.Главный лепесток в виде восьмерки, ориентированной перпендикулярно оси вибратора, сузится.		
10			
	т Z. т ларябій лепсеток, орисятировинный псопенликулярно оси		
	2. Главный лепесток, ориентированный перпендикулярно оси вибратора, сузится, но появится в каждом квадранте		
	главный лепесток, ориентированный перпендикулярно оси вибратора, сузится, но появится в каждом квадранте дифракционный лепесток под углом к оси вибратора.		

	PANEMOTOR OVERVEROR	
	вибратора, сузится.	
	Чему равно активное входное сопротивление полуволнового и	
	волнового вибраторов малой толщины?	
	Ответы:	
	1. Активное входное сопротивление полуволнового и волнового	
17	вибраторов равно 73,1 Ом и 5000 Ом соответственно.	
	2. Активное входное сопротивление полуволнового и волнового	
	вибраторов равно 42,5 Ом и 1000 Ом соответственно.	
	3. Активное входное сопротивление полуволнового и волнового	
	вибраторов равно 73,1 Ом и 377 Ом соответственно.	
	С какой целью увеличивают толщину вибраторных антенн?	
	1. Для того, чтобы расширить рабочую полосу частот по входному	
	сопротивлению вибратора.	
	2. Для того, чтобы сузить диаграмму направленности вибратора в Е-	
	плоскости.	
18	3. Для того, чтобы свести к минимуму реактивную составляющую	
	входного сопротивления и увеличить соответственно активное	
	входное сопротивление, что приведет к увеличению мощности	
	излучения. Какие условия необходимо выполнить, чтобы антенна	
	волновой канал излучала в диаграмму направленности вдоль оси	
	линейной системы излучателей?	
	Как ориентирована в пространстве диаграмма направленности	
	синфазной линейной системы излучателей?	
	1. Максимум ДН перпендикулярен оси линейной системы	
19	излучателей.	
1)	2. Максимум ДН направлен вдоль оси линейной системы	
	излучателей.	
	3. Максимум ДН направлен под углом к оси линейной системы	
	излучателей.	
	Какой вид в пространстве имеет диаграмма направленности в Е-	
	плоскости линейной системы из двух излучателей А-Р?	
	1. 4 2. 3. 4	
20		
20		
	34. Какие условия необходимо выполнить, чтобы антенна волновой	
	канал излучала в диаграмму направленности вдоль оси линейной	
	системы излучателей?	
	1. Расстояние между излучателями d должно быть равным четверти	
	длины волны в свободном пространстве, а фаза тока в каждом	
	соседнем излучателе должна отличаться на величину $\pi/2$.	
21	2. Расстояние между излучателями d должно быть равным половине	
	длины волны в свободном пространстве, а фаза тока в каждом	
	соседнем излучателе должна отличаться на величину π .	
	3. Расстояние между излучателями d должно быть равным четверти	
	длины волны в свободном пространстве, а фаза тока в каждом	
	соседнем излучателе должна быть одинаковой (синфазная система).	
22	35. Что такое фазированная антенная решетка?1. Решетка излучателей, в которой перемещение луча диаграммы	
<i>44</i>		
	направленности осуществляется за счет изменения фазы в каждом	

	последующем излучателе относительно соседнего по линейному
	закону.
	2. Решетка излучателей, в которой перемещение луча диаграммы
	направленности осуществляется за счет изменения фазы в каждом
	последующем излучателе относительно соседнего по
	квадратичному закону.
	3. Решетка излучателей, в которой перемещение луча диаграммы
	направленности осуществляется за счет качания антенной решетки
	вокруг ее фазового центра.
	Какой вид имеет выражение множителя решетки системы из двух
	излучателей, расположенных на расстоянии d друг от друга?
22	1. $f_{n=2}(\theta) = \cos[\frac{1}{2}(kd\cos\theta - \psi)].$
23	
	$2. \ f_{n=2}(\theta) = \sin(kh\cos\theta).$
	3. $f_{n=2}(\theta) = \cos(kh\cos\theta)$.
_	Какой вид имеет диаграмма направленности полуволновой щели в Е
	- и Н- плоскостях, прорезанной в плоском безграничном экране?
	1. Диаграммы направленности имеют вид окружности и восьмерки
24	соответственно в Е - и Н- плоскостях.
24	2. Диаграммы направленности имеют вид восьмерки и окружности
	соответственно в Е - и Н-плоскостях.
	3. Диаграммы направленности имеют вид восьмерки
	соответственно в Е- и Н-плоскостях
	Каким образом надо прорезать щель в волноводе с волной типа H_{10} ,
	чтобы она излучала?
25	1.Щель надо прорезать вдоль магнитных силовых линий.
23	2. Щель надо прорезать вдоль электрических силовых линий.
	3. Щель надо прорезать перпендикулярно магнитным силовым
	линиям
	Какое расстояние в волноводно-щелевой антенне (ВЩА) должно
	быть между продольными щелями на широкой стенке
	прямоугольного волновода, смещенными относительно его оси в
	шахматном порядке, чтобы она излучала один лепесток ДН
	перпендикулярно волноводу?
	1. Расстояние между соседними щелями, смещенными относительно
26	его оси в шахматном порядке, равно половине длины волны в
	волноводе.
	2. Расстояние между соседними щелями, смещенными
	относительно его оси в шахматном порядке, равно половине длины
	волны в свободном пространстве.
	3. Расстояние между соседними щелями, смещенными относительно
	его оси в шахматном порядке, равно длине волны в волноводе.
	Какое расстояние в резонансной волноводно-щелевой антенне
	(ВЩА) с продольными щелями на широкой стенке прямоугольного
	волновода, смещенными относительно его оси в шахматном
	порядке, должно быть от короткозамкнутого поршня до ближайшей
	к нему щели?
27	1. Расстояние от короткозамкнутого поршня до ближайшей к нему
	щели равно четверти длины волны в волноводе.
	2. Расстояние от короткозамкнутого поршня до ближайшей к нему
	щели равно половине длины волны в волноводе.
	3. Расстояние от короткозамкнутого поршня до ближайшей к нему
	3.1 accroanne or короткозамкнутого поршня до олижаншей к нему

	щели равно длине волны в волноводе.
	Какую поляризацию излучает волноводно-щелевая антенна (ВЩА)
28	со встречно-наклонными щелями на узкой стенке прямоугольного
	волновода с расстоянием между щелями $\Lambda/2$?
	1.Поляризация линейная – горизонтальная (параллельная оси
	волновода).
	2. Поляризация линейная – вертикальная (перпендикулярная оси
	волновода).
	3. Поляризация линейная – перпендикулярная оси излучающей
	щели.
	Какое расстояние в резонансной волноводно-щелевой антенне
	(ВЩА) с поперечными щелями на широкой стенке прямоугольного
	волновода должно быть от короткозамкнутого поршня до
	ближайшей к нему щели?
29	1. Расстояние от короткозамкнутого поршня до ближайшей к нему
2)	щели равно половине длины волны в волноводе $\Lambda/2$.
	2. Расстояние от короткозамкнутого поршня до ближайшей к нему
	щели равно четверти длины волны в волноводе $\Lambda/4$.
	3. Расстояние от короткозамкнутого поршня до ближайшей к нему
	последней щели равно $3\Lambda/4$.
	Какой вид имеет диаграмма направленности волноводнощелевой
	антенны (ВЩА) бегущей волны с поперечными щелями на широкой
	стенке прямоугольного волновода при расстоянии между щелями
	$d = \Lambda/4$?
•	1. Диаграмма направленности имеет один главный лепесток,
30	наклоненный к оси волновода.
	2. Диаграмма направленности имеет один главный лепесток,
	перпендикулярный оси волновода.
	3. Диаграмма направленности имеет один главный лепесток,
	наклоненный к оси волновода, и дифракционный максимум,
	перпендикулярный оси волновода.

Тесты размещены https://lms.guap.ru/course/view.php?id=32.

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ	
	Не предусмотрено	

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

Целью дисциплины является — получение студентами необходимых знаний, умений и навыков в области современных антенн и устройств СВЧ; создание поддерживающей образовательной среды преподавания по направлению «25.05.03 «Техническая эксплуатация транспортного радиооборудования» направленность

«Техническая эксплуатация радиоэлектронного оборудования воздушных судов и аэропортов»; предоставление возможности студентам развить и продемонстрировать навыки в области экспериментального исследования и настройке антенн и устройств СВЧ, а также навыки по автоматизированному расчету и умение их использования при техническом обслуживании и настройке радиотехнических устройств и систем, в научноисследовательской и производственной деятельности в областях локационного, навигационного и связного назначения.

11.1. Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- Формулировка задачи лекции.
- Разделы и параграфы излагаемого материала с соответствующими математическими выкладками.
 - Графические материалы необходимых теоретических зависимостей.
 - Выводы по каждому разделу.
- 11.2. Методические указания для обучающихся по выполнению лабораторных работ

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

- 1. Ознакомиться с методической разработкой к лабораторной работе.
- 2. Проработать самостоятельно теоретический материал, поддерживающий тематику лабораторной работы.
 - 3. Ознакомиться с аппаратурой, входящей в лабораторную установку.
- 4. Рассчитать и построить необходимые теоретические зависимости по заданию преподавателя.
- 5. Ответить на контрольные вопросы, имеющиеся в методической разработке к лабораторной работе.
- 6. Ответить на вопросы коллоквиума, проводимого преподавателем перед выполнением лабораторной работы.

Структура и форма отчета о лабораторной работе

Отчет должен содержать:

- 1. Титульный лист.
- 2. Краткую формулировку задачи исследования.
- 3. Структурную схему измерительной установки лабораторной работы.
- 4. Таблицы экспериментальных исследований.
- 5. Графические зависимости от заданных параметров исследуемых величин.
- 6. Расчетные данные и графические материалы необходимых теоретических зависимостей.
 - 7. Сравнительный анализ данных теории и эксперимента.
 - 8. Выводы по работе

Требования к оформлению отчета о лабораторной работе

Отчет выполняется в соответствии с действующими государственными стандартами каждым студентом индивидуально в печатном или рукописном виде на белой бумаге формата 210х297 мм. Таблицы экспериментальных исследований и теоретических расчетов приводятся с соответствующей нумерацией и заголовками.

Перечень методических указаний по проведению лабораторных работ. Все методички имеются на кафедре в электронном виде.

- 1. Исследование антенны типа «волновой канал». Никитин Б.Т. Метод. указ. к выполнению лаб. раб. ЛИАП, Л., 1986г. -25с.
- 2. Исследование рупорных антенн с корректирующими линзами. Федорова Л.А., Гладкий Н.А. Метод. указ. к выполнению лаб. раб. ГУАП, С.-Пб.2002г. -25c. https://lms.guap.ru/new/mod/lesson/view.php?id=11068
- 3. Исследование зеркальных антенн. Данилов Ю.Н., Никитин Б.Т. Метод. указ. к выполнению лаб. раб. ГААП, С.-Пб.,1996г. -25с.
- 4. Согласование волновода с нагрузкой. Федорова Л.А., Мишура Т.П. Метод. указ. к выполнению лаб. раб. ЛИАП, Л., 1991г. -30с.
- 5. Исследование четырех плечных волноводных элементов антенных переключателей. Федорова Л.А., Данилов Ю.Н. Метод. указ. к выполнению лаб. раб. ГААП, С.-Пб.,1994г. -24с.

- 6. Исследование фазированной антенной решетки. Мельникова А.Ю., Федорова Л.А. Метод. указ. к выполнению лаб. раб. ГУАП, С.-Пб., 2008г. -41с.
- 7. Исследование плоской двухзаходной спиральной антенны. Федорова Л.А., Французов А.Д. Метод. указ. к выполнению лаб. раб. ГУАП, С.-Пб., 2002г. -22с.
- 8. Исследование антенны с регулируемой поляризацией. Федорова Л.А., Данилов Ю.Н. Метод. указ. к выполнению лаб. раб. ГААП, С.-Пб., 1997г. -17с.
- 9. Исследование волноводно-щелевых антенн. Никитин Б.Т., Т.П.Мишура, Красюк В.Н. Метод. указ. к выполнению лаб. раб. ГУАП, С.-Пб., 1999г. -33с. https://lms.guap.ru/new/mod/lesson/view.php?id=11521
- 10. Исследование цилиндрической спиральной антенны. Федорова Л.А. Метод. указ. к выполнению лаб. раб. ГУАП, С.-Пб., 2002г. -22с.
- 11. Исследование плоской спиральной антенны. Федорова Л.А. Метод. указ. к выполнению лаб. раб. ГУАП, С.-Пб., 2002г. -22с.
- 11.3. Методические указания для обучающихся по прохождению курсового проектирования/выполнения курсовой работы

Учебным планом не предусмотрено.

11.4. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.5. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

11.6. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

– экзамен – форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой