МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 1

УТВЕРЖДАЮ
Руководитель образовательной программы
доц., к.т.н.

(должность, уч. степень, звание)
Р.Н. Целмс

(подпись)
«10» февраля 2025 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Дополнительные разделы математики» (Наименование дисциплины)

Код направления подготовки/ специальности	27.05.02
Наименование направления подготовки/ специальности	Метрологическое обеспечение вооружения и военной техники
Наименование направленности	Метрологическое обеспечение космических средств
Форма обучения	квньо
Год приема	2025

Санкт-Петербург- 2025

Лист согласования рабочей программы дисциплины

Программу составил (а)		
Доц., к.т.н., доц. (должность, уч. степень, звание)	(подинев, дата)	(Инициалы, фамилия)
Программа одобрена на засед	ании кафедры № 1	
«03» февраля 2025 г, протоко.	π № 02/1	
Заведующий кафедрой № 1 д.фм.н.,доц.	105.02.2	А.О. Смирнов
(уч. степень, звание)	(родпись, дата)	(инициалы, фамилия)
Заместитель директора инсти-	тута ФПТИ по методической р	аботе Н.Ю. Ефремов
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Дополнительные разделы математики» входит в образовательную программу высшего образования – программу специалитета по направлению подготовки/ специальности 27.05.02 «Метрологическое обеспечение вооружения и военной техники» направленности «Метрологическое обеспечение космических средств». Дисциплина реализуется кафедрой «№1».

Дисциплина не является обязательной при освоении обучающимся образовательной программы и направлена на углубленное формирование следующих компетенций:

УК-1 «Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий»

Содержание дисциплины охватывает круг вопросов, связанных с теорией пределов, с дифференциальным и интегральным исчислением функций одной и нескольких переменных, с теорией рядов и с решением обыкновенных дифференциальных уравнений, а также с применением знаний по указанным разделам при решении профессиональных залач.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: практические занятия, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме зачета.

Общая трудоемкость освоения дисциплины составляет 1 зачетную единицу, 36 часов.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

формирование у студентов способности и навыков формулировать и решать профессиональные задачи с использованием аппарата линейной алгебры и математического анализа.

- 1.2. Дисциплина является факультативной дисциплиной по специальности образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа)	Код и наименование	Код и наименование индикатора достижения
компетенции	компетенции	компетенции
Универсальные компетенции	УК-1 Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий	УК-1.3.1 знать методы критического анализа и системного подхода УК-1.3.2 знать методики разработки стратегии действий для выявления и решения проблемных ситуаций УК-1.У.3 уметь вырабатывать стратегию действий для решения проблемной ситуации УК-1.В.1 владеть навыками системного и критического мышления; методиками постановки цели, определения способов ее достижения

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Математика. Математический анализ»,
- «Математика. Аналитическая геометрия и линейная алгебра».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

		Трудоемкость по	
Вид учебной работы	Всего	семестрам	
		№ 3	
1	2	3	
Общая трудоемкость дисциплины,	1/36	1/ 36	
3Е/ (час)	1/ 30	17 30	
Из них часов практической подготовки			
Аудиторные занятия, всего час.	17	17	
в том числе:			
лекции (Л), (час)			
практические/семинарские занятия (ПЗ),	17	17	
(час)	1/	1 /	
лабораторные работы (ЛР), (час)			

курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)		
Самостоятельная работа, всего (час)	19	19
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Зачет	Зачет

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

тиолици з тизделы, темы днециплины, их трудосикость					
Разделы, темы дисциплины	Лекции	ПЗ (СЗ)	ЛР	КП	CPC
	(час)	(час)	(час)	(час)	(час)
Сем	естр 3				
Раздел 1. Комплексные числа		2			2
Раздел 2. Матрицы и системы линейных уравнений		2			3
Раздел 3. Элементы аналитической геометрии		2			2
Раздел 4. Дифференциальное исчисление функции		2			2
одной переменной		2			1
Раздел 5. Интегральное исчисление функции одной		3			3
переменной		3			3
Раздел 6. Дифференциальное исчисление функции		2			2
многих переменных		2			1
Раздел 7. Обыкновенные дифференциальные		2			3
уравнения		2			3
Раздел 8. Ряды		2			2
Итого в семестре:		17			19
Итого	0	17	0	0	19

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий
	Учебным планом не предусмотрено

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

				Из них	$N_{\underline{0}}$
$N_{\underline{0}}$	Темы практических	Формы практических	Трудоемкость,	практической	раздела
Π/Π	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
		Семестр 3			
	Комплексные числа		2	2	1

Матрицы и системы линейных уравнений	2	2	2
Элементы аналитической геометрии	2	2	3
Дифференциальное исчисление функции одной переменной	2	2	4
Интегральное исчисление функции одной переменной	3	3	5
Дифференциальное исчисление функции многих переменных	2	2	6
Обыкновенные дифференциальные уравнения	2	2	7
Ряды	2	2	8
Всего	17	17	

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	$N_{\underline{0}}$
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	раздела
Π/Π	паименование лаоораторных раоот	(час)	подготовки,	дисцип
			(час)	лины
	Учебным планом не п	редусмотрено		
	Всего			

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

	1 -	771
Вид самостоятельной работы	Всего,	Семестр 3,
Вид самостоятсльной расоты	час	час
1	2	3
Изучение теоретического материала	1	4
дисциплины (ТО)	4	4
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю	6	6
успеваемости (ТКУ)	U	Ü
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		_
·		

Подготовка к промежуточной аттестации (ПА)		9	9
	Всего:	19	19

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8- Перечень печатных и электронных учебных изданий

Шифр/	Библиографическая ссылка	Количество
URL адрес		экземпляров в
.,, 4		библиотеке
		(кроме
		электронных
		экземпляров)
517	Two ways II C Twh donovy woo w	237
	Пискунов Н. С. Дифференциальное и	237
П34	интегральное исчисления: В 2 т.: учебное пособие	
	для студентов втузов М.: Интеграл-Пресс, 2004 -	
-1-	- 2004 415 c.	
517	Берман, Г. Н. Сборник задач по курсу	165
Б50	математического анализа: учебное пособие / Г. Н.	
	Берман 22-е изд., перераб СПб.: Профессия,	
	2005 432 c.	
517	Высшая математика. Ряды: учебное пособие / Ю.	167
Γ 96	А. Гусман, С. П. Помыткин, А. О. Смирнов; С	
	Петерб. гос. ун-т аэрокосм. приборостроения	
	СПб. : Изд-во ГУАП, 2019 77 с.	
https://e.lanbook.	Фихтенгольц Г.М. Основы математического	ЭБС Лань
com/book/65055	анализа. В 2-х тт. Том 1-ый - Санкт-Петербург:	
	Лань, 2021 448с.	
https://e.lanbook.	Фихтенгольц Г.М. Основы математического	ЭБС Лань
com/book/411	анализа. В 2-х тт. том 2-й - Санкт-Петербург:	
TOTAL COOLS :III	Лань, 2021 464с.	
https://e.lanbook.	Сборник задач по математическому анализу. Том	ЭБС Лань
com/book/2226	1. Предел. Непрерывность. Дифференцируемость	JBC Hallb
<u>COIII/ 000R/ 2220</u>	/ Л.Д. Кудрявцев [и др.] Москва: Физматлит,	
	2019. — 496 с.	
	Сборник задач по математическому анализу. Том	ЭБС Лань
	2. Интегралы. Ряды: учеб. пособие / Л.Д.	ЭБС Лапв
	Кудрявцев [и др.] Москва: Физматлит, 2019	
	Кудрявцев [и др.] Москва : Физмаплит, 2019 504 с.	
http://alanhook.a	Злобина С.В. Математический анализ в задачах и	ЭБС Лань
http://e.lanbook.c		ЭБС Лань
om/book/2377	упражнениях. / С.В. Злобина, Л.Н. Посицельская.	
	- М.: Физматлит, 2019 360 c.	DEC H
	Буркова Е. В. Математический анализ. / Е. В.	ЭБС Лань
	Буркова, О. А. Шушерина Красноярск: СибГУ	
*****	им. академика М. Ф. Решетнёва, 2018 128 с.	
УДК 517.9	Макарова М.В., Помыткин С.П. Применение	50

дифференциальных уравнений для решения прикладных задач: учебметод. пособие/ М.В. Макарова, С.П. Помыткин. –СПб.: ГУАП, 202145с.	
Агафонов, С.А. Дифференциальные уравнения / С.А. Агафонов, А.Д. Герман, Т.В. Муратова. – МГТУ им. Н.Э. Баумана, 2024. (Сер. Математика в техническом университете; Вып. VII).	ЭБС Лань
Жабко, А. П. Дифференциальные уравнения и устойчивость: учебник / А. П. Жабко, Е. Д. Котина, О. Н. Чижова. — Санкт-Петербург: Лань, 2022. — 320 с.	ЭБС Лань

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование
http://www.math-net.ru	Общероссийский математический портал
http://e.lanbook.com/view	ЭБС «Лань»

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10– Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Аудитория для практических занятий	24-12

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

	r - J
Вид промежуточной аттестации	Перечень оценочных средств
Зачет	Тесты;
	Задачи.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции			
5-балльная шкала	Характеристика сформированных компетенций		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 		
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 		
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 		
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; 		

Оценка компетенции	Vanaveranyariya ahan emanayay waxaa erarayyyy	
5-балльная шкала	Характеристика сформированных компетенций	
	 испытывает трудности в практическом применении знаний; 	
	– не может аргументировать научные положения;	
	 не формулирует выводов и обобщений. 	

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
	Учебным планом не предусмотрено	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
1	 Комплексное число Z записано в алгебраической и в тригонометрической формах: Z = √3/2 + i 1/2 = 1 (cos π/6 + i sin π/6) Найдите 12-ю степень числа Z Ответ:1 Какую форму записи числа вы использовали? Обоснуйте свой выбор Ответ: При возведении комплексных чисел в степень более рационально использовать тригонометрическую форму записи и действовать по следующему правилу: при возведении комплексного числа в степень модуль числа возводится в эту степень, аргумент умножается на показатель степени. Если же использовать алгебраическую форму записи, то необходимо в данном случае 12 раз умножить число само на себя. 	УК-1.3.2
2	Найти матрицу $C = 3A - 5B^t$, где $A = \begin{pmatrix} 1 & 0 & 2 \\ -2 & 3 & -3 \end{pmatrix} B = \begin{pmatrix} 1 & -2 \\ -1 & 3 \\ 3 & -3 \end{pmatrix}$ Ответ: $C = \begin{pmatrix} -2 & 5 & -9 \\ 4 & -6 & 6 \end{pmatrix}$ 2. Выберите из списка цифровые средства, которые могут быть применены для решения данной задачи. а) Microsoft Access b) Wolfram Mathematica c) Microsoft PowerPoint Ответ: b) Wolfram Mathematica	УК-1.У.3

3	Сравните условия применения методов решения систем линейных уравнений. Какой метод решения системы линейных алгебраических уравнений применяются в том случае, если матрица системы не является квадратной?	
	Ответ: Если матрица системы не квадратная (т.е. количество неизвестных и количество уравнений не совпадают), то применяется только метод исследования системы линейных уравнений Гаусса, другие методы (метод Крамера и метод матричных уравнений) могут применяться при условии, что матрица системы квадратная и определитель ее не равен нулю.	УК-1.В.1
4	По какой формуле определяется скалярное произведение векторов? Ответ: Скалярное произведение векторов определяется по формуле $ \vec{a} * \vec{b} *\cos\alpha$	УК-1.У.3
5	Составить уравнение прямой проходящей через точку $M(-1,-3)$ и параллельной прямой $\frac{x+16}{-4} = \frac{y-9}{-5}$. Ответ записать в виде уравнения прямой с угловым коэффициентом Ответ: $y = 1,25x-1,75$	УК-1.3.1
6	Нормаль к плоскости имеет координаты (A, B, C) ; координаты направляющего вектора прямой $(l,m,n)/$ С помощью какой формулы можно найти угол между прямой и плоскостью? Ответ: угол между прямой и плоскостью можно найти из формулы $\sin \varphi = \frac{ Al + Bm + Cn }{\sqrt{A^2 + B^2 + C^2} \sqrt{l^2 + m^2 + n^2}}$	УК-1.3.2
7	По какой формуле можно определить расстояние от точки до плоскости? Ответ: Расстояние от точки до плоскости равно $\frac{ Ax_0+By_0+Cz_0+D }{\sqrt{A^2+B^2+C^2}}, \text{ где } (A, B, C)\text{- координаты нормали к плоскости;} (x_0, y_0, z_0) координаты точки.$	УК-1.У.3
8	 Тело движется по закону s(t) = 5t³ +1. Чему равна скорость v(t) в момент времени t = 1? Запишите номер верного ответа. 1) 6 2) 4 3) 10 4) 15 Ответ: 4) 	УК-1.В.1
9	Найдите формулу с ошибкой. Аргументируйте свой ответ. 1. (C·u(x))'=C·u'(x)	УК-1.В.1

	2. $(u(x)\pm v(x))'=u'(x)\pm v'(x)$	
	3. $(\mathbf{u}(\mathbf{x})\cdot\mathbf{v}(\mathbf{x}))'=\mathbf{u}'(\mathbf{x})\cdot\mathbf{v}'(\mathbf{x})$	
	4. $\left(\frac{u(x)}{v(x)}\right)^{/} = \frac{u(x) \cdot v(x) - u(x) \cdot v(x)}{v^{2}(x)}$	
	Ответ: ошибка в формуле №3. По правилу дифференцирования произведения двух дифференцируемых функций производная произведения вычисляется по формуле: $(u(x)\cdot v(x))'=u'(x)\cdot v(x)+u(x)\cdot v'(x)$	
10	Найдите производную функции $y = 5\cos(5 + 2x) * \ln(5x - 2)$	УК-1.У.3
	OTBET: $-10\sin(5+2x)*\ln(5x-2)$ + $5\cos(5+2x)*\frac{5}{5x-2}$	
	2) Назовите какое-либо цифровое средство, применимое для решения данной задачи. Обоснуйте ваш выбор.	
	Ответ: К цифровым средствам, которые могут быть применены для решения данной задачи относится Wolfram Mathematica-программное обеспечение, включающее большой набор математических функций в том числе, систему компьютерной алгебры, ориентированную на подготовку интерактивных документов с вычислениями и визуальным сопровождением.	
11	Запишите уравнение касательной к графику функции $y=x^3$ - 2 в его точке с абсциссой $x_0=1$ Ответ: $y=3x-4$	УК-1.3.2
12	Проверьте является ли выражение	УК-1.У.3
	$\frac{1}{2\sqrt{2-6\sin(7+4x)}}*(-24)\cos(7+4x)$	
	производной функции $y = \sqrt{2 - 6\sin(7 + 4x)}$? Ответ обоснуйте. Ответ: выражение является производной для функции, чтобы	
	это обосновать можно взять производной для функции, чтооы	
	$y = \sqrt{2 - 6\sin(7 + 4x)}$ или вычислить неопределенный	
	интеграл	
	$\int \frac{1}{2\sqrt{2-6\sin(7+4x)}} * (-24)\cos(7+4x)dx$	
13	Выберите метод интегрирования и вычислите интеграл.	УК-1.В.1
	Укажите какой метод интегрирования применяли:	
	$\int \frac{dx}{\sqrt{x}\cos^2(\sqrt{x})}$	
	Ответ:	
	$2tg(\sqrt{x})+C$ Может быть применен метод замены переменной	
	интегрирования.	
14	1.Вычислить, применив метод интегрирования по частям:	УК-1.У.3

	$\int x \ln x dx$			
	Other: $0, 5x^2(lnx - 0, 5) + C$			
	2. Назовите какое-либо цифровое средство, применимое для решения данной задачи. Обоснуйте ваш выбор.			
	Ответ:			
	К цифровым средствам, которые могут быть применены для решения данной задачи относится Wolfram Mathematica-программное обеспечение, включающее большой набор математических функций в том числе, систему компьютерной алгебры, ориентированную на подготовку интерактивных документов с вычислениями и визуальным сопровождением.			
15	Найдите частные производные $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$ функции	УК-1.3.1		
	$z = \frac{\sin(7 + 4x - 7y)}{3 - x^3y^6}$			
	$3 - x^3y^6$ $\cos(7 + 4x - 7x) + 4(3 - x^3x^6) + \sin(7 + 4x - 7x) + 2x^2x^6$			
	Otbet: $\frac{\cos(7+4x-7y)*4(3-x^3y^6)+\sin(7+4x-7y)3x^2y^6}{(3-x^3y^6)^2}$			
	$\frac{-\cos(7+4x-7y)*7(3-x^3y^6)+\sin(7+4x-7y)6x^3y^5}{(3-x^3y^6)^2}$			
	$(3-x^3y^6)^2$			
16	Какая точка называется точкой максимума функции $z = f(x; y)$?	УК-1.3.2		
	Ответ: Точка $(x_0; y_0)$ называется точкой максимума функции			
	$z = f(x; y)$, если существует такая δ - окрестность точки $(x_0; y_0)$ и для всех точек $(x; y)$, отличных от $(x_0; y_0)$, из δ -			
	окрестности точки $(x_0; y_0)$ выполняется неравенство:			
17	$f(x;y) < f(x_0;y_0)$	УК-1.У.3		
17	Решите задачу Коши при начальных условиях: $y(1)=2$, т.е. найдите частное решение дифференциального уравнения: $y'=\frac{1}{2}$.	УК-1.У.3		
	Other: $y = \ln x + 2$			
	Olber, y = m x + 2			
18	$\sum_{n=1}^{\infty} \frac{5n^2}{3n^2 - 2}$	УК-1.В.1		
	2n-1 3n² -2Исследовать данный ряд на сходимость. Выберите метод			
	исследования из списка:			
	а) Интегральный признак сходимости			
	b) Необходимый признак сходимости			
	с) Признак Коши			
	d) Признак Даламбера			
	Ответ: Ряд расходится, не выполняется необходимый признак – b)			
19	Найти радиус сходимости ряда	УК-1.У.3		
	$\sum_{n=0}^{\infty} \frac{(-1)^n (3x)^n}{n+1} = 1 - \frac{3x}{2} + \frac{(3x)^2}{3} + \dots + \frac{(-1)^n (3x)^n}{n+1} + \dots$			
	Ответ: $R = \frac{1}{3}$			

20	Разложить многочлен $f(x) = -2x^3 - 2x^2 + 7x + 13$ в ряд	УК-1.3.1
	Тейлора в окрестности точки $x = -1$	
	Ответ:	
	$f(x) = 6 + 5(x+1) + 4(x+1)^2 - 2(x+1)^3$	
21	Функция $f(x) = \begin{bmatrix} 1, x < 0 \\ 3x, x > 0 \end{bmatrix}$ разложена в тригонометрический ряд	УК-1.3.2
	Фурье на промежутке $[-1,1]$. Найдите произведение значений	
	его суммы в точках $x = -1, x = 0, x = 1, x = 2/3$.	
	Ответ: 4	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	Код
		индикатора
	Кривая $x^2 + y^2 = 2y$ в комплексной форме имеет вид	
1	1. z-1 = 2 2. z = 2	УК-1.У.3
	3. $ z-1 =1$ 4. $ z-i =1$	
2	Указать число, которое удовлетворяет уравнению $\arg z = \frac{\pi}{2}$	УК-1.3.1
	1. <i>i</i> 2. – <i>i</i> 3. 1 4. –1	
	$X_{[m imes m]}A_{[m imes m]}=B_{[m imes m]}.$ Найти ${ m X}$	
3	1. $X = AB^{-1}$ 2. $X = A^{-1}B$ 3. $X = B^{-1}A$	УК-1.У.3
	4. $X = BA^{-1}$	
4	При каком значении α система $\begin{cases} 3x + y = 5 \\ \alpha x + y = 0 \end{cases}$ будет несовместна	УК-1.В.1
	1.0 2.1 33 4.3	
5	Что можно сказать про определители 3 2 4 5 0 1 и 6 2 3	
	5 0 1 3 2 4 6 2 3	УК-1.У.3

	1	
	1. их значения равны по модулю, но противоположны по знаку 2. их значения равны	
	3. их значения равны 0	
	4. их значения равны 1	
6	Объём пирамиды, построенной на векторах $\overline{a}, \overline{b}, \overline{c}$, равен	УК-1.3.2
	$1. (\bar{a} \times \bar{b}) \cdot \bar{c}$	
	2. $\frac{1}{6} (\bar{a} \times \bar{b}) \cdot \bar{c} $ 3. $ (\bar{a} \times \bar{b}) \cdot \bar{c} $	
	3. $ (\bar{a} \times \bar{b}) \cdot \bar{c} $	
	$4. \ \frac{1}{3} \overline{a} \cdot \overline{b} \cdot \overline{c} $	
7	Указать уравнение плоскости, проходящей через точку $A(2; -3; 4)$ и перпендикулярной вектору $\overline{N} = 3\overline{i} - 2\overline{j} + \overline{k}$	УК-1.У.3
	1. $2(x-3) - 3(y+2) + 4(z-1) = 0$	
	2. $2(x+3) - 3(y-2) + 4(z+1) = 0$	
	3. $2(x-3) + 3(y-2) + 4(z-1) = 0$	
	4. $3(x-2)-2(y+3)+(z-4)=0$	
8	$\int r = \cos^3 t$	УК-1.3.1
	Найти $y'(x)$, если $\begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases}$	
	1. $y'(x) = tgt$ 2. $y'(x) = 3tgt$	
	3. $y'(x) = -tgt$ 3. $y'(x) = 2tgt$	
9	Укажите точку графика функции y=x ² +4x, в которой касательная параллельна прямой y-2x+5=0	УК-1.У.3
10	1.2 2.3 31 4. В пп. 1-3 правильного ответа нет. Проверьте, какая функция имеет гладкий экстремум	УК-1.В.1
	1. $y = 2x^3 - 3x^2$. 2. $y = \sqrt{2x - x^2}$	3 K 1.B.1
	3. $y = \sqrt[3]{x^2 + 1}$ 4. $y = \sqrt[3]{(x+1)^2}$	
11	$\int \frac{x dx}{\sqrt{5-2x^2}}$ равен	УК-1.3.2
	$1\frac{1}{2}\sqrt{5-2x^2} + c$ -ответ	
	2. $\frac{1}{\sqrt{2}}\arcsin\frac{x\sqrt{2}}{\sqrt{5}}+c$	
	3. $\arcsin \frac{x\sqrt{2}}{\sqrt{5}} + c$	
	VS	
	4. $\frac{1}{\sqrt{2}} \ln \left x + \sqrt{5 - 2x^2} \right + c$	
12		УК-1.В.1
	$O \cup \mathcal{J}$	

	05	
	Объем тела, образованного вращением фигуры, ограниченной	
	линиями $y = \sqrt{x}$, $y = 0$, $x = 3$ вокруг оси Ox , определяется	
	формулой	
	$1 V - \pi \int y dy$ $2 V - \pi \int y dy$ $3 V - \pi \int y^2 dy$ $4 V - \pi \int y dy$	
	1. $V = \pi \int_{3}^{3} x dx$. 2. $V = \pi \int_{0}^{3} \sqrt{x} dx$. 3. $V = \pi \int_{0}^{3} x^{2} dx$. 4. $V = \pi \int_{0}^{3} x dx$.	
13	Для того, чтобы в стационарной точке M функция $W(x, y)$ имела	УК-1.У.3
15		V 10 1.V .5
	минимум, достаточно выполнение соотношений, где $A = \frac{\partial^2 W}{\partial x^2}$,	
	$\partial x^2 \Big _{M}$	
	$\left \begin{array}{ccc} \partial^2 W & \partial^2 W & - & - & - & 2 \end{array} \right $	
	$B = \frac{\partial^2 W}{\partial y \partial x} \Big _{M}$, $C = \frac{\partial^2 W}{\partial y^2} \Big _{M}$ и $D = AC - B^2$	
	· M	
	1. $D < 0$ u $A < 0$.	
	$2. D < 0 \ u \ A > 0.$	
	3. D > 0 u A < 0.	
	4. D > 0 u A > 0.	
4.4		X110 1 D 2
14	Полный дифференциал dz функции $x^3 + y^3 + z^2 - z + y = 0$ в	УК-1.3.2
	точке $M_0(1,1,1)$ задается выражением	
	1. $3dx + 4dy$. 2. $-3dx - 4dy$.	
	33dx + 4dy. $4. 3dx - 4dy$.	
15	Указать общее решение уравнения $x^2y'' - xy' + y = 0$, если	УК-1.3.1
	известны два его частных решения $y_1 = x, y_2 = x \ln x$	
	1. $y = x + x \ln x$	
	$ \begin{array}{ll} 1. & y = x + x \ln x \\ 2. & y = C_1 x + C_2 x \ln x \end{array} $	
	3. $y = C_1 x + C_2 \ln x$	
1.6	$4. \ \ y = C_1 x + C_2 x \ln x + C_3$	AUC 1 D 1
16	Какое уравнение интегрируется с помощью подстановки	УК-1.В.1
	$y = u(x) \cdot v(x)$ (метод Бернулли)	
	$1 y' = \frac{1+x^2}{1+x^2}$	
	1. $y' = \frac{1+x^2}{xy(1+y^2)}$	
	$2. \ 2y'' + 3y' - 5xy = 0$	
	$2x^2$	
	$3. \ y' = \frac{2x^2}{x^3 + 1}$	
	$4. y'\cos x - y \operatorname{tg} x = 2y^3$	
17		УК-1.В.1
1 /	Каким признаком лучше всего исследовать ряд $\sum_{n=1}^{\infty} \frac{n!}{2^n}$	3 K-1.D.1
	$n=1$ \sim	
	1. Признаком Коши	
	2. Признаком Даламбера3. Интегральным признаком Коши	
	 интегральным признаком коши Признаком сравнения 	
	п. Признаком оравнопия	
18	<u> </u>	УК-1.У.3
	Степенной ряд $\sum_{n=0}^{\infty} a_n x^n$ сходится при $x_0 = \frac{1}{6}$. Указать все	
	n=1	
	значения x , при которых он заведомо сходится абсолютно.	

	$ \begin{vmatrix} 1. & x < \frac{1}{6} & 2. & x > \frac{1}{6} \\ 3. & x = \frac{1}{6} & 4. & x < \frac{1}{6} \end{vmatrix} $	
19	Дан ряд Тейлора $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$ для функции $f(x)$ Напишите два первых члена ряда функции $f(x)=(1+x)^2$ при $a=\frac{1}{2}$ 1. $\frac{3}{2}+\frac{3}{2}x+$ 2. $\frac{9}{4}+\frac{3}{2}x+$	УК-1.В.1
	3. $\frac{9}{4} + 3x + \dots$ 4. $\frac{9}{4} + 3\left(x - \frac{1}{2}\right) + \dots$	
20	На рисунке представлен график функции $f(x)$: Тогда сумма ее тригонометрического ряда Фурье в точке $x = 0$ равна	УК-1.У.3
	1. 1 2. 2 3. 3 4. 4	

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ	
	Не предусмотрено	

- 10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.
 - 11. Методические указания для обучающихся по освоению дисциплины
- 11.1. Методические указания для обучающихся по прохождению практических занятий.

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

 закрепление, углубление, расширение и детализация знаний при решении конкретных задач;

- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

Практические занятия начинаются с записи в журнал преподавателя присутствующих студентов. Затем объявляется тема практических занятий.

Преподаватель читает условие задачи и предлагает студентам самостоятельно решить задачу, используя знания, полученные студентом при самостоятельном изучении предмета. Студент, который первым решил задачу, вызывается к доске. Ход решения выносится на общее обсуждение, студенты должны самостоятельно обнаружить ошибки, если таковые встречаются. Также, на каждом практическом занятии студентам выдается домашнее задание в виде задач, которые они сдают в установленные сроки.

11.2. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся являются:

- учебно-методический материал по дисциплине.
- 11.3. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

В течение семестра в системе дистанционного обучения ГУАП в форме тестирования проводятся две проверочные работы по решению задач и один теоретический опрос (перечень вопросов для тестов размещен в «Банке вопросов» в системе дистанционного обучения ГУАП), на практических занятиях проводятся проверочные работы по разделам курса в письменной форме, рассчитанные как на целое занятие, так и на его часть.

Результаты текущего контроля успеваемости учитываются преподавателем при проведении промежуточной аттестации.

11.4. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя зачет — это форма оценки знаний, полученных обучающимся в ходе изучения учебной дисциплины в целом или промежуточная (по окончании семестра) оценка знаний обучающимся по отдельным разделам дисциплины с аттестационной оценкой «зачтено» или «не зачтено».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой