МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕЛЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 13

УТВЕРЖДАЮ
Ответственный за образовательную программу

(должность, уч. степень, звание)

Н.И. Ускова
(изминалы, фамяция)

(подпись)

«21» апреля 2025 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Электроника» (Нименование дисциплины)

Код направления подготовки/ специальности	25.03.01
Наименование направления подготовки/ специальности	Техническая эксплуатация летательных аппаратов и двигателей
Наименование направленности	Эксплуатация и испытания авиационной и космической техники
Форма обучения	заочная
Год приема	2025

Санкт-Петербург- 2025

Лист согласования рабочей программы дисциплины

Ірограмму составил (а)		
(оц.,к.т.н.	Altrad	А.С. Голосий
(должность, уч. степень, звание)	(подпись, дита)	(инициалы, фамилия)
Ірограмма одобрена на засед	ании кафедры № 13	
«21» апреля 2025 г, протоко	п № 9	
аведующий кафедрой № 13	(2/12 M2	
.T.H.		Н.А. Овчинникова
(уч. степень, звание)	(пурктурь, дата)	(инициалы, фамилия)
	1.110	
аместитель директора <mark>инст</mark> и	тута №1 по межодической р	работе
(оц.,к.т.н.	11134	В.Е. Таратун
(должность, уч. степень, звание)	(подпась, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Электроника» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 25.03.01 «Техническая эксплуатация летательных аппаратов и двигателей» направленности «Эксплуатация и испытания авиационной и космической техники». Дисциплина реализуется кафедрой «№13».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ОПК-3 «Способен применять теорию технической эксплуатации, основы конструкции и систем воздушных судов, электрических и электронных источников питания приборного оборудования и систем индикации воздушных судов, систем управления воздушным судном и бортовых систем навигационного и связного оборудования»

ОПК-7 «Способен проводить измерения и инструментальный контроль при эксплуатации авиационной техники, проводить обработку результатов и оценивать погрешности»

Содержание дисциплины охватывает круг вопросов, связанных с исследованиями и разработками, направленными на улучшение эксплуатационно-технических характеристик авиационных электросистем и пилотажно-навигационных комплексов, повышение эффективности системы технической эксплуатации, совершенствование нормативно-технической документации и информационной базы, в том числе в научно-исследовательских институтах.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, практические занятия, самостоятельную работу студентов.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 6 зачетных единиц, 216 часов.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Основной целью дисциплины «Электроника» является изучение студентами теоретических и практических основ современной полупроводниковой электроники, используемой при проектировании информационно-вычислительных систем, авиационных приборов, систем ориентации, стабилизации и навигации, а также средств автоматики, что позволит им успешно решать теоретические и практические задачи в их профессиональной деятельности, связанной с проектированием, испытаниями и эксплуатацией различных электронных устройств.

- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Общепрофессиональные компетенции	ОПК-3 Способен применять теорию технической эксплуатации, основы конструкции и систем воздушных судов, электрических и электронных источников питания приборного оборудования и систем индикации воздушных судов, систем управления воздушным судном и бортовых систем навигационного и связного оборудования	ОПК-3.3.4 знать методики оценивания по различным критериям технического состояния систем воздушных судов, включая системы управления, электронные и цифровые системы летательного аппарата и силовой установки ОПК-3.У.4 уметь оценивать по различным критериям техническое состояние систем воздушных судов, включая системы управления, электронные и цифровые системы летательных аппаратов и силовых установок ОПК-3.В.4 владеть методами оценивания по различным критериям технического состояния систем воздушных судов, включая энергетические, управления, электронные и цифровые системы летательного аппарата и силовой установки
Общепрофессиональные компетенции	ОПК-7 Способен проводить измерения и инструментальный контроль при эксплуатации авиационной техники, проводить обработку результатов и	ОПК-7.3.1 знать методы измерений и инструментального контроля, обработки их результатов с оценками погрешностей при эксплуатации авиационной техники ОПК-7.У.2 уметь рассчитывать погрешности средств измерений и измерений ОПК-7.В.1 владеть способами измерений и инструментального контроля, при эксплуатации авиационной техники,

оценивать	обработки их результатов и оценивания
погрешности	погрешностей

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- математика; разделы: линейная алгебра, дифференциальное и интегральное исчисление, спектральный анализ;
- физика; разделы: электричество и магнетизм, колебания и волны, физика твердого тела;
- теоретические основы электротехники; разделы: электрические цепи постоянного и переменного тока, резонансные явления, четырехполюсники, фильтры, переходные процессы и их расчет, нелинейные электрические цепи.

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- системы управления летательными аппаратами;
- цифровые системы управления и обработки информации;
- микропроцессорная техника в приборах, системах и комплексах.

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Deve verse verse and other	Всего	Трудоемкость	по семестрам
Вид учебной работы	Beero	№4	№5
1	2	3	4
Общая трудоемкость дисциплины, ЗЕ/ (час)	6/ 216	3/ 108	3/ 108
Из них часов практической подготовки			
Аудиторные занятия, всего час.	24	16	8
в том числе:			
лекции (Л), (час)	12	8	4
практические/семинарские занятия (ПЗ), (час)	4	4	
лабораторные работы (ЛР), (час)	8	4	4
курсовой проект (работа) (КП, КР), (час)			
экзамен, (час)	9		9
Самостоятельная работа, всего (час)	183	92	91
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Зачет, Экз.	Зачет	Экз.

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблина 3 – Разлелы, темы лисниплины, их трулоемкость

таолица 5—1 азделы, темы дисциплины, их труд	Лекции		ЛР	КП	CPC
Разделы, темы дисциплины	(час)	(час)	(час)	(час)	(час)
Семестр 4					

Danier 1 Drawayaya 6aaa arayamayyy					
Раздел 1. Элементная база электронных					
устройств					
Тема 1. Полупроводниковые диоды.	2	-	5		30
Тема 2. Биполярные транзисторы.					
Тема 3. Полевые транзисторы.					
Тема 4. Тиристоры.					
Раздел 2. Аналоговые электронные					
устройства.					
Тема 5. Электрические сигналы. Генераторы					
электрических сигналов					
Тема 6. Усилители. Классификация,	4	5	-		40
параметры и характеристики. Усилители					
постоянного тока. Усилители мощности.					
Избирательные усилители.					
Тема 7. Активные фильтры					
Тема 8. Операционные усилители.					
Раздел 3. Источники питания.					
Тема 9. Структура вторичных источников					20
питания. Выпрямители, фильтры,	2	-	-		20
стабилизаторы. Интегральные стабилизаторы					
напряжения.					
Итого в семестре:	8	4	4		92
Семест	p 5				
Раздел 4. Теоретические основы цифровых					
устройств.	2				20
Тема 10. Основы алгебры логики.	2	-	-		20
Тема 11. Реализация логических элементов.					
Раздел 5. Основные типы цифровых					
устройств.					
Тема 12. Цифровые устройства					
комбинационного типа	2		0		22
Тема 13. Цифровые устройства	2	-	8		23
последовательностного типа.					
Тема 14. Устройства сопряжения аналоговых и					
цифровых сигналов.					
Раздел 6. Микроэлектронные					
запоминающие устройства. Индикаторы.					
Тема 15. Микроэлектронные запоминающие	2	_	-		20
устройства.					
Тема 16. Индикаторы.					
Раздел 7. Микропроцессоры и					
микроконтроллеры.					
Тема 17. Микропроцессоры. Отечественные					
микропроцессоры.					
Тема 18. Принципы работы					
микроконтроллеров.	2	_	_		20
Тема 19. Эволюция элементной базы					-
электроники.					
Тема 20. Анализ состояния развития					
микроэлектроники в РФ. Идеология					
импортозамещения. Ход реализации.					
	ı	I		l	

Итого в семестре:	4		4		91
Итого	12	4	8	0	183

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий.

Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

	4 – Содержание разделов и тем лекционного цикла						
Номер раздела	Название и содержание разделов и тем лекционных занятий						
1.	Раздел 1. Элементная база электронных устройств Тема 1. Полупроводниковые диоды						
	Основные понятия зонной теории. p-n переход, его вольтамперная характеристика. Типы диодов, их характеристики и параметры. Стабилитрон, варикап, туннельный диод. Свето- и фотодиоды.						
	Тема 2. Биполярные транзисторы.						
	Классификация транзисторов. Принцип действия, параметры и характеристики биполярного транзистора. Три схемы включения. Методы расчета схем на биполярных транзисторах (эквивалентные схемы, графический метод, представление в виде 4-хполюсника).						
	Тема 3. Полевые транзисторы.						
	Полевые транзисторы с затвором в виде р-п перехода и МОП – транзисторы. Их принцип действия, характеристики и параметры.						
2.	Тема 4. Тиристоры. Четырехслойные полупроводниковые структуры. Динисторы, тринисторы и симисторы. Характеристики и параметры. Применение в силовой электронике.						
2.	Раздел 2. Аналоговые электронные устройства						
	Тема 5. Электрические сигналы. Генераторы электрических сигналов. Классификация, физические характеристики, спектры электрических сигналов. Методы преобразования сигналов. Случайные сигналы. «Белый» шум. Принцип построения автогенераторов электрических сигналов. Условие автогенерации. Баланс фаз и баланс амплитуд. LC генератор гармонических сигналов.						
	Тема 6. Усилители.						
	Общие сведения. Принцип построения усилительного каскада. Классификаци электронных усилителей. Параметры и характеристики. Обратная связь усилителях и ее влияние на параметры усилителя.						
	Усилители постоянного тока. Дрейф нуля в усилителях постоянного тока. Причины и методы борьбы с дрейфом. Дифференциальный каскад. Подавление синфазной помехи.						
	Усилители мощности. Избирательные усилители. Особенности построения мощных усилительных каскадов. Двухтактные бестрансформаторные						

усилители мощности на комплементарных транзисторах.

Тема 7. Активные фильтры.

Резонансный усилитель с LC-контуром. Активные фильтры на операционных усилителях с различными RC-звеньями в обратной связи. Использование 2Т-моста в обратной связи для низкочастотных избирательных усилителей.

Тема 8. Операционные усилители.

Структура, параметры и характеристики операционного усилителя (ОУ). Дифференциальный усилитель в структуре ОУ. Примеры использования ОУ (интегратор, дифференциатор, сумматор, умножитель и т.д.).

3. Раздел 3. Источники питания.

Тема 9. Структура вторичных источников питания.

Параметры и структурная схема источника питания. Назначение блоков и требования к ним. Бестрансформаторные источники питания.

Выпрямители, фильтры, стабилизаторы. Типы выпрямителей и сглаживающих фильтров. Параметрические стабилизаторы напряжения. Стабилизаторы компенсационного типа с последовательным и параллельным включением регулирующего элемента импульсные. Импульсные источники питания.

Интегральные стабилизаторы напряжения. Структура и параметры интегральных стабилизаторов. Возможность регулирования выходного напряжения. Схемы включения. Основные этапы расчета вторичного источника питания.

4. Раздел 4. Теоретические основы цифровых устройств.

Тема 10. Основы алгебры логики.

Основные понятия. Таблицы истинности для операций конъюнкции, дизьюнкции и инверсии. Совершенные нормальные формы. Минимизация функций. Аксиомы, теоремы и законы двоичной алгебры.

Тема 11. Реализация логических элементов.

Способы реализации логических элементов. Типы логик. Параметры и сравнительные характеристики логических элементов различных типов.

5. Раздел 5. Основные типы цифровых устройств.

Тема 12. Цифровые устройства комбинационного типа. Понятие о комбинационных устройствах. Задачи синтеза, сумматоры, компараторы, шифраторы и дешифраторы, мультиплексоры, преобразователи кодов.

Тема 13. Цифровые устройства последовательностного типа.

Тема 14. Устройства сопряжения аналоговых и цифровых сигналов. Аналого-цифровые и цифро-аналоговые преобразователи (АЦП и ЦАП). Способы построения, виды, параметры. Микросхемы АЦП и ЦАП.

6. Раздел 6. Микроэлектронные запоминающие устройства. Индикаторы.

Тема 15. Микроэлектронные запоминающие устройства.

Флеш-память NOR и NAND. Устройство, принцип записи и считывания информации. Промышленно-коммерческая компания «Миландр». Характеристика и объемы производства, достигнутые технологические нормы,

роль в отечественной электронной отрасли.

Тема 16. Индикаторы.

Эластичные дисплеи для электроники. Панели AMOLED с матрицами,

составленными из органических светодиодов OLED.

Раздел 7. Микропроцессоры и микроконтроллеры.

Тема 17. Микропроцессоры. Отечественные микропроцессоры.

Аппаратный и программный способы реализации алгоритма. Достоинства и недостатки. Структура гипотетического микропроцессорного вычислительного устройства. Микропроцессорные комплекты.

Отечественные микропроцессоры (1В577, 1В578, 1В579), семейство ЭВМ «Багет», «Эльбрус». Производители, устройство. Отечественные лидеры (центры) проектирования и производства микропроцессоров (интегральных схем).

Тема 18. Принципы работы микроконтроллеров.

Тема 19. Эволюция элементной базы электроники.

Тема 20. Анализ состояния развития микроэлектроники в РФ. Идеология импортозамещения. Ход реализации.

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

	-	¥.		Из них	$N_{\underline{0}}$
$N_{\underline{0}}$	Темы практических	Формы практических	Трудоемкость,	практической	раздела
Π/Π	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
		Семестр 4			
1.	Расчет схем,	Расчет и	2	1	1/1
	включающих диоды	моделирование			
	(10 задач).				
2.	Разработка схемы	Расчет и	2	1	2/8
	решения	моделирование			
	дифференциального				
	уравнения на ОУ				
	Bcere	0	4		

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	No
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	раздела
Π/Π	паименование лаоораторных раоот	(час)	подготовки,	дисцип
			(час)	лины
	Семестр	4		
1.	Исследование полупроводниковых диодов	1	1	1/1
	(ЛР 1).			
2.	Построение электрической схемы с	1	1	1/1
	полупроводниковым диодом в среде			
	Matlab (1).			
3.	Исследование транзисторов (ЛР2)	1	1	1/2, 1/3
	1. Исследование биполярных			
	транзисторов в схеме с общим эмиттером.			
	2. Исследование основных параметров			

	полевого транзистора в схеме с общим истоком.			
4.	Построение электрической схемы с транзистором в среде Matlab (3).	1	1	1/2, 1/3
	Семест	5		
5.	Исследование интегральных триггеров.	1	1	5/13
6.	Исследование счетчиков на интегральных элементах.	1	1	5/13
7.	Исследование регистров на интегральных элементах.	1	1	5/13
8.	Исследование комбинационных устройств (сумматор, компаратор, мультиплексор).	1	1	5/12
	Всего	8		

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего, час	Семестр 4, час	Семестр 5, час
1	2	3	4
Изучение теоретического материала дисциплины (TO)		60	60
Курсовое проектирование (КП, КР)			
Расчетно-графические задания (РГЗ)			
Выполнение реферата (Р)		12	11
Подготовка к текущему контролю успеваемости (ТКУ)			
Домашнее задание (ДЗ)			
Контрольные работы заочников (КРЗ)			
Подготовка к промежуточной аттестации (ПА)		20	20
Всего:	183	92	91

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8— Перечень печатных и электронных учебных изданий

Шифр/ URL адрес	Библиографическая ссылка	Кол-во экз. в библ. (кроме электрон. экз.)
621.38	Гусев В.Г., Гусев Ю.М. Электроника и микропроцессорная	18

Γ 96	техника. Учебн. для вузов/ М.:Высш.шк., 2008, 799с.	
621.396. O-60	Опадчий Ю.Ф., Глудкин О.П.,Гуров А.И. Аналоговая и цифровая электроника. Учебн.для вузов,М.: Горячая линия-Телеком, 2005, 768 с.	62
004 (075) У-27	Угрюмов Е.П. Цифровая схемотехника. Изд. БХВ- Петербург, 2010, 816 с.	22
621.3 T45	Титце У.,Шенк К. Полупроводниковая схемотехника. М.: ДМК-Пресс, 2008, 942 с. Libbib.org/poluprovodnikovaya-sxemotexnika-titce-u-shenk-k/	22
621.372 П12	Павлов В.Н. Схемотехника аналоговых электронных устройств. Учебн. пос. для вузов - М.: Изд.дом «Академия», 2008, 288 с. www.twirpx.com/fill/70743.	42

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 — Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Мультимедийная лекционная аудитория	12-03
2	Специализированная лаборатория «Электроники и	12-08
	микропроцессорной техники»	
3	Лабораторная установка «Исследование	12-08
	полупроводниковых диодов»	
4	Лабораторная установка «Исследование полевого	12-08
	транзистора»	
5	Стенд «НТЦ-02.05.1»	12-08
6	Стенд «Лабораторная установка УМ 11»	12-08
7	ПК с комплексом прикладных программ с	Γ12-08,
	интегрированной средой для моделирования и разработки	БМ11-02
	MatLab	

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств	
Экзамен	Список вопросов к экзамену;	
	Экзаменационные билеты;	
	Задачи;	
	Тесты.	
Зачет	Список вопросов;	
	Тесты;	
	Задачи.	

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

тиомица тт перитерии ещенки уровим еформированности компетенции					
Оценка компетенции	Vanaratanuatuura ahannaraanuu tu kanataanuu				
5-балльная шкала	Характеристика сформированных компетенций				
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 				

Оценка компетенции	Характеристика сформированных компетенций		
5-балльная шкала	Харак геристика еформированных компетенции		
- обучающийся твердо усвоил программный материал, грамо по существу излагает его, опираясь на знания осно литературы; - не допускает существенных неточностей; - увязывает усвоенные знания с практической деятельно направления; - аргументирует научные положения; - делает выводы и обобщения; - владеет системой специализированных понятий.			
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 		
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 		

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

No	Перечень вопросов (задач) для экзамена	Код
п/п	• • • • • • • • • • • • • • • • • • • •	индикатора
	Семестр 5	
1.	Основные понятия алгебры логики.	ОПК-3.3.4
2.	Формы представления функции алгебры логики.	ОПК-3.У.4
3.	Операции дизьюнкции, конъюнкции и инверсии.	ОПК-3.В.4
4.	Формы отображения основных логических функций.	ОПК-7.3.1
5.	Элементарная дизъюнкция, дизъюнктивная нормальная форма, СДНФ.	ОПК-7.У.2
6.	Элементарная конъюнкция, конъюнктивная нормальная форма, СКНФ.	ОПК-7.В.1
7.	Представление логических функций математическими выражениями.	
8.	Переход от логической функции к логической схеме.	
9.	Основные принципы алгебры логики.	
10.	Аксиомы операции отрицания и с константами.	
11.	Переместительный и сочетательный законы.	
12.	Распределительный закон и закон повторения.	
13.	Законы операции с константами и закон двойной инверсии.	
14.	Закон обращения и закон дополнительности.	
15.	Законы де Моргана.	
16.	Правило поглощения и правило склеивания.	
17.	Штрих Шеффера и Стрелка Пирса.	
18.	Импликация и эквивалентность.	
19.	Сложение по модулю «2».	
20.	Понятие о комбинационных и последовательных логических элементах.	

21.	Триггер. Основные понятия. Классификация.	
22.	Асинхронный RS-триггер.	
23.	Синхронный RS-триггер.	
24.	D-триггер.	
25.	ЈК-триггер.	
26.	Виды сигналов.	
27.	Понятие о регистре. Микрооперации регистра.	
28.	Параллельный регистр.	
29.	Последовательный регистр.	
30.	Функционирование сдвигающего регистра.	
31.	Счетчик. Основные параметры.	
32.	Последовательные двоичные счетчики.	
33.	Параллельные двоичные счетчики.	
34.	СДНФ. Переход от таблицы истинности к функции алгебры логики.	
35.	СДНФ. Построение принципиальной схемы цифрового устройства,	
33.	реализующего таблицу истинности.	
36.	Сумматор. Алгоритм двоичного арифметического сложения.	
37.	Сумматор и полусумматор. Таблицы истинности. Принципиальные схемы.	
38.	Полный двоичный одноразрядный сумматор.	
39.	Цифровой компаратор.	
40.	Дешифратор. Шифратор.	
41.	Мультиплексор и демультиплексор.	
42.	Логика аналого-цифрового преобразования.	
43.	Ограничения цифрового преобразования. Критерий дискретизации по	
4.4	Котельникову.	
44.	АЦП последовательного счета (последовательного сравнения).	
45.	АЦП последовательного приближения (поразрядного уравновешивания).	
46.	АЦП параллельного действия.	
47.	Цифро-аналоговое преобразование.	
48.	ЦАП с двоично взвешенными резисторами и суммированием токов. Практическое применение ЦАП.	
49.	Практическое применение ЦАП. ЦАП с резистивной матрицей R-2R. Практическое применение ЦАП.	
50.	Память. Классификация микросхем памяти.	
51.	Основные функциональные характеристики микросхем памяти.	
52.	Типовая структура микросхемы памяти.	
53.	ОЗУ. Определения. Структурная схема.	
54.	ПЗУ. Организация и виды.	
	Понятие программируемой логической интегральной схемы.	
55.	Классификация ПЛИС.	
56.	Программируемые логические матрицы.	
57.	Сложные программируемые логические устройства CPLD.	
58.	Программируемые пользователем вентильные матрицы FPGA.	
59.	Индикаторы.	
60.	Эластичные дисплеи для электроники. Панели AMOLED с матрицами,	
	составленными из органических светодиодов OLED.	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 — Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задачи) для зачета / дифф. зачета	Код индикатора
	Семестр 4	
1.	Диод. ВАХ полупроводникового диода.	ОПК-3.3.4

2.	Основные характеристики диода. Обозначение на схемах.	ОПК-3.У.4
3.	Маркировка диодов. Материалы для изготовления. Основные виды	ОПК-3.У.4 ОПК-3.В.4
3.	диодов. Материалы для изготовления. Основные виды диодов.	OHK-3.B.4
4.	Стабилитрон.	ОПК-7.3.1
5.	Варикап.	ОПК-7.У.2
6.	Туннельный диод.	ОПК-7.В.1
7.	Светодиод.	
8.	Фотодиод.	
9.	Биполярный транзистор (БТ). Основные сведения.	
10.	Устройство и принцип действия БТ.	
11.	Параметры и характеристики БТ. Режимы работы.	
12.	Схема включения БТ с ОБ.	
13.	Схема включения БТ с ОЭ.	
14.	Схема включения БТ с ОК.	
15.	Представление БТ в виде линейного четырехполюсника.	
16.	Полевой транзистор (ПТ). Общие сведения.	
17.	Полевой транзистор с управляющим р-п-переходом.	
18.	Выходная ВАХ ПТУП. Основные параметры ПТ.	
19.	Усилитель. Основные понятия.	
20.	Принципы построения усилителя.	
21.	Классификация усилителей. Условно-графическое обозначение (УГО).	
22.	Основные характеристики усилителя.	
23.	Обратная связь в усилителях.	
24.	Дрейф нуля в усилителях и методы борьбы с ним.	
25.	Дифференциальный усилитель. Подавление синфазной помехи.	
26.	Усилитель мощности. Класс «А» работы усилительного элемента.	
27.	Класс «В», «АВ» работы усилительного элемента.	
28.	Класс «С» и «D» работы усилительного элемента.	
29.	Операционный усилитель (ОУ). Функциональная схема.	
30.	Основные характеристики ОУ.	
31.	Эксплуатационные параметры ОУ.	
32.	Интегратор на ОУ. Дифференциатор на ОУ.	
33.	Сумматор на ОУ. Умножитель на ОУ.	
34.	Понятие резонансного усилителя.	
35.	Понятие о полосовых, перестраиваемых и неперестраиваемых усилителях.	
36.	Колебательный контур. Условие резонанса.	
37.	Фильтры на ОУ и их классификация.	
38.	Полоса пропускания и подавления фильтра.	
39.	Простейшие фильтры на ОУ.	
40.	Понятие об источниках питания и их параметрах.	
41.	Функциональная схема источника питания.	
42.	Бестрансформаторный источник питания.	
43.	Выпрямитель. Однофазная однополупериодная схема выпрямления.	
44.	Однофазная двухполупериодная схема выпрямления.	
45.	Сглаживающие фильтры.	
46.	Емкостной фильтр. Индуктивный фильтр.	
47.	Стабилизатор напряжения.	
48.	Стабилитрон в схеме стабилизации.	
49.	Понятие об импульсном источнике питания.	
50.	Понятие об интегральном стабилизаторе напряжения.	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
Учебным планом не предусмотрено	

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п		
JNº 11/11	Примерный перечень вопросов для тестов	Код индикатора
	Тема 1. Полупроводниковые диоды	ОПК-3.3.4,
	1.1. Вещества, почти не проводящие электрический ток.	ОПК-7.3.1
	а) диэлектрики*	
	b) электреты	
	с) сегнетоэлектрики	
	d) пьезоэлектрический эффект	
	е) диод	
	1.2. При подключении p-n-перехода в обратном направлении	
	а) р-область подключается к \ll +», п-область – к \ll -»	
	источника тока	
	b) р-область подключается к «-», n-область – к «+» источника тока*	
	с) р-область и n-область подключаются к «+» источника	
	тока	
	d) р-область и n-область подключаются к «-» источника тока	
	Тема 2. Биполярные транзисторы.	ОПК-3.3.4,
	2.1. Транзистор имеет	ОПК-7.3.1
	а) две базы	
	b) база отсутствует	
	с) одну базу*	
	d) три базы	
	2.2. Какой цифрой обозначена база биполярного транзистора?	
	3 1 2 2 2.2. Какой цифрой осозначена оаза однолярного транзистора:	
	a) 1	
	b) 2	
	c) 3*	
	d) 1 и 2	
	2.3. Что означает маркировка ГТ313А на электронном приборе?	
	а) германиевый выпрямительный диод	
	b) германиевый биполярный транзистор*	
	с) арсенид-галлиевый биполярный транзистор	
	d) германиевый стабилитрон	
	Тема 3. Полевые транзисторы.	ОПК-3.3.4, ОПК-7.3.1

	3.1. Выводы полевого транзистора называются	
	а) сток, исток, затвор*	
	b) эмиттер, коллектор, база	
	с) сток, база, исток	
	d) эмиттер, исток, база	
	Тема 4. Тиристоры.	ОПК-3.3.4,
	4.1. Тиристор:	ОПК-7.3.1
	а) полупроводниковый прибор силовой электроники	
	b) полупроводник с двумя устойчивыми режимами	
	работы, имеющий три или более р-п переходов*	
	с) полупроводниковый прибор с двумя p-n переходами,	
	имеющий три вывода	
	Тема 5. Электрические сигналы.	ОПК-3.3.4,
	5.1. В наборе радиодеталей для изготовления простого	ОПК-7.3.1
	1 1	OHK-7.3.1
	колебательного контура имеются две катушки с индуктивностями	
	L1 = 1 мкГн и $L2 = 2$ мкГн, а также два конденсатора, емкости	
	которых $C1 = 3 \ \Pi\Phi$ и $C2 = 4 \ \Pi\Phi$. При каком выборе двух	
	элементов из этого набора частота собственных колебаний	
	контура будет наибольшей?	
	a) L2 и C1	
	b) L1 и C2	
	c) L1 u C1 *	
	d) L2 и C2	
	5.2. О	
	5.2. Отношение длительности импульса к периоду повторения	
	импульсов называется:	
	а) скважностью	
	b) коэффициентом заполнения*	
	с) длиной волны	
	d) качеством генератора	
	· · ·	
	5.3. Комплексное уравнение автогенератора, находящегося в	
	стационарном режиме, имеет вид:	
	a) $K \beta = 1*$	
	b) K β > 1	
	c) Kβ<1	
	Тема 6. Усилители.	ОПК 2 2 4
	тема о. усилители.	ОПК-3.3.4, ОПК-7.3.1
	6.1. Укажите основные показателя работы электронного	OHK-/.3.1
	усилителя.	
	a) Коэффициент передачи тока	
	b) Номинальное сопротивление	
	с) Температурная характеристика	
	d) Коэффициент полезного действия (к.п.д)	
	е) Коэффициент усиления*	
	6.2. Амплитудно-частотная характеристика усилителя — это	
	зависимость от частоты.	
	а) модуля коэффициента усиления*	
	b) напряжения	
	с) силы тока	
	d) амплитуды	OHIC 2.2.4
	Тема 7. Активные фильтры.	ОПК-3.3.4,
1	1 1	1

7.1. Если продольное сопротивление электрического фильтра k- типа состоит только из индуктивностей, то фильтр: а) высоких частот b) средних частот c) низких частот* 7.2. Включением моста Вина в цепь отрицательной обратной связи операционного усилителя реализуется фильтр: а) полосовой* b) широкополосный c) высоких частот d) низких частот	ОПК-7.3.1
Тема 8. Операционные усилители. 8.1. Коэффициент усиления напряжения идеального ОУ: а) порядка 100 000 b) в интервале 10 ⁵ 10 ⁶ c) неограниченно велик*	ОПК-3.3.4, ОПК-7.3.1
8.2. В структурной схеме операционного усилителя в качестве входного устройства используется: а) мостовая схема b) фильтр низких частот c) мост Вина d) дифференциальный усилитель*	
 Тема 9. Структура вторичных источников питания. 9.1. Источник вторичного питания без преобразователя частоты включает: а) трансформатор + усилитель b) выпрямитель+сглаживающий фильтр+стабилизатор+трансформатор* с) трансформатор+стабилизатор d) выпрямитель+сглаживающий фильт+трансформатор 	ОПК-3.3.4, ОПК-7.3.1
 Тема 10. Основы алгебры логики. 10.1. Операция у = x₁ ∨x₂ формирует функцию: а) И b) И-НЕ c) ИЛИ* d) ИЛИ-НЕ 	ОПК-3.3.4, ОПК-7.3.1
Тема 11. Реализация логических элементов. 11.1. В зависимости от применяемых элементов и схемотехники различают типы логики: а) инфракрасную, ультрафиолетовую, оптическую b) КМДП, ТТЛ, ЭСЛ* с) моноканальную, многоканальную d) квазиоптимальную, оптимальную 11.2. В схеме диодно-транзисторной логики (ДТЛ) логические функции перемножения или сложения осуществляются: а) умножителями и сумматорами на операционных усилителях	ОПК-3.3.4, ОПК-7.3.1

b) диодами*	
с) стабилитронами	
d) полевыми вентилями	
Тема.12. Программируемые аналоговые интегральные схемы.	ОПК-3.3.4, ОПК-7.3.1
 12.1. Программируемая логическая интегральная схема — это: а) высокотехнологичное арифметическое устройство b) унифицированное логическое устройство с большой степенью интеграции* c) совокупность микротрансформаторов и микроконденсаторов 	
12.2. Программируемая логическая матрица (ПЛМ) имеет: а) матрицу программируемых «И» и «ИЛИ»* b) совокупность настраиваемых операционных усилителей с) систему многоядерных вычислений	
12.3. Программируемая матричная логика (ПМЛ) имеет: а) настраиваемую многопроцессорную систему b) совокупность микропроцессоров с) программируемую матрицу «И» и фиксированную матрицу «ИЛИ» 	
Тема 13. Цифровые устройства комбинационного типа	ОПК-3.3.4, ОПК-7.3.1
13.1. На рисунке вверху изображена схема:	
D_0 D_1 D_2 D_3 X_0 X_1 X_1 X_2 X_3 X_4 X_4 X_4 X_5 X_4 X_5 X_5 X_6 X_6 X_6 X_6 X_6 X_7 X_8 X_8 X_8 X_9	
13.2. На рисунке вверху изображена схема: а) демультиплексора b) мультиплексора* c) дешифратора d) шифратора	
Тема 14. Цифровые устройства последовательностного типа. 14.1. Триггер предназначен для: а) счета количества переключений b) автоматического сброса состояния с) запоминания информации о предыдущем состоянии*	ОПК-3.3.4, ОПК-7.3.1
d) генерации колебаний прямоугольной формы	

		OTHE 2 D 4
,	Тема 15. Триггеры. Синтез автоматов с памятью.	ОПК-3.3.4, ОПК-7.3.1
	 15.1. Наибольшими функциональными возможностями обладает: а) асинхронный RS триггер b) синхронный RS триггер c) JK-триггер* d) D-триггер 	ome visit
,	Тема 16. Регистры.	ОПК-3.3.4,
	16.1. Параллельный регистр, выполненный на основе триггеров, служит для запоминания (хранения) цифровой информации, записываемой кодом. а) параллельным* b) параллельно-последовательным c) последовательным	ОПК-7.3.1
	16.2. Регистр сдвига, выполненный на основе триггеров, служит для запоминания (хранения) цифровой информации, записываемой кодом. а) последовательным* b) параллельным c) параллельно-последовательным	
	Тема 18. Устройства сопряжения аналоговых и цифровых сигналов	ОПК-3.3.4, ОПК-7.3.1
	18.1 — переход от непрерывного сигнала к близкому дискретному сигналу, описываемому разрывной функцией времени. а) модуляция b) инвертирование c) дискретизация*	
	18.2. Аналого-цифровой преобразователь в общем случае содержит функциональные узлы: а) набор эталонных значений напряжений, устройство сравнения и кодирования* b) набор операционных усилителей и электронных ключей с) совокупность RC-фильтров	
	18.3. Для сигнала с ограниченным спектром погрешность аналого-цифрового преобразования сколь угодно мала, если частота квантования f _{кв} : a) >= 2 Fmax* b) <= 2 Fmax c) >= Fmax	
,	Тема 19. Микроэлектронные запоминающие устройства.	ОПК-3.3.4, ОПК-7.3.1
	19.1. Какие операции может выполнять ПЗУ? а) чтение и хранение* b) запись, чтение и хранение c) хранение	OHK-7.3.1
	19.2. Что относится к внешним запоминающим устройствам? а) ОЗУ, ПЗУ, flash-memory b) накопители на магнитных лентах, магнитных дисках,	

оптических и магнитооптических дисках* с) ПЗУ	
Тема 20. Программируемые логические интегральные схемы	опк-3.3.4, опк-7.3.1
Интегральная схема:	OTHC 7.5.1
а) электронная схема, выполняющая арифметические и	
логические операции	
b) микроэлектронное изделие, выполняющее	
определённую функцию преобразования и обработ	ски
сигнала и имеющее высокую плотность упаковки	
электрически соединённых элементов и кристалло)В,
которое рассматривается как единое целое*	
с) микроэлектронное изделие, выполняющее преобразов	вание
аналогового сигнала в цифровой и наоборот	
Тема 21. Индикаторы.	ОПК-3.3.4,
Достоинствами ЖКИ являются:	ОПК-7.3.1
а) бренд «ЖКИ»	
b) малая потребляемая мощность + хорошая четкост	ь
знаков*	
с) низкая стоимость	
d) потребительские качества	
Тема 1. Микропроцессоры.	ОПК-3.3.4,
CISC (Complex Instruction Set Computer) подразумевает, что	ОПК-7.3.1
процессор:	
а) поддерживает ограниченный набор команд и имеет	
значительное число регистров	
b) поддерживает большой набор команд и имеет небольшое число регистров*	
с) поддерживает большой набор команд и имеет большо	oe e
число регистров	
Задания для проверки остаточных знаний	
Tun 1. Задание комбинированного типа с выбором одного в	
ответа из четырех предложенных и обоснованием выбора.	ОПК-7.3.1
(Инструкция: прочитайте текст, выберите правильный оп	пвет и
запишите аргументы, обосновывающие выбор ответа).	
Излучающий диод, работающий в видимом диапазоне	волн,
называют:	
а) фотодиодом;	
b) фоторезистором;	
с) светодиодом*;	
d) варистором.	
ОФОРМЛЕНИЕ ОТВЕТА (ЭТАЛОННЫЙ ОТВЕТ):	
Светодиодом. Светодиод — это полупроводниковый п	рибор,
преобразующий электрический ток непосредственно в сво	
излучение. По-английски светодиод называется light er	
diode (LED) – светоизлучающий диод.	
Tun 2. Задание комбинированного типа с выбором неско	ольких ОПК-3.3.4,
вариантов ответа из предложенных и разверн	
обоснованием выбора.	
(Инструкция: прочитайте текст, выберите прави	ильные

варианты ответа и запишите аргументы, обосновывающие выбор ответов).

Укажите цифровые устройства последовательностного типа:

- а) сумматор;
- b) регистр;
- с) шифратор;
- d) дешифратор;
- е) счетчик;
- f) мультиплексор;
- g) триггер;
- h) компаратор.

ОФОРМЛЕНИЕ ОТВЕТА (ЭТАЛОННЫЙ ОТВЕТ):

Триггер, регистр, счетчик - цифровые устройства последовательностного типа. Это устройства, состояние которых зависит не только от текущего сигнала на входе, но и от их предыдущего состояния (автоматы с памятью).

Сумматор, шифратор, дешифратор, мультиплексор, компаратор — цифровые устройства комбинационного типа, состояние которых зависит только от значения сигнала в текущий момент времени.

Tun 3. Задание закрытого типа на установление соответствия. (Инструкция: прочитайте текст и установите соответствие. К каждой позиции, данной в левом столбце, подберите соответствующую позицию в правом столбце).

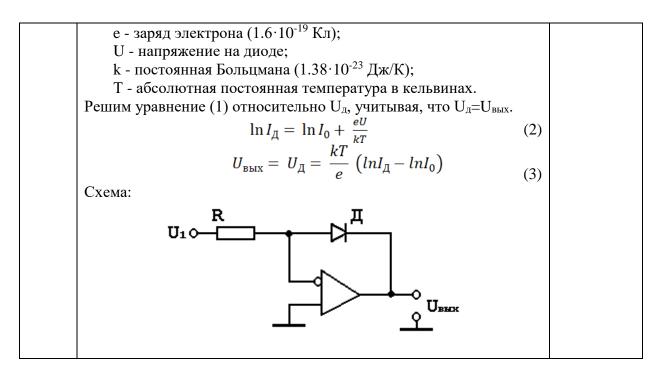
ОПК-3.3.4, ОПК-7.3.1

Укажите пару «наименование логической операции» соответствующая ей таблица истинности:

- а) дизъюнкция
- b) конъюнкция
- с) штрих Шеффера
- d) стрелка Пирса
- е) сложение по модулю «2»

1)

,		
Первый оператор	Второй оператор	Результат операции
0	0	1
0	1	1
1	0	1
1	1	0


2)

Первый оператор	Второй оператор	Результат операции
0	0	1
0	1	0
1	0	0
1	1	0

3)

Первый оператор	Второй оператор	Результат операции
0	0	0
0	1	1
1	0	1
1	1	1

	4)							
	Первый оператор		Второй оператор		Резуль-	тат операции		
	0		0			1		
	1		0			1		
	1		1			0		
	5)							
	Первый оператор		Второй оператор		Резуль-	тат операции		
	0		0			0		
	0		0			0		
	1		1			1		
	Ключ с отв							
	a	b	c	d		e		
	3	5	1	2		4		
	Tun 4.	Задание	закрытог	eo mun	а на	установление	· ·	
	последоват	ОПК-7.3.1						
	(Инструкция: прочитайте текст и установите							
	последоват			шите	coome	ветствующую		
	послеооват	пельность с	букв слева н	аправо).				
	Расположи	те основны	е операции	фотолито	ографичес	кого процесса		
			ическом пор	-	r r			
			резиста, су					
	b) поді							
	с) трав							
	d) совы							
	е) удал							
	f) проя							
	Ключ с ответами							
	1	2	3	4	5	6		
	b	a	d	f	c	e		
		_	того типа				ОПК-3.3.4, ОПК-7.3.1	
	(Инструкция: прочитайте текст и запишите развернутый							
	обоснованный ответ)							
	Обоснуйте, как создать электронный прибор, выполняющий							
			-			выполняющии		
	математическую операцию логарифмирования.							
	ОФОРМЛЕ							
	Для получ							
	необходим							
	обратной с							
	характерис							
	характерис							
	Ток через п							
			$I_{\mathrm{A}} = I_{\mathrm{0}} \cdot \left(\right.$	$e^{\overline{kT}}-1$		(1)		
	где I_0 - ток							
-	· · · · · · · · · · · · · · · · · · ·							

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ							
1	Практические расчеты и проектирование схемы решения							
	дифференциального уравнения по заданным исходным данным.							
2	Практическая часть по применению совершенной дизъюнктив							
	нормальной формы (СДНФ) при синтезе цифровой схемы.							

- 10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.
 - 11. Методические указания для обучающихся по освоению дисциплины
- 11.1. Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.

- появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- контрольный опрос предыдущего материала;
- наименование лекции, введение в лекцию, перечень рассматриваемых вопросов;
- изложение вопросов лекции, основные выводы по каждому вопросу;
- подведение итогов, контрольный опрос;
- ответы на вопросы;
- объявление вопросов следующей лекции.

11.2. Методические указания для обучающихся по участию в семинарах

Основной целью для обучающегося является систематизация и обобщение знаний по изучаемой теме, разделу, формирование умения работать с дополнительными источниками информации, сопоставлять и сравнивать точки зрения, конспектировать прочитанное, высказывать свою точку зрения и т.п. В соответствии с ведущей дидактической целью содержанием семинарских занятий являются узловые, наиболее трудные для понимания и усвоения темы, разделы дисциплины. Спецификой данной формы занятий является совместная работа преподавателя и обучающегося над решением поставленной проблемы, а поиск верного ответа строится на основе чередования индивидуальной и коллективной деятельности.

При подготовке к семинарскому занятию по теме прослушанной лекции необходимо ознакомиться с планом его проведения, с литературой и научными публикациями по теме семинара.

Требования к проведению семинаров

- Объявление темы семинара, раздача вопросов, тем рефератов и списка источников информации (заблаговременно, на предыдущем занятии);
- Контроль присутствия, общей готовности, технических средств, техники безопасности;
- Объявление обсуждаемого вопроса, заслушивание реферата, обсуждение, высказывание мнений, опрос, дискуссия, выводы;
 - Подведение итогов, оценка степени участия, выставление оценок.

11.3. Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

– закрепление, углубление, расширение и детализация знаний при решении конкретных задач;

- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

- контрольная оценка степени усвоения теоретического материала, относящегося к ПЗ;
 - объявление цели ПЗ, порядка проведения и отчетности;
- изложение сути ПЗ (решение практических задач, разработка схем, составление алгоритмов и т.п.);
 - подготовка отчетных материалов;
 - проверка результатов, выставление оценок.
- 11.4. Методические указания для обучающихся по выполнению лабораторных работ

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Структура и форма отчета о лабораторной работе

- титульный лист;
- цель лабораторной работы;
- описание исследуемой системы;
- структура исследуемых параметров;
- методика проведения экспериментальных исследований;
- протокол эксперимента;
- результаты обработки экспериментальных данных;
- выводы по работе.

Требования к оформлению отчета о лабораторной работе

Отчет оформляется по ГОСТ 7.32-2001 издания 2008года. Титульный лист оформляется по утвержденной форме. Форма титульного листа размещена на сайте ГУАП.

На кафедре имеется учебно-методическая литература для выполнения лабораторных работ:

- 1. А.С.Голосий, А.Л. Кунтуров, П.Н. Неделин, В.А. Точилов Аналоговая схемотехника. Методические указания для выполнения лабораторных работ/ СПб.: ГУАП, 2021.
- 2. Ананенко В.М., Голосий А.С., Кунтуров А.Л., Кунтуров С.А., Матасов Ю.Ф., Точилов В.А., Ускова Н.И. Цифровая схемотехника. Методические указания для выполнения лабораторных работ на стендах УМ-11 и НТЦ 02.05.01/ СПб.: ГУАП, 2022.
- 3. Бурлуцкий С.Г., Голосий А.С., Матасов Ю.Ф., Точилов В.А. Исследование цифровых схем. Методические указания к выполнению лабораторных работ/ СПб.: ГУАП, 2023.
- 4. Дмитриев Ю.И. Неделин П.Н. Исследование электронных устройств на операционных усилителях. Метод.указ. к вып.лаб.работ/ГУАП, СПб, 2008.
- 5. Дмитриев Ю.И., Неделин П.Н. Исследование цифровых схем. Метод.указ. к вып. лаб.работ/ ГУАП, СПб, 2013.
- 11.5. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся являются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.6. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

11.7. Методические указания для обучающихся по прохождению промежуточной аттестации

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

- экзамен форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».
- зачет это форма оценки знаний, полученных обучающимся в ходе изучения учебной дисциплины в целом или промежуточная (по окончании семестра) оценка знаний обучающимся по отдельным разделам дисциплины с аттестационной оценкой «зачтено» или «не зачтено».

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой