МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 6

УТВЕРЖДАЮ

Руководитель образовательной программы

доц.,к.т.н.,доц.

(должность, уч. степень, звание)

О.Я. Солёная

(подпись)

«22» мая 2025 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Цифровая метрология» (Наименование дисциплины)

Код направления подготовки/ специальности	13.03.02
Наименование направления подготовки/ специальности	Электроэнергетика и электротехника
Наименование направленности	Энергетические электрические машины
Форма обучения	очная
Год приема	2023

Лист согласования рабочей программы дисциплины

Программу составил (а)	0		
доц., к.т.н., доц.	(d)	22.05.25 К.В.Епифанцев	
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия	1)
Программа одобрена на засед	ании кафедры № 6		
«22» мая 2025 г, протокол У	№ 12		
Заведующий кафедрой № 6			
д.э.н.,проф.	4-3-	22.05.25 В.В. Окрепилов	
(уч. степень, звание)	(подпись, дата)	(инициалы, фамили	ŧ)
Заместитель директора инсти	тута №3 по методической	і работе	
Ст.преподаватель	\ W:	22.05.25 Н.В. Решетникова	
(должность, уч. степень, звание)	(no much negra)	(инициалы, фамили	я)

Аннотация

Дисциплина «Цифровая метрология» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 13.03.02 «Электроэнергетика и электротехника» направленности «Энергетические электрические машины». Дисциплина реализуется кафедрой «№6».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ОПК-6 «Способен проводить измерения электрических и неэлектрических величин применительно к объектам профессиональной деятельности»

Содержание дисциплины охватывает круг вопросов, связанных с нормативными и организационно-техническими основами проведения чемпионатов Агентства развития навыков и профессий «Профессионалы», корпоративного чемпионата Роскосмоса в компетенции «Цифровая метрология», а также демонстрацию лучших практик в области работы на оборудовании, предусмотренном в инфраструктурном листе чемпионатов. В процессе изучения дисциплины рассматриваются организация проведение автоматического контроля качества продукции, который позволяет снизить стоимость контроля, уменьшить число ошибок и длительность контроля, смягчить последствия нехватки персонала, а также избежать монотонности в работе контролера; типы, номенклатура, конструктивные и метрологические характеристики средств измерений; принципы выбора методов и средств измерений, основы разработки стратегии измерений и измерительных программ для контроля параметров конкретной детали сложной формы по требованиям рабочего чертежа; порядок подготовки и проведения измерений с использованием различных контрольно-измерительных средств / измерительных машин.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы, 108 часов.

Язык обучения по дисциплине «русский».

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью дисциплины является формирование у студентов знаний в области контроля готовой продукции с целью недопущения выпуска брака, контроля параметров конкретной детали сложной формы по требованиям рабочего чертежа, порядок подготовки и проведения измерений с использованием различных контрольно-измерительных средств / измерительных машин для контроля шероховатости, профиля, координатных измерений, достоверности результатов измерений для оценки соответствия продукции в процессе производства, осуществлением поверки и калибровки средств измерений ручного и автоматического измерительного инструмента, а также получение практических навыков в вопросах измерения геометрических параметров деталей сложной формы

- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

таолица 1 – Перечень ком	пистепции и индикато	ров их достижения
Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
	ОПК-6 Способен проводить	ОПК-6.Д.1 проводит электрические и
	измерения	неэлектрические измерения с
0.5	электрических и	применением современных цифровых
Общепрофессиональные	неэлектрических	средств измерений
компетенции	величин	ОПК-6.Д.2 вычисляет погрешности
	применительно к	измеряемых величин и показаний
	объектам	цифровых и аналоговых измерительных
	профессиональной	приборов
	деятельности	

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- « Алгоритмизация и программировнаие»,
- «Физика»,
- − «Электротехника»,
- «Учебная практика по получению первичных навыков НИР»

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- «<u>Промышленная электроника</u>»,
- «Электрические машины»,
- «Надежность электромеханических и электроэнергетических комплексов»

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблине 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам №4
1	2	3
Общая трудоемкость дисциплины, ЗЕ/ (час)	3/ 108	3/ 108
Из них часов практической подготовки		
Аудиторные занятия, всего час.	34	34
в том числе:		
лекции (Л), (час)	17	17
практические/семинарские занятия (ПЗ), (час)		
лабораторные работы (ЛР), (час)	17	17
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)	36	36
Самостоятельная работа, всего (час)	38	38
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.	Экз.

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

таолица 5 – газделы, темы дисциплины, их труд	Лекции				
Разделы, темы дисциплины		ПЗ (СЗ)	ЛР	КΠ	CPC
т издолы, томы диоциплины	(час)	(час)	(час)	(час)	(час)
Сем	естр 4				
Раздел 1.					
Движение АРНП и компетенция «Цифровая					
метрология».					
Понятие цифровой метрологии.					
Разбор конкурсного задания компетенции Т64					
«Цифровая метрология».					
Цифровая метрология как важнейший элемент	3		3		10
цифровой трансформации в научно-	3		3		10
производственной сфере.					
Цели, задачи и элементы цифровой					
метрологии.					
Техническое задание по компетенции.					
Правила судейства.					
Объективные и субъективные критерии оценки					

Раздел 2. Нормирование точности типовых элементов деталей и узлов Система допусков и посадок ИСО. Требования отечественных и международных стандартов по нормированию точности. Изучение отечественных и международных стандартов по нормированию точности. Обзор основ взаимозаменяемости типовых элементов деталей и узлов: гладкие цилиндрические соединения, углы и конусы	3		4		8
Раздел 3. Измерения современными измерительными приборами и системами Ручной измерительный инструмент. Контурограф. Кругломер. Видеоизмерительная машина.	4		3		8
Раздел 4. Трехкоординатные измерения на координатно- измерительных машинах. Классификация координатно-измерительных машин. Методика проведения измерений и калибровки.	3		4		8
Раздел 5 Дефекты формы. Шереховатость. Работа с профилометрами и индикаторами частоты. Выводы по курсу	4		3		8
Итого в семестре:	17		17		38
Итого	17	0	17	0	38

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 — Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий
Раздел 1. Компетенция	Тема 1.1. Разбор конкурсного задания компетенции Т64
Т64 «Цифровая	«Цифровая метрология». Обзор правил работы на оборудовании
метрология».	и общих ошибок конкурсантов. Цифровая метрология как
	важнейший элемент цифровой трансформации в научно-
	производственной сфере. Цели, задачи и элементы цифровой
	метрологии. Техническое задание по компетенции. Правила
	судейства. Обьективные и субьективные критерии оценки.
	Специфика конкурсных заданий АРНП. Основные особенности
	компетенции «Цифровая метрология».

	Тема 1.2. Ознакомление с каталогом оборудования и
	Тема 1.2. Ознакомление с каталогом оборудования и применением радиоканальной технологией передачи данных с
	измерительного прибора на ПК.
	Тема 1.3. Работа с конкурсной документацией компетенции
	«Цифровая метрология».
	Тема 1.4 Организация вузовских чемпионатов АРНП.
	Содержание конкурсной документации компетенции «Цифровая
D 2	метрология».
Раздел 2.	Тема 2.1. Система допусков и посадок ИСО.
Нормирование	Система отверстия и система вала. Классы допуска, типовые
точности типовых	посадки с зазором, натягом и переходные.
элементов деталей и	Тема 2.2. Изучение отечественных и международных стандартов
узлов	по нормированию точности.
	Обзор основ взаимозаменяемости типовых элементов деталей и
	узлов: гладкие цилиндрические соединения, углы и конусы,
	подшипники качения, резьбовые соединения, зубчатые колеса и
	передачи, шлицевые и шпоночные соединения.
Раздел 3. Измерения	Тема 3.1. Работа с ручным измерительным инструментом.
современными	Классификация измерительного инструмента. Аналоговый и
измерительными	цифровой измерительный инструмент.
приборами и	Тема 3.2. Работа на видеоизмерительной машине.
системами	Классификация видеоизмерительных систем. Назначение и
	метрологические характеристики видеоизмерительных систем.
	Методика работы с оборудованием.
	Тема 3.3. Работа на контурографе.
	Классификация контурографов. Назначение и метрологические
	характеристики контурографов. Методика работы с
	оборудованием.
	Тема 3.4. Работа с кругломером.
	Классификация кругломеров. Назначение и метрологические
	характеристики кругломеров. Методика работы с
	оборудованием.
	Тема 3.5 Дефекты формы. Шероховатость и волнистость
	поверхности.
	Виды дефектов поверхности. Классификация параметров
	шероховатости и волнистости поверхности.
	Тема 3.6 Работа с профилометрами и индикаторами чистоты
	поверхности
	Классификация профилометров. Назначение и метрологические
	характеристики профилометров, методика работы с
	оборудованием. Индикаторы чистоты поверхности.
	Тема 3.7
	Виды ВИМ. Принцип работы и калибровки
Раздел 4.	Тема 4.1. Классификация и технические возможности
Трехкоординатные	координатно-измерительных машин.
измерения на	Основы работы КИМ, принцип работы воздушных
координатно-	подшипников, механизма поворота щупа и регулировки
измерительных	движения осей XYZ.
машинах.	Тема 4.2. Методика проведения измерений на координатно-
	измерительных машинах.
	Анализ и выбор баз. Разработка стратегии измерений. Основные
	операции при работе с КИМ.

Раздел 5	Тема 5.1 Вид профилометров. Стандарты по шереховатости.
Дефекты формы.	Тема 5.2 Состав приборов для измерения шероховатости, их
Шереховатость.	калибровка

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

				Из них	$N_{\underline{0}}$
No	Темы практических	Формы практических	Трудоемкость,	практической	раздела
Π/Π	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
		Учебным планом не про	едусмотрено		
	Bcer	0			

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

	піца в примення під прудости		Из них	№
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	раздела
Π/Π	паименование лаоораторных раоот	(час)	подготовки,	дисцип
			(час)	ЛИНЫ
	Семестр	4		
1	Исследование возможностей процедуры	3	1	3,5
	калибровки контурографа и измерение			
	контура. Проведение калибровки и			
	измерение детали на профилометре.			
2	Калибровка ВИМ. Контроль качества	3	1	3
	партии готовой продукции на ВИМ			
3	Проведение калибровки и измерение	3	1	3
	детали на ручном измерительном			
	инструменте. Составление программы			
	измерений в программной среде			
	MeasureLink.			
4	Проведение калибровки и измерение	4	1	3
	детали на кругломере			
5	Проведение калибровки и измерение	3	1	4
	детали на координатно-измерительной			
	машине			
	Всего	17	5	

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 4,
Вид самостоятсявной расоты	час	час
1	2	3
Изучение теоретического материала	15	15
дисциплины (ТО)	13	13
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю	11	11
успеваемости (ТКУ)	11	11
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной	12	12
аттестации (ПА)	12	12
Всего:	38	38

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8- Перечень печатных и электронных учебных изданий

	1	Количество
		экземпляров в
Шифр/	Evenuera duventa con tura	библиотеке
URL адрес	Библиографическая ссылка	(кроме
		электронных
		экземпляров)
https://znaniu	Завистовский, В. Э. Допуски, посадки и технические	
m.com/catalog	измерения : учебное пособие / В.Э. Завистовский,	
/document?id=	С.Э. Завистовский. — Москва : ИНФРА-М, 2020. —	
<u>348737</u>	278 с. — (Среднее профессиональное образование)	
	ISBN 978-5-16-015152-6 Текст : электронный.	
	Антохина Ю.А., Окрепилов В.В., Фролова Е.А.,	10
	Ефремов Н.Ю., Степашкина А.С. Цифровая	
	метроогия. Учебное пособие. РИЦ ГУАП,	
	Санкт-Петербург, 2021.181 с.	
https://znaniu	Оптические измерения : учебное пособие / А. Н.	
m.com/catalog	Андреев, Е. В. Гаврилов, Г. Г. Ишанин [и др.]	
/document?id=	Москва: Университетская книга; Логос, 2020 416	
<u>367486</u>	с ISBN 978-5-98704-173-2 Текст : электронный.	
https://znaniu	Метрология : учебник / О.Б. Бавыкин, О.Ф.	
m.com/catalog	Вячеславова, Д.Д. Грибанов [и др.] ; под общ. ред.	
/product/1541	С.А. Зайцева. — 3-е изд., перераб. и доп. — Москва :	
964	ФОРУМ : ИНФРА-М, 2021. — 522 с.	
	Гущина Е.А. Ефремов Н.Ю., Епифанцев К.В,	10
	Цифровая метрология. (учебно-методическое	
	пособие) Санкт-Петербург: ГУАП, 2022 – 104с.	
	0	

Мишура Т.П., К.В.Епифанцев . Метрологическое	10
обеспечение измерений при контроле шероховатости	
(учебно-методическое пособие)Санкт-Петербург:	
ГУАП, 2022 - 42с.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование
https://worldskills.ru/	Сайт АРПН «Профессионалы»
https://www.youtube.com/ch	Канал «Конструктор Стрим»
annel/UCpump66lw7nBVrO	
ZaoV0x4g	
https://www.youtube.com/us	Канал «Мастерская Виктора Леонтьева»
<u>er/Eksmast</u>	
https://www.vniiftri.ru/	Эталоны Всероссийского НИИ физико-технических
	радиоизмерений
https://docs.cntd.ru/document	Электронный фонд нормативной информации «Техэксперт»
<u>/1200166732</u>	
https://www.mitutoyo.com/	Сайт производителя оборудования

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблине 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п		Наименование
	Не предусмотрено	

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

$N_{\underline{0}}$	Наименование составной части	Номер аудитории
Π/Π	материально-технической базы	(при необходимости)

1	Лаборатория «Цифровой метрологии»	52-50

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Задачи;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	оценки уровня сформированности компетенции		
5-балльная шкала	Характеристика сформированных компетенций		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 		
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 		
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 		
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 		

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код
1	Что вы узнали о работе воздушного подшипника??	индикатора ОПК-6.Д.1
2	Что будет, если предварительно не провести калибровку	ОПК-6.Д.1
2	контурографа? Как документально оформить поверку прибора??	ОПК-0.Д.1
3	Какие критерии вы используете для оценки стабильной работы сканирования детали на кругломере?	ОПК-6.Д.1
4	Что будет, если предварительно не учитывать систему вала или систему отверстия при контроле качества изделия и периодически путать эти 2 системы?	ОПК-6.Д.2
5	Что вы узнали о работе видеоизмерительной системы?? Оцените, какие факторы влияют на точность измерения на ВИМ?? Что вы узнали о системах защиты от отказов при калибровке машины?	ОПК-6.Д.1
6	Что будет, если предварительно не провести калибровку профилометра. Объясните цель применения настройки трассировки шага λs. Объясните как влияет такой отказ, как некорректная настройка модели щупа при калибровке	ОПК-6.Д.1
7	Какие критерии вы используете для оценки стабильной работы сканирования детали на контурографе? Какие метрологические отказы негативно влияют на точность измерения контурографа?	ОПК-6.Д.1
8	Что вы узнали о работе сканирующей системы на КИМ?? Что вы узнали о метрологических отказах на КИМ??	ОПК-6.Д.1
9	Что будет, если предварительно не провести калибровку нутромера? Что будет, если возникнет отказ, когда вы без учета трещётки будете продолжать вращать барабан нутромера?? Как документально оформить поверку прибора??	ОПК-6.Д.1
10	Какие критерии вы используете для оценки погрешности КИМа? Какие метрологические отказы существуют при включении пневмосети, подведенной к КИМ??	ОПК-6.Д.2
11	Что вы узнали о работе 3D сканера?? Оцените, какие факторы влияют на точность измерения??	ОПК-6.Д.2
12	Что будет, если предварительно не подключить рефрижератор на КИМ. Объясните цель применения датчиков температурного расширения. Каким стандартом регламентируется работа КИМ??Какие погрешности формирует температура в помещении??	ОПК-6.Д.2
13	Какие критерии вы используете для оценки погрешности на кругломере? Какие факторы негативно влияют на точность измерения на кругломере?	ОПК-6.Д.2
14	Что вы узнали о работе щупа профилометра??	ОПК-6.Д.1
15	Что будет, если предварительно не сделать центрирование/выравнивание на кругломере?	ОПК-6.Д.1
16	Какие критерии вы используете для оценки погрешности на ручном измерительном инструменте?	ОПК-6.Д.2
17	Что будет, если не проводить регламентный слив конденсата с	ОПК-6.Д.1

	компрессора??Как оформить чек-лист для проверки работы??	
19	Что будет, если предварительно не учитывать систему вала или	ОПК-6.Д.1
	систему отверстия при контроле качества изделия и	
	периодически путать эти 2 системы? Какую создать систему	
	защиты от ошибок, чтобы не путать эти системы между	
	собой?? Как документально оформляются все улучшения на	
	производстве??	
20	Какие критерии вы используете для оценки погрешности	ОПК-6.Д.2
	контурографа? Какие отказы может принести неправильная	
	последовательности сшивки контура??	
21	Верно ли, что все ручные измерительные приборы имеют U-	ОПК-6.Д.1
	wave канал??	
22	Объясните цель применения эталона-кольца для нутромера.	ОПК-6.Д.2
	Какой ГОСТ на калибры?? Как исключить погрешность при	
	измерении??	
23	Какие критерии оцениваются в программе MeasurLink? Как	ОПК-6.Д.2
	рассчитывается погрешность??	
24	Какие виды погрешностей вы знаете??	ОПК-6.Д.2
25	Объясните цель применения таблицы ЕСДП для чертежа?	ОПК-6.Д.2

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	Код
	Примерный перелень вопросов дли тестов	индикатора
1	//Начало вопроса: ВопрМножВыбор Верно ли, что характер соединения деталей, определяемый величиной получающихся зазоров или натягов называется: { =посадкой	
	~сопряжением ~основным отклонением }	
2	//Начало вопроса: ВопрМножВыбор Каким стандартом регламентируется работа кругломера? Что будет, если не отцентрировать кругломер { =не будет возможности провести измерение с минимальной погрешностью	ОПК-6.Д.2

	~выключится прибор	
	~отключится воздух	
	~не получится сохранить протокол	
2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	OHIC CHO
3	//Начало вопроса: ВопрМножВыбор	ОПК-6.Д.2
	Выделите критерии для оценки записи, обозначенную на чертеже	
	отверстия {	
	=Ø40+0,025	
	~Ø40p7H7	
	~40p7(+0,025;-0,34)	
	}	
4	//Начало вопроса: ВопрМножВыбор	ОПК-6.Д.2
	Найдите значение посадки: «Диаметр отверстия значительно	
	меньше диаметра вала — посадка»{	
	= с натягом	
	~с зазором	
	~переходная	
	}	
5	//Начало вопроса: ВопрМножВыбор	ОПК-6.Д.2
	Найдите значение посадки: «Диаметр отверстия значительно	
	больше диаметра вала» — посадка»: {	
	=с зазором	
	~с натягом	
	~переходная	
	}	
6	//Начало вопроса: ВопрМножВыбор	ОПК-6.Д.2
	Расскажите своими словами «Абсолютная величина	
	алгебраической разности между верхним и нижним отклонениями	
	называется»: {	
	=ответ 1 и 2 верны, так поле допуска - это вариация между	
	отклонениями	
	~полем допуска	
	~допуском	
	}	
7	//Начало вопроса: ВопрМножВыбор	ОПК-6.Д.2
,	Согласны ли вы, что взаимосвязь между точностью изготовления	оти о.д.2
	и ценой изделия естьи она: {	
	=прямопропорциональна: чем выше точность, выше цена	
	~ обратнопропорциональна: чем выше точность, ниже цена	
	~взаимосвязи нет	
	}	
8	//Начало вопроса: ВопрМножВыбор	ОПК-6.Д.1
	Есть ли разница между штангенрейсмасом и штангенциркулем: {	отис о.д.т
	=ш.циркуль измеряет длину, ш.рейсмас измеряет высоту,	
	последний строго в вертикальном положении	
	~разницы нет, приборы одинаковы	
	~разница в их стоимости	
0	//Havaya paymaga DaymMysay.Dr. 5 as	ОПИСЛО
9	//Начало вопроса: ВопрМножВыбор	ОПК-6.Д.2
	Верхнее предельное отклонение в системе отверстия	
	обозначается: {	
	=ES	

	~Ew	
	~±ES	
10	//Начало вопроса: ВопрМножВыбор Как можно объяснить, что металлический щуп передаёт профилометру на экран сигналы, преобразуемые в профилограмму: {	ОПК-6.Д.1
11	//Начало вопроса: ВопрМножВыбор Каким стандартом регламентируется работа кругломера?Есть ли разница между системой отверстия и системой вала: { =в системе вала все охватываемые поверхности ~в системе отверстия все охватываемые поверхности ~открытый размер — есть система вала }	ОПК-6.Д.1
12	//Начало вопроса: ВопрМножВыбор Обозначенный размер на рисунке представлен: { =в системе отверстия ~в системе вала ~открытый размер }	ОПК-6.Д.2
13	//Начало вопроса: ВопрМножВыбор Найти значение поля допуска если ES=+0,5, EI=-0,4 :{ =0,9 ~0,1 ~0,4 }	ОПК-6.Д.2
14	//Начало вопроса: ВопрМножВыбор Есть ли разница между мультисенсорной ВИМ и стандартной ВИМ :{ =мультисенсорная ВИМ помимо камеры обладает контактным щупом ~ мультисенсорная ВИМ помимо камеры обладает воздушными подшипниками ~это два идентичных типа ВИМ ~мультисенсорная ВИМ обладает возможностью измерять твердость детали }	ОПК-6.Д.1
15	//Начало вопроса: ВопрМножВыбор Предложите альтернативу глубиномеру из числа ручного измерительного инструмента: { =Штангенциркуль с глубиномером, при условии удовлетворения точностным требованиям ~Нутромер ~Профилометр ~Микрометр }	ОПК-6.Д.1
16	//Начало вопроса: ВопрМножВыбор	ОПК-6.Д.2

	Назовите систему, в которой представлен размер Ø100 h6:{ =в системе вала ~в системе отверстия ~все ответы верны }	
17	//Начало вопроса: ВопрМножВыбор Объясните цель применения прибора «Surftest»: { =Получение профилограммы ~Получение осциллограммы ~Получение круглограмы }	ОПК-6.Д.1
18	//Начало вопроса: ВопрМножВыбор Какие возможные изменения могут произойти в приборостроительной отрасли для профилометров: { =Появится больше импортозамещенных приборов ~Ничего не изменится ~В будущем профилометры будут не востребованы }	ОПК-6.Д.1
19	//Начало вопроса: ВопрМножВыбор Почему нутрометр нужно каждый раз калибровать { ~У него много сменных головок, ~Для уменьшения погрешности прибора =Все ответ верны }	ОПК-6.Д.1
20	//Начало вопроса: ВопрМножВыбор Посмотрите на рисунок, какой калибр обозначен? { =Калибр-скоба ~Калибр - кольцо ~Калибр регулируемый }	ОПК-6.Д.1
21	//Начало вопроса: ВопрМножВыбор Обьясните цель применения калибра для контурографа { =Необходим для введеия поправок ~Нужен формально,чтоб пройти процедуру поверки ~Калибр не нужен	ОПК-6.Д.1
22	//Начало вопроса: ВопрМножВыбор Посмотрите на чертеж. Что значит определение «CZ»? { =Общее поле допуска ~Зависимый допуск ~Правило прилегания «E» }	ОПК-6.Д.2
23	//Начало вопроса: ВопрМножВыбор Посмотрите на чертеж. Согласно ГОСТ Р 53442-2015, теоретически точный размер - это ТЕD, а обозначение «LE» - это { =Элемент-линия ~Смещенное поле допуска ~Зависимый допуск }	ОПК-6.Д.2
24	Дополните недостающее слово в предложении: «Для работы кругломера воздух из компрессора подается в терхкулачковый патрон, поворот которого обеспечиает (???)	ОПК-6

	подшипник»:	
	А.Воздушный подшипник;	
	Б.Магнитный подшипник;	
	В.Подшипник качения;	
	Г.Шариковый подшипник.	
25	Решите задачу с нахождением отсечки для профилометра	ОПК-6
	Длинна поверхности 8 мм, сколько нужно задать количество	
	отсечек?	
	<u>A. 9-10</u>	
	Б. 20	
	B.2	
	Γ.3	
26	Уточните, какой прибор изображен на фото	ОПК-6
		31111 3
	CONTRACTOR AND	
	21156	
	Marine 9.0	
	А. Микрометр рычажный	
	Б. Пассаметр	
	В. Микрометр лезвийный	
	Г. Двухточечный нутромер	
27	Посчитайте поле допуска вала h12 диаметром 14 в мм	ОПК-6
	A. 0,56	31111 3
	<u>Б. 0,18</u>	
	B. 2	
	Γ. 0,3	
28	Сколько должны быть экспертов-наставников при оценке работы	ОПК-6
	на чемпионате:	
	A. 3	
	<u>Б. 4</u>	
	B. 2	
	Г. ни одного	
	т. ни одного	

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ	
	Не предусмотрено	

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
- получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
- появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
- получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

лекции согласно разделам (табл.3) и темам (табл.4).

Учебное пособие по освоению лекционного материала имеется в изданном виде Гущина Е.А. Ефремов Н.Ю., Епифанцев К.В. Цифровая метрология. (учебнометодическое пособие) Санкт-Петербург: ГУАП, 2022 – 104с.

Материалы для освоения имеются в электронном виде

• Курс лекций и практик в системе LMS https://lms.guap.ru/new/course/view.php?id=2029

11.2. Методические указания для обучающихся по выполнению лабораторных работ

В ходе выполнения лабораторных работ обучающийся должен углубить и В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;

- получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Задание к выполнению лабораторной работы выдается преподавателем в начале занятия в соответствии с планом занятий. Темы лабораторных работ приведены в табл. 6 данной программы.

Выполнение лабораторной работы состоит из трех этапов:

- аналитического;
- расчетно-графического;
- контрольного в виде защиты отчета.

Структура и форма отчета о лабораторной работе

Отчет о лабораторной работе должен содержать: титульный лист, основную часть, выводы по результатам исследований .

На титульном листе должны быть указаны: название дисциплины, название лабораторной работы, фамилия и инициалы

преподавателя, фамилия и инициалы студента, номер его учебной группы и дата защиты работы.

Основная часть должна содержать задание, результаты экспериментальнопрактической работы, расчетно-аналитические материалы, листинг кода/скрин экрана.

Выводы по проделанной работе должны содержать основные результаты по работе.

Требования к оформлению отчета о лабораторной работе

Титульный лист отчета должен соответствовать шаблону, приведенному в секторе нормативной документации ГУАП https://guap.ru/standart/doc

Оформление основной части отчета должно быть оформлено в соответствии с ГОСТ 7.32-2017. Требования приведены в секторе нормативной документации ГУАП https://guap.ru/standart/doc

При формировании списка источников студентам необходимо руководствоваться требованиями стандарта ГОСТ 7.0.100-2018. Примеры оформления списка источников приведены в секторе нормативной документации ГУАП. https://guap.ru/standart/doc

Структура и форма отчета о лабораторной работе

Отчет о лабораторной работе должен содержать: титульный лист, основную часть, выводы по результатам исследований.

На титульном листе должны быть указаны: название дисциплины, название лабораторной работы, фамилия и инициалы преподавателя, фамилия и инициалы студента, номер его учебной группы и дата защиты работы.

Основная часть должна содержать задание, результаты экспериментальнопрактической работы, расчетно-аналитические материалы.

Выводы по проделанной работе должны содержать результаты экспериментов, проведенных студентами на стендах, их рефлексированные выводы по значимости эксперимента, анализу видов и последствий потенциальных погрешностей, которые могли влиять на «чистоту эксперимента». Также вывод должен содержать ответ на вопрос – какие основные наиболее сложные элементы методики им было необходимо выполнить и с чем данная сложность была связана.

Методические указания по выполнению лабораторных работ имеются в изданном виде

Гущина Е.А. Ефремов Н.Ю., Епифанцев К.В,

Цифровая метрология. (учебно-методическое пособие) Санкт-Петербург: ГУАП, 2022-104c.

- Курс лабораторных работ представлен в системе LMS https://lms.guap.ru/new/course/view.php?id=2029
- 11.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихся являются: учебно-методический материал по дисциплине;

методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).

- 1. Подготовка лекционного материала по темам, представленным в таблице 3, и по темам, отмеченных * в соответствии с литературой, представленной в таблице 9.
 - 2. Подготовка к контрольным работам в соответствии с методическими указаниями В течение семестры студенты
 - защищают лабораторные работы (5 шт);
 - выполняют тестирования по материалам лекции в среде LMS.

Для текущего контроля успеваемости используются тесты, приведенные в таблице 18.

11.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

В течение семестра студенты

- решают задания в формате тестирования;
- защищают лабораторные работы (5 шт)

Для текущего контроля успеваемости необходимо представить не менее 1 протокола о лабораторной работе после 4-х часов проведенных лабораторных работ. Также в качестве защиты работ может быть

11.5. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

— экзамен — форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой