МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 32

УТВЕРЖДАЮ Руководитель образовательной программы

ДОЦ., К.Т.Н., ДОЦ. (должность, уч. степень, звание)

О.Я. Солёная

«23» июня 2025 г

reell

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Электрические станции и подстанции» (Наименование дисциплины)

Код направления подготовки/ специальности	13.03.02	
Наименование направления подготовки/ специальности	Электроэнергетика и электротехника	
Наименование направленности	Энергетические электрические машины	
Форма обучения	очная	
Год приема	2023	

Лист согласования рабочей программы дисциплины

Программу составил (а)	peelele 23.06.2025	
Доц., к.т.н., доц.	23.06.2025	О.Я. Солёная
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Программа одобрена на заседани	и кафедры № 32	
«23» июня 2025 г, протокол № 8		
Заведующий кафедрой № 32 к.т.н.,доц.	23,06,2025	С.В. Солёный
(уч. степень, звание)	(пошпись, дата)	(инициалы, фамилия)
Заместитель директора институт	а №3 по методической раб	іоте
Ст. преподаватель	23.06.2025	Н.В. Решетникова
(должность, уч. степень, звание)	(подрам, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Электрические станции и подстанции» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 13.03.02 «Электроэнергетика и электротехника» направленности «Энергетические электрические машины». Дисциплина реализуется кафедрой «№32».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-3 «Способен принимать участие в проектировании объектов профессиональной деятельности в соответствии с техническим заданием и нормативно-технической документацией»

Содержание дисциплины охватывает круг вопросов, связанных с изучением назначения, основных параметров, конструкции и принципов работы электротехнического оборудования, схем электрических соединений электростанций и подстанций, распределительных устройств, систем собственных нужд электростанций.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, самостоятельная работа студента, консультации.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 2 зачетных единицы, 72 часа.

Язык обучения по дисциплине «русский».

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Формирование у обучающихся профессиональных знаний и умений с учетом применения современных цифровых технологий в области энергетики, а также знакомство обучающихся с основным электрооборудованием электрических станций и подстанций. Дисциплина формирует у обучающихся готовность к использованию знаний в области устройства электрооборудования и электрических схем соединений электростанций и подстанций, изучения особенностей проектирования и эксплуатации электрооборудования подстанций, умений и навыков в выборе условий их работы в составе электроэнергетической системы.

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

<u> </u>	в компетенции и инди	
Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Профессиональные компетенции	ПК-3 Способен принимать участие в проектировании объектов профессиональной деятельности в соответствии с техническим заданием и нормативнотехнической документацией	ПК-3.Д.5 выполняет расчеты для проектирования объектов профессиональной деятельности ПК-3.Д.6 определяет параметры элементов объектов профессиональной деятельности в различных режимах работы

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- Электротехника;
- Электрические машины;
- Электрические системы и сети.

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- Основы релейной защиты и автоматики;
- Электроснабжение;
- Энергоустановки на основе возобновляемых источников энергии.

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам №7
1	2	3
Общая трудоемкость дисциплины, 3E/ (час)	2/72	2/ 72
Из них часов практической подготовки	17	17
Аудиторные занятия, всего час.	34	34
в том числе:		
лекции (Л), (час)	17	17
практические/семинарские занятия (ПЗ), (час)		
лабораторные работы (ЛР), (час)	17	17
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)	27	27
Самостоятельная работа, всего (час)	11	11
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.	Экз.

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции (час)	ПЗ (СЗ) (час)	ЛР (час)	КП (час)	CPC (час)		
Сем	Семестр 7						
Раздел 1. Электрические станции и подстанции: определения, назначение и основные показатели. Тема 1.1. Основные понятия и определения. Типы электростанций, подстанций и их характеристики. Тема 1.2. Режимы энергосистемы и участие электростанций в выработке электрической энергии. Тема 1.3. Требования, предъявляемые к электрическому оборудованию и токопроводам, к качеству электроэнергии и надежности электроснабжения.	2				1		
Раздел 2. Проводники, изоляторы и кабели. Тема 2.1. Неизолированные жесткие и гибкие проводники. Кабели. Нагревание проводников и аппаратов при коротком замыкании. Тема 2.2. Изоляторы: опорные, проходные и подвесные. Тема 2.3. Условия выбора марок ВЛЭП, КЛЭП и типов изоляторов. Тема 2.4. Виды опор ЛЭП.	2				1		

D 2 IC	I			
Раздел 3. Коммутационные электрические				
аппараты.				
Тема 3.1. Электрическая дуга в выключателях и				
методы ее тушения. Выключатели переменного				
тока свыше 1000 кВ: требования, предъявляемые к				
выключателям. Масляные, воздушные, вакуумные				
и элегазовые выключатели. Выключатели				
постоянного тока.				
Тема 3.2. Разъединители, выключатели нагрузки,	2			1
- ·				
аппараты до 1000 кВ. Электромагнитные				
контакторы и пускатели.				
Тема 3.3. Короткозамыкатели: назначение и				
принцип действия.				
Тема 3.4. Цифровая релейная защита. Принципы				
построения и алгоритмизации.				
Раздел 4. Электродинамическая стойкость				
токопроводов и электрических аппаратов.				
Тема 4.1. Общие вопросы теории нагревания.				
Тепловой расчет неизолированных проводников и				
аппаратов в продолжительном и повторно—				
кратковременном режимах.				
Тема 4.2. Нагревание стальных конструкций,				
расположенных в сильных магнитных полях.	2	4		1
Тема 4.3. Токопроводы с жесткими проводниками:				
расчет однопролетных токопроводов при				
статической и динамической нагрузках; анализ				
частотных характеристик; влияние неуспешного				
АПВ; упрощенный метод расчета.				
Тема 4.4. Токопроводы с гибкими проводниками.				
Электродинамическая стойкость электрического				
оборудования.				
Раздел 5. Силовые трансформаторы и				
автотрансформаторы, реакторы.				
Тема 5.1. Основные параметры и конструктивные				
особенности. Вспомогательное оборудование				
трансформаторов.				
Тема 5.2. Регулирование напряжения	3	6		1
трансформаторов. Нагрузочная способность				
трансформаторов.				
Тема 5.3. Выбор мощности силовых				
трансформаторов для подстанций.				
Тема 5.4. Тепловой режим и системы охлаждения				
трансформаторов. Защита трансформаторов.				

Раздел 6. Главные схемы электрических соединений электростанций и подстанций. Тема 6.1. Элементы главных схем. Виды главных схем. Особенности структурных и принципиальных схем конденсационных электростанций (КЭС), теплоэлектростанций (ТЭС), атомных электростанций (СЭС), гидроэлектростанций (ГЭС) и гидроаккумулирующих электростанций (ГАЭС), ветроэлектростанций (ВЭС) и подстанций (ПС). Тема 6.2. Структурные схемы газотурбинных (ГТУ) и парогазовых (ПГУ) установок. Тема 6.3. Методы проведения технико-экономического сравнения вариантов схем.	2		7		2
Раздел 7. Собственные нужды электростанций и подстанций. Тема 7.1. Источники питания системы собственных нужд. Тема 7.2. Оперативный ток на электрических станциях и подстанциях. Тема 7.3. Реакторы: устройство, характеристики и область использования. Тема 7.4. Методика расчета контура заземления электростанции.	2				2
Раздел 8. Цифровая трансформация энергетической отрасли. Тема 8.1. Цифровая распределительная энергетика и энергетический переход. Нормативные документы. Тема 8.2. Интернет энергии. Архитектура, сервисы, техническая реализация. Тема 8.3. Цифровой учет и прогнозирование производства, передачи и потребления энергии.	2				2
Выполнение курсовой работы	15		15		1.1
Итого в семестре:	17	0	17	0	11
Итого	17	0	17	0	11

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий.

Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий
1	Электрические станции и подстанции: определения, назначение и основные показатели. Основные понятия и определения. Типы электростанций, подстанций и их характеристики. Режимы энергосистемы и участие электростанций в выработке электрической

	энергии. Требования, предъявляемые к электрическому оборудованию и
	токопроводам, к качеству электроэнергии и надежности электроснабжения.
2	Проводники, изоляторы и кабели.
4	Неизолированные жесткие и гибкие проводники. Кабели. Нагревание
	проводников и аппаратов при коротком замыкании.
	Изоляторы: опорные, проходные и подвесные.
3	Коммутационные электрические аппараты.
3	Электрическая дуга в выключателях. методы ее тушения. Выключатели
	переменного тока свыше 1000 кВ: требования, предъявляемые к выключателям.
	Масляные, воздушные, вакуумные и элегазовые выключатели. Выключатели
	постоянного тока. Разъединители, выключатели нагрузки, плавкие
	предохранители. Коммутационные аппараты до 1000 кВ. Электромагнитные
	контакторы и пускатели.
4	Электродинамическая стойкость токопроводов и электрических аппаратов.
	Общие вопросы теории нагревания. Тепловой расчет неизолированных
	проводников и аппаратов в продолжительном и повторно-кратковременном
	режимах.
	Нагревание стальных конструкций, расположенных в сильных магнитных полях.
	Нагревание проводников и аппаратов при коротком замыкании.
	Токопроводы с жесткими проводниками: расчет однопролетных токопроводов
	при статической и динамической нагрузках; анализ частотных характеристик;
	влияние неуспешного АПВ; упрощенный метод расчета. Токопроводы с гибкими проводниками. Электродинамическая стойкость
	электрического оборудования.
5	Силовые трансформаторы и автотрансформаторы, реакторы.
	Основные параметры и конструктивные особенности. Вспомогательное оборудование трансформаторов. Тепловой режим и системы охлаждения
	трансформаторов. Защита трансформаторов.
	Регулирование напряжения трансформаторов. Нагрузочная способность
	трансформаторов. Выбор мощности силовых трансформаторов для подстанций.
	Реакторы: устройство, характеристики и область использования.
6	
U	Главные схемы электрических соединений. Элементы главных схем. Виды главных схем. Особенности структурных и
	принципиальных схем конденсационных электростанций, теплоэлектростанций,
	атомных электростанций, гидроэлектростанций и гидроаккумулирующих
	электростанций, ветроэлектростанций и подстанций.
	Структурные схемы газотурбинных и парогазовых установок. Технико-
	экономическое сравнение вариантов схем.
7	Собственные нужды электростанций и подстанций.
	Источники питания системы собственных нужд. Схемы питания собственных
	тепловых электростанций. Оперативный ток на электрических станциях и
	подстанциях. Требования к распределительным устройствам: общие принципы
	выполнения. Правила устройства и основные размеры конструкций
	распределительных устройств. Комплектные распределительные устройства.
	Реакторы: устройство, характеристики и область использования. Методика
8	расчета контура заземления электростанции.
8	Цифровая трансформация энергетической отрасли.
	Цифровая распределительная энергетика и энергетический переход. Нормативные документы. Интернет энергии. Архитектура, сервисы, техническая
	реализация. Цифровой учет и прогнозирование производства, передачи и
	потребления энергии.
	Lorbeonemin quebrum

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

				Из них	$N_{\underline{0}}$
No॒	Темы практических	Формы практических	Трудоемкость,	практической	раздела
п/п	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
	Учебным планом не предусмотрено				
	Bcer	0			

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

	пици о знаобраториме запитим и им трудоеми	T	11	3.0
No॒	Hayrvayanayyya yafanazanyy ya nafaz	Трудоемкость,	Из них практической	№ раздела
Π/Π	наименование парораторных рарот		подготовки,	дисцип
			(час)	лины
	Семестр	7		
1	Проверка на термическую стойкость	4	4	3
	электрооборудования электростанций			
2	Измерение параметров установившегося	4	4	4
	режима в сети с односторонним и			
	двусторонним питанием			
3	Потери электрической энергии в	2	2	4
	распределительных сетях			
4	Регулирование напряжения путем	3	3	5
	поперечной компенсации реактивной			
	мощности с помощью конденсаторной			
	батареи			
5	Разработка принципиальной цифровой	4	4	5
	модели управления устройством			
	автоматического ввода резервного			
	питания среде Simulation In Technic.			
	Всего	17	17	

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 7,
1	2	3

Изучение теоретического материала дисциплины (TO)	5	5
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю успеваемости (ТКУ)	3	3
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной аттестации (ПА)	3	3
Всего:	11	11

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8— Перечень печатных и электронных учебных изданий

Количество экземпляров в Шифр/ Библиографическая ссылка библиотеке URL адрес (кроме электронных экземпляров) Проектирование электрических станций и подстанций: учеб.-метод. пособие / Сост.: 50 О. Я. Солёная, В. П. Кузьменко, С. В. Солёный. – СПб.: ГУАП, 2023. – 73 с. ISBN 978-Электроэнергетические системы и сети: 50 учеб. пособие / Сост.: В.Ф. Шишлаков, 5-8088-О.Я. Солёная, С.В. Солёный. – СПб.: 1211-6 ГУАП, 2017. – 127 с. ISBN 978электроснабжения 50 Основы объектов отрасли: учеб. пособие / Сост.: В.Ф. 5-8088-Шишлаков, О.Я. Солёная, С.В. Солёный. – 1213-0 СПб.: ГУАП, 2017. – 85 с. ISBN 978-Переходные процессы в электрических 50 системах. / Сост.: О.Я. Солёная, А.В. 5-8088-Рысин, С.В. Солёный. – СПБ: ГУАП, 2020. 1512-4 Русина, А.Г. Режимы электрических 50 станций и электроэнергетических систем [Электронный ресурс]: учебник / А.Г. Русина, Т.А. Филиппова. – Новосибирск: НГТУ, 2014. - 400 с. Герман-Галкин С.Г. и др. Модельное 50

проектирование электромеханических мехатронных модулей движения в среде

Simulation In Technic / M: ДМК, 464 с.	
2021 г.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование	
https://simintech.ru/	Среда динамического моделирования технических систем «SimInTech». – ООО «ЗВ Сервис», 2020. – 104 с.	
https://ru.smath.com/%D0%BE%D0%B1 %D0%B7%D0%BE%D1%80/SMathStud io/%D1%80%D0%B5%D0%B7%D1%8 E%D0%BC%D0%B5	Математическая программа с графическим редактором и полной поддержкой единиц измерения Smath Studio.	

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование	
1	Smath Studio https://reestr.digital.gov.ru/reestr/536108/	
2	Simulation In Technic	
	https://reestr.digital.gov.ru/reestr/303729/?sphrase_id=1526969	

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11 – Перечень информационно-справочных систем

№ п/п	Наименование	
1	Справочные материалы и нормативные документы по электрическим системам.	
	http: www.gost-r.com/	
2	ГОСТ, СНИП, ПУЭ, СП и РД https://www.asutpp.ru/dokumentatsiya	
3	Электронная библиотека ГУАП https://lib.guap.ru/jirbis2/index.php	

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Мультимедийная лекционная аудитория	21-18 БМ
2	Специализированная лаборатория электроэнергетики	Московский 149в,
		ауд. 418
3	Компьютерный класс	31-04 БМ

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	Характеристика сформированных компетенций	
5-балльная шкала		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 	
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 	
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 	

Оценка компетенции	Vanageranyaryara ahamaran anayara wa katarayaray		
5-балльная шкала	Характеристика сформированных компетенций		
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 		

10.3. Типовые контрольные задания или иные материалы. Вопросы для экзамена представлены в таблице 15.

Таблица 15 – Вопросы для экзамена

Перечень вопросов для экзамена	Код
	индикатора
1. Перечислите традиционные первичные источники энергии.	ПК-3.Д.5
2. Перечислите виды органического топлива, традиционно используемого	
на электростанциях.	
3. Что такое неорганическое топливо?	
4. Назовите основные виды генераторов.	
5. Какие источники и виды энергии принято относить к нетрадиционным?	
6. Как различаются тепловые электростанции по виду топлива?	
7. Чем отличаются газовый и паровой циклы?	
8. Что является рабочим телом установок парового цикла?	
9. Каковы номинальные напряжения генераторов электростанций с	
агрегатами большой мощности?	
10. Какая турбина является более компактной - паровая или газовая?	
11. Перечислите основные существующие источники энергии, которые	
возможно и полезно применять на электрических станциях и	
подстанциях.	
12. Назовите основные виды систем возбуждения генераторов.	
13. Где применяются капсульные гидроагрегаты? 14. Что используется в качестве охладителей генераторов?	
· · · · · · · · · · · · · · · · · · ·	
15. Назовите нормальные и анормальные режимы работы генератора. 16. Каково основное назначение трансформатора?	
 Каково основное назначение трансформатора: Что такое схема и группа соединений трансформатора? 	
17. Что такое схема и группа соединении грансформатора: 18. Назовите системы охлаждения трансформаторов.	
18. Где территориально сооружаются КЭС?	
19. 1 де герриториально сооружаются КЭС: 20. Поясните понятия «простой блок» и «укрупненный блок».	
20. Поясните понятия «простои олок» и «укрупненный олок». 21. Назовите особенности функционирования ГЭС.	
21. Пазовите осооснисети функционирования ГЭС. 22. Какие из электростанций относятся к пиковым?	
23. Где территориально сооружаются АЭС?	
24. Назовите особенности функционирования АЭС.	
25. К какой категории по надежности электроснабжения относят	
собственные нужды станции?	
26. Назовите основные элементы паросиловой установки.	ПК-3.Д.6
27. Из каких основных узлов состоит ГТУ?	
28. Охарактеризуйте схемы получения электроэнергии на ТЭС.	
29. Приведите структурную схему ТЭЦ.	
30. Перечислите основные требования, предъявляемые к схемам	
электрических	

соединений электростанций.

- 31. Приведите схему питания собственных нужд подстанции.
- 32. От чего зависит частота вращения турбогенератора?
- 33. Как определяется коэффициент трансформации?
- 34. Что такое типовая мощность автотрансформатора?
- 35. Как определяется количество резервных трансформаторов собственных нужд?
- 36. Условия выбора электрических аппаратов выше 1000 В.
- 37. Особенности расчета молниезащиты.
- 38. Назначение защитного заземления на электростанциях и подстанциях, условия выбора.
- 39. В каких режимах могут работать гидроагрегаты ПЭС?
- 40. Чем отличаются друг от друга мощные гидро- и турбогенераторы?
- 41. Чем одноконтурные АЭС отличаются от двухконтурных?
- 42. Работа ТЭЦ по какому графику тепловому или электрическому является более экономичной?
- 43. Каковы области применения ДЭС разных мощностей?
- 44. Назовите основные параметры трансформатора.
- 45. Как выполняется регулирование напряжения с помощью трансформаторов?
- 46. Какие компоненты образуют систему управления электростанцией?
- 47. Дайте определение цифровой подстанции. Опишите принцип работы и основные проблемы, связанные с данной технологией.
- 48. Как оценивается потенциал малых ГЭС в России?
- 49. Какие способы преобразования солнечной энергии в электрическую Вы знаете?
- 50. Перечислите известные вам виды биотоплива.
- 51. В чем основное преимущество водорода перед другими видами топлива?
- 52. Каковы отличительные особенности автотрансформатора и трансформатора? Когда автотрансформатор выгоднее трансформатора?
- 53. Какую мощность должен обеспечивать один резервный трансформатор?
- 54. Как осуществляется резервирование питания собственных нужд?
- 55. Как осуществляется регулирование напряжения и реактивной мощности на электростанции.
- 56. Как осуществляется регулирование частоты в объединенной ЭЭС.
- 57. Как осуществляется оптимальное распределение активной мощности ЭЭС?
- 58. Особенности применения токоограничивающих реакторов.
- 59. Область применения закрытых распределительных устройств.
- 60. Область применения КРУ, ОРУ, КТП.

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	курсового проектирования/выполнения

курсовой работы
Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

Таблица 18 – Примерный перечень вопросов для	тестов				
Примерный перечень вопросов ;	цля тестов	Код индикатора			
Прочитайте текст, выберите правильный ответ и з обосновывающие выбор ответа. 1. Какое напряжение является стандартным для р 10 кВ?	ПК-3.Д.6				
 a) 6 κB б) 10 κB ±5% в) 10 κB ±10% 					
• г) 35 кВ 2. Какой тип выключателя наиболее распространён на подстанциях 110 кВ и выше?					
а) Вакуумныйб) Воздушныйв) Элегазовый (SF₆)					
Тип выключателя	Характеристика				
1. Масляный	А. Использует вакуум для гашения дуги				
2. Воздушный	В. Применяет сжатый воздух				

. Вакуумный		С. Использует минеральное масло
. Элегазовый		D. Работает на гексафториде серы (SF ₆)
. Автогазовый		E. Использует выделяющийся при дуге газ
. Установите соответсти его функцией:	вие между оборудованием	
Оборудование	Функция	
1. Разъединитель	а) Коммутация под нагрузкой	
2. Выключатель	б) Создание видимого разрыва цепи	
3. Трансформатор тока	в) Защита и измерение тока	
4. ОПН	г) Защита от перенапряжений	
. Установите соответст одстанции и её характе		
Тип подстанции	Характеристика	
Тип подстанции 1. ПС 110/10 кВ	характеристика а) Связь между сетями разных напряжений	
	a) Связь между сетями разных	
1. ПС 110/10 кВ 2. Тяговая	а) Связь между сетями разных напряжений б) Питание железнодорожного	

8. Прочитайте следующий текст и установите правильную последовательность операций при вводе подстанции в эксплуатацию:

- А. Проведение пусконаладочных работ и тестирование оборудования
- В. Установка и подключение оборудования подстанции
- С. Подготовка проектной документации и согласование
- Передача подстанции в эксплуатацию и обучение персонала
- Е. Проведение приемочных испытаний и оформление документации
- 9. Установите правильную последовательность этапов монтажа силового трансформатора:
 - а) Установка на фундамент
 - б) Заливка масла
 - в) Подключение вводов
 - г) Испытание изоляции

Прочитайте текст и запишите развернутый обоснованный ответ или напишите пропущенное слово/словосочетание

- 10. Каковы основные функции распределительных устройств (РУ) на электрических подстанциях? Напишите развернутый ответ.
- 11. Объясните, почему на подстанциях 110 кВ и выше преимущественно используются элегазовые (SF₆) выключатели, а не масляные. Приведите не менее трех аргументов.
- 12. Опишите принцип действия системы автоматического включения резерва (АВР) на подстанции. Какие основные элементы входят в её состав?

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ	
	Не предусмотрено	

- 10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.
 - 11. Методические указания для обучающихся по освоению дисциплины
- 11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.

- появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

<u>Структура предоставления лекционного материала производится согласно темам</u> разделов дисциплины, представленным в таблице 4.

Лекция состоит из трёх основных частей: вступительной, основной и заключительной.

Вступительная часть определяет название темы, план и цель лекции. Она призвана заинтересовать и настроить аудиторию. В этой части лекции излагается актуальность, основная идея, связь данной лекции с предыдущими занятиями, ее основные вопросы. Введение должно быть кратким и целенаправленным.

В основной части лекции реализуется научно-техническое содержание темы, все основные вопросы, проводится вся система доказательств с использованием наиболее целесообразных методических приёмов. Каждый учебный вопрос заканчивается краткими выводами, логически подводящими студентов к следующему вопросу лекции.

Заключительная часть имеет целью обобщать в кратких формулировках основные идеи лекции, логически завершая её как целостное творение.

Отдельные виды лекций могут иметь свои особенности как по содержанию, так и по структуре.

11.2. Методические указания для обучающихся по выполнению лабораторных работ.

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

- 1. Приступать к работе можно только после ознакомления с рабочим местом.
- 2. Перед сборкой схем убедиться в том, что лабораторное оборудование отключено от источника питания.
- 3. Перед включением схемы убедиться в том, что вся включенная в схему коммутационная аппаратура (кнопки и др.) находится в исходном положении.

- 4. При включении и в процессе регулирования следить за показаниями основных измерительных приборов (цифровой осциллограф, мультиметр и др.) схемы.
- 5. В процессе работы не оставлять без присмотра рабочее место, которое находится под напряжением.
- 6. Не касаться неизолированных частей приборов и аппаратов, которые находятся под напряжением.
- 7. К лабораторным занятиям допускаются только те студенты, которые усвоили правила безопасности.
- 8. Лабораторные работы выполняются бригадой студентов в составе не менее двух человек.
- 9. Каждый студент должен подготовиться к лабораторной работе. При недостаточной подготовке студент не допускается к ее выполнению.
- 10. Собранная схема и написанная программа должна быть проверена преподавателем, который после проверки дает разрешение на проведение опытов.
- 11. Перед включением схемы студент, производящий данную операцию, должен предупредить членов своей бригады об этом фразой «Начинаем эксперимент».
- 12. После включения схемы без записи показаний приборов проверяется возможность выполнения лабораторной работы во всем заданном диапазоне изменения характеристик и показаний. Только после этого приступают к работе.
- 13. Результаты измерений по каждой характеристике должны быть проверены преподавателем.
- 14. Все переключения в схеме и ее окончательная разборка делается только с разрешения преподавателя. В случае неверности полученных данных работа переделывается.
 - 15. После переключения схема должна быть проверена преподавателем.
- 16. В случае возникновения аварийной ситуации (появление дыма, запаха гари, несвойственных звуков, искры и др.) на рабочем месте необходимо немедленно отключить схему от напряжения и сообщить об этом событии преподавателю без любых изменений в схеме. Вместе с преподавателем надо найти причину аварии и устранить ее.
- 17. Студент должен бережно обращаться с предоставляемым ему оборудованием и компьютерной техникой, запрещается делать надписи мелом, карандашом или чернилами. Нельзя загромождать рабочее место приборами и аппаратами, которые не используются в лабораторной работе, оставлять на них книги, тетради и др. предметы.
- 18. К следующему занятию каждый студент должен составить отчет по предыдущей лабораторной работе в соответствии с установленной формой.

Структура и форма отчета о лабораторной работе

В отчете обязательно должны быть отражены следующие разделы: «Название» «Цель работы», «Содержание работы», «Схемы испытаний», «Результаты измерений и вычислений», «Анализ полученных характеристик и краткие выводы». В состав отчета могут быть включены другие разделы, которые учитывают специфику выполняемой лабораторной работы (фото экспериментов, программный код и др.). Необходимые схемы, рисунки и графики можно чертить карандашом либо с использованием специальных программных продуктов на персональном компьютере.

Требования к оформлению отчета о лабораторной работе

Правила оформления отчета

- 1. Общие требования
- 1.1. В соответствии с ГОСТ 7.32-2017 СИБИД. Отчет о научноисследовательской работе. Структура и правила оформления отчет по лабораторной работе оформляется любым печатным способом на одной стороне листа белой бумаги формата A4.

- 1.2. В отчете по лабораторной работе допускается интервал 1.0 и 1.5, кегль не менее 12, выравнивание по ширине, отступ красной строки 1.0.
 - 1.3. Цвет шрифта должен быть черным.
 - 2. Нумерация страниц отчета
- 2.1. Страницы отчета следует нумеровать арабскими цифрами, соблюдая сквозную нумерацию по всему тексту отчета. Номер страницы проставляется в низу каждого листа по центру.
- 2.2. Титульный лист включается в общую нумерацию страниц отчета. Номер страницы на титульном листе не проставляется.
 - 3. Нумерация разделов и подразделов отчета
- 3.1. Разделы должны иметь порядковые номера в пределах всего отчета, обозначенные арабскими цифрами.
- 3.2. Разделы могут быть разбиты на подразделы. Нумерация подразделов составляется из номера раздела и подраздела, обозначенного через точку, например, «1.1.». В конце названия разделов и подразделов точка не ставится.
 - 4. Иллюстрации
- 4.1. Иллюстрации подписываются снизу арабскими цифрами через пробел после слова «Рисунок» и имеют либо сквозную нумерацию, либо нумерацию в соответствии с разделами отчета.
- 4.2. Все иллюстрации (рисунки) должны иметь название, которое указывается после номера иллюстрации через тире, например, «Рисунок 1 Структурная схема одноконтурной САР».
 - 4.3. Подписи всех иллюстрации выравниваются по центру строки.
 - 5. Графики
- 5.1. Графики должны быть четкими. При оформлении графиков необходимо указывать обозначения координатных осей и самих графиков.
- 5.2. Если графики отражают сравнение двух экспериментов, рекомендуется их выполнение в одной системе координат.
 - 6. Таблицы
- 6.1. В отчете по лабораторной работе рекомендуется сквозная нумерация таблиц. Допускается нумерация таблиц в пределах раздела отчета. В этом случае номер таблицы состоит из номера раздела и порядкового номера таблицы, разделенных точкой.
 - 6.2. Таблицы нумеруются арабскими цифрами.
- 6.3. Нумерация таблиц производится со словом «Таблица» без знака «No», например, «Таблица 1».
- 6.4. Каждая таблица должна иметь название, которое следует помещать над таблицей слева без абзацного отступа в одну строку с ее номером через тире.
- 11.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

В процессе выполнения самостоятельной работы у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическим материалом, направляющим самостоятельную работу обучающихся, является учебно-методический материал по дисциплине, представленный в табл. 8-11.

11.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний, Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Контроль качества знаний проводится в форме индивидуального собеседования по материалу отдельных разделов дисциплины, а также проверки отчётов о выполнении практических заданий.

Система оценок при проведении текущего контроля успеваемости осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Тестирование студентов проводится два раза в семестр — на текущем контроле успеваемости и в конце семестра. Результаты текущего контроля могут учитываться при проведении промежуточной аттестации.

В случае невыполнения и/или неуспешной сдачи 3 и более лабораторных работ обучающийся, при успешном прохождении промежуточной аттестации в форме экзамена, не может получить аттестационную оценку выше "хорошо".

11.5. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

– экзамен – форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Система оценок при проведении промежуточной аттестации осуществляется в соответствии с требованиями Положений «О текущем контроле успеваемости и промежуточной аттестации студентов ГУАП, обучающихся по программы высшего образования» и «О модульно-рейтинговой системе оценки качества учебной работы студентов в ГУАП».

Промежуточная аттестация оценивается по результатам выполнения практических заданий, лабораторных работ, текущего контроля успеваемости и экзаменационной работы. В случае, если студент по уважительной причине не выполнил требования, ему предоставляется возможность сдать задолженности по пропущенным темам. Форма проведения промежуточной аттестации – письменная.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой