МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 32

УТВЕРЖДАЮ

Руководитель образовательной программы

доц.,к.т.н.,доц.

(должность, уч. степень, звание)

О.Я. Солёная

(подпись) «23» июня 2025 г

Celebra

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Математические основы теории энергетических систем» (Наименование дисциплины)

Код направления подготовки/ специальности	13.03.02
Наименование направления подготовки/ специальности	Электроэнергетика и электротехника
Наименование направленности	Энергетические электрические машины
Форма обучения	очная
Год приема	2023

Лист согласования рабочей программы дисциплины

Программу составил (а)	0	
Доц., к.т.н.	Tehill 23.06.2025	М.В. Сержантова
(должность, уч. степень, звание)	(подпись дата)	(инициалы, фамилия)
Программа одобрена на заседан	ии кафедры № 32	
«23» июня 2025 г, протокол № 8		
Заведующий кафедрой № 32	Ca	
к.т.н.,доц.	23.06.2025	С.В. Солёный
(уч. степень, звание)	(подпись, дата)	(ннициалы, фамилия)
Заместитель директора институ	га №3 по методической раб	оте
Ст. преподаватель	23.06.2025	Н.В. Решетникова
(должность, уч. степень, звание)	(подрись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Математические основы теории энергетических систем» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 13.03.02 «Электроэнергетика и электротехника» направленности «Цифровая энергетика». Дисциплина реализуется кафедрой «№32».

Дисциплина не является обязательной при освоении обучающимся образовательной программы и направлена на углубленное формирование следующих компетенций:

ОПК-1 «Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности»

ОПК-4 «Способен использовать методы анализа и моделирования электрических цепей и электрических машин»

Содержание дисциплины охватывает круг вопросов, связанных с математическими методами и программными средствами математического моделирования режимов работы основного оборудования электроэнергетических систем.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа студента, консультации.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме дифференцированного зачета.

Общая трудоемкость освоения дисциплины составляет 2 зачетных единицы, 72 часа.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Основной целью изучения дисциплины является подготовка студентов в области применения современных математических методов и программных средств математического моделирования инженерно-технических систем на основе алгебры матриц, теории графов, численных методов и вероятностно-статистического анализа; приобретение необходимых знаний для самостоятельного проведения исследований, связанных с решением научно- инженерных задач; овладение современными навыками организации и проведения математического моделирования; развитие навыков выбора оптимальных методов решения электротехнических задач с учетом неопределенности схождения численных методов и особенностей их реализации на ЭВМ.

- 1.2. Дисциплина является факультативной дисциплиной по направлению образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

	пстенции и индикатор	Т достижения
Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Общепрофессиональные компетенции	ОПК-1 Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности	ОПК-1.Д.3 применяет методы и средства имитационного моделирования объектов профессиональной деятельности
Общепрофессиональные компетенции	ОПК-4 Способен использовать методы анализа и моделирования электрических цепей и электрических машин	ОПК-4.Д.1 использует методы анализа и моделирования линейных и нелинейных цепей постоянного и переменного тока

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- Математика. Математический анализ;
- Информационные технологии;
- Электротехника.

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин:

- Основы электроснабжения объектов отрасли;
- Электроэнергетические системы и сети;

- Технические риски при создании новой техники.

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам №4
1	2	3
Общая трудоемкость дисциплины, 3E/ (час)	2/72	2/72
Из них часов практической подготовки		
Аудиторные занятия, всего час.	34	34
в том числе:		
лекции (Л), (час)	17	17
практические/семинарские занятия (ПЗ), (час)	17	17
лабораторные работы (ЛР), (час)		
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)		
Самостоятельная работа, всего (час)	38	38
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Дифф. Зач.	Дифф. Зач.

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

	Лекции	П3 (С3)	ЛР	КΠ	CPC
Разделы, темы дисциплины		(час)	(час)	(час)	(час)
Сем	естр 4				
Раздел 1. Основные теоретические положения и роль математического моделирования в создании					
сложных технических объектов.					
Тема 1.1. Основные понятия и роль	4	4			8
математического моделирования в создании сложных технических объектов.					O
Тема 1.2. Методология моделирования.					
Постановка задач оптимизации.					
Раздел 2. Методы моделирования компонентов					
электронных и электротехнических схем.	3	3			8
Тема 2.1. Построение математической модели.					
Тема 2.2. Обобщенное уравнение состояния.					
Раздел 3. Методы синтеза и исследования моделей					
электротехнических устройств.	3	3			8
Тема 3.1. Метод узловых напряжений.		3			0
Тема 3.2. Метод контурных токов.					

Раздел 4. Особенности математического моделирования инженерно-физических объектов. Тема 4.1 Математические модели для анализа режимов электрической цепи. Тема 4.2. Применение метода простой итерации.	4	4			7
Раздел 5. Математические методы оптимизации характеристик схем. Тема 5.1. Применение метода ускоренной итерации (метод Зейделя). Тема 5.2. Решение систем нелинейных алгебраических уравнений. Применение метода Ньютона.	3	3			7
Итого в семестре:	17	17			38
Итого	17	17	0	0	38

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий	
1	Основные теоретические положения и роль	
	математического моделирования в создании сложных	
	технических объектов.	
	Основные понятия и роль математического моделирования	
	в создании сложных технических объектов. Методология	
	моделирования. Постановка задач оптимизации.	
2	Методы моделирования компонентов электронных	
	Построение математической модели. Обобщенное уравнение	
	состояния.	
3	Методы синтеза и исследования моделей	
	электротехнических устройств и систем.	
	Метод узловых напряжений. Метод контурных токов.	
4	Особенности математического моделирования инженерно-	
	физических объектов.	
	Математические модели для анализа установившегося	
	режима электрической сети. Применение метода простой	
	итерации.	
5	Математические методы оптимизации характеристик схем.	
	Применение метода ускоренной итерации (метод Зейделя).	
	Решение систем нелинейных алгебраических уравнений.	
	Применение метода	
	Ньютона.	

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

№ π/π	Темы практических занятий	Формы практических занятий	Трудоемкость, (час)	Из них практической подготовки, (час)	№ раздела дисцип лины
l		Семестр 4		(ide)	JIIIIDI
	Теория графов. Аналитическое представление электрической схемы для расчета на ЭВМ.	Интерактивная	2	-	1
	Построение математической модели электрических схем.	Интерактивная	2	-	2
	Составление обобщенного Уравнения состояния электрической цепи.	Интерактивная	2	-	3
	Алгоритм метода узловых проводимостей.	Интерактивная	1	-	3
	Применение метода контурных токов для решения инженерноаизических задач.	Интерактивная	2	-	3
	Метод Гаусса для решения системы л алгебраических уравнений	Интерактивная	2	-	4
	Применение метода простой итерации.	Интерактивная	2	-	4
	Применение ускоренной итерации (метод Зейделя).	Интерактивная	2	-	5
	Решение системы нелинейных уравнений методом Ньютона	Интерактивная	2	-	5
	Beer	0	17		

4.4. Лабораторные занятия Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	$N_{\underline{0}}$
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	раздела
Π/Π	паименование лаоораторных раоот	(час)	подготовки,	дисцип
			(час)	ЛИНЫ
	Учебным планом не п	редусмотрено		
	Всего			

- 4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено
- 4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

таблица / Виды самостоятельной работы и се трудосикость			
Вид самостоятельной работы	Всего,	Семестр 4,	
Вид самостоятсявной расоты	час	час	
1	2	3	
Изучение теоретического материала	10	10	
дисциплины (ТО)	10	10	
Курсовое проектирование (КП, КР)			
Расчетно-графические задания (РГЗ)	10	10	
Выполнение реферата (Р)			
Подготовка к текущему контролю	8	8	
успеваемости (ТКУ)	0	8	
Домашнее задание (ДЗ)			
Контрольные работы заочников (КРЗ)			
Подготовка к промежуточной	10	10	
аттестации (ПА)	10	10	
Всего:	38	38	

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8- Перечень печатных и электронных учебных изданий

Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)
-	Солёная, О. Я. Переходные процессы в электрических системах : учебное пособие / О. Я. Солёная. — Санкт-Петербург : ГУАП, 2020. — 52 с. — ISBN 978-5-8088-1511-7. — Текст : электронный // Лань : электроннобиблиотечная система.	-

	Режим доступа URL: https://e.lanbook.com/book/216506 (дата обращения: 29.06.2024).	
_	Электромеханические переходные процессы в электрических системах: учебно-методическое пособие / составители А. Н. Козлов, В. А. Козлов. — 3-е изд., испр. — Благовещенск: АмГУ, 2017. — 136 с. — Текст: электронный // Лань: электронно-библиотечная система. Режим доступаURL: https://e.lanbook.com/book/156443 (дата обращения: 29.06.2024)	-

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование	
978-5-7996-3784-	Математические задачи энергетики: учебное пособие/ И.Л.	
2 2023.pdf (urfu.ru)	Кирпикова, В.П. Обоскалов, С.И. Семенекно, А.С. Тавлинцев; М-	
	во науки и высшего образования РФ. – Зе изд., испр и доп. –	
	Екатеринбург: Изд-во Урал. Ун-т 2023. 238 с.	

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п		Наименование
	Не предусмотрено	

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Мультимедийная лекционная аудитория	21-21
2	Компьютерный класс	31-04

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттеста	Перечень оценочных средств				
Дифференцированный зачёт		Список вопросов;			
		Тесты.			

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	V
5-балльная шкала	Характеристика сформированных компетенций
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий.
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий.
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий.

Оценка компетенции	Vanageranierium adapputunanalitu iv teautieratutuji		
5-балльная шкала	Характеристика сформированных компетенций		
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 		

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код индикатора
	Учебным планом не предусмотрено	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код
	1 , , ,	индикатора
1.	Определите основные понятия математической модели	ОПК-1.Д.3
	целевая функция, ограничения, граничные условия.	
2.	Приведите алгоритм решения электроэнергетической	ОПК-1.Д.3
	з адачи по методу узловых напряжений.	
3.	Приведите алгоритм решения контурного уравнения	ОПК-1.Д.3
	методом простой итерации.	
4.	Метод Ньютона для решения нелинейной задачи.	ОПК-1.Д.3
5. 6.	Градиентный метод в задачах оптимизации.	ОПК-1.Д.3
6.	Понятие о стохастической связи. Множественная	ОПК-1.Д.3
	регрессия.	
7.	Характеристическое уравнение и его корни.	ОПК-1.Д.3
8.	Алгебраический метод Гаусса.	ОПК-1.Д.3
9.	Метод Ньютона, его достоинства и недостатки.	ОПК-1.Д.3
10.	Метод Эйлера, его вывод, погрешности.	ОПК-1.Д.3
11.	Оценка устойчивости по критериям.	ОПК-1.Д.3
12.	Коэффициент корреляции. Его смысл.	ОПК-1.Д.3
13.	Прямые методы (область применения).	ОПК-1.Д.3
14.	Табличный метод Гаусса.	ОПК-1.Д.3
15.	Запишите функцию Лагранжа и необходимые условия ее	ОПК-1.Д.3
	экстремума.	
16.	Метод неопределенных множителей Лагранжа.	ОПК-1.Д.3
17.	Алгебраическая форма метода Гаусса.	ОПК-1.Д.3
18.	Ускоренная итерация.	ОПК-1.Д.3
19.	Решение дифференциального уравнения с постоянной	ОПК-1.Д.3
	правой частью.	
20.	Корни характеристического уравнения.	ОПК-1.Д.3
21.	Прогнозирование нагрузки энергообъектов.	ОПК-1.Д.3
22.	Определение устойчивости по Ляпунову.	ОПК-1.Д.3
23.	Метод Эйлера, область его применения.	ОПК-1.Д.3
24.	Парная линейная и квадратичная регрессия. Область	ОПК-1.Д.3

	применения.	
25.	Решение системы дифференциальных уравнений в	ОПК-4.Д.1
	отклонениях.	
26.	Метод триангуляции. Достоинства и недостатки методов	ОПК-4.Д.1
	первого порядка.	
27.	Условие сходимости итерационного процесса.	ОПК-4.Д.1
28.	Анализ переходных режимов ЭЭС (постановка задачи).	ОПК-4.Д.1
29.	Метод последовательных интервалов.	ОПК-4.Д.1
30.	Численное решение дифференциальных уравнений.	ОПК-4.Д.1
31.	Коэффициент корреляции. Его смысл.	ОПК-4.Д.1
32.	Оценка устойчивости по корням характеристического	ОПК-4.Д.1
	уравнения.	
33.	Система нелинейных дифференциальных уравнений в	ОПК-4.Д.1
	задачах управления режимами (постановка задачи).	
34.	Метод Рунге-Кутта 4-го порядка, область его применения.	ОПК-4.Д.1
35.	Какие узлы системы являются балансирующими по	ОПК-4.Д.1
	активной и реактивной мощностям	
36.	Какими схемами замещения учитываются линии	ОПК-4.Д.1
	электропередачи и трансформаторы при расчетах	
	установившихся режимов?	
37.	Какими параметрами учитываются генераторы и	ОПК-4.Д.1
	нагрузка в расчетах стационарных режимов?	
38.	Что принимается в качестве начальных приближений	ОПК-4.Д.1
	модулей и фаз напряжений узлов?	
39.	Что представляет собой вектор невязок?	ОПК-4.Д.1
40.	В чем суть модифицированного метода Ньютона и на	ОПК-4.Д.1
	каких предпосылках он основан?	
41.	Запишите итерационный процесс Ньютона в матричной	ОПК-4.Д.1
	форме	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

 Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	Код индикатора
1.	Что такое электрическая система? а) электрическая часть энергетической системы, вырабатывающих, преобразующих, передающих, распределяющих и потребляющих электрическую энергию б) отдельные составляющие явлений в элементах системы в) состояние системы в любой момент времени или на некотором	ОПК-1.Д.3

	интервале времени	
2	Какие режимы системы существуют?	ОПК-1.Д.3
-	а) установившейся режим	отис т.д.з
	б)нормальный режим	
	в) ненормальный режим	
	г) аварийный режим	
	д) послеаварийный режим	
	е) переходный режим	
3	Сопоставьте термины и определения	ОПК-1.Д.3
	1. Граф сети	отис т.д.з
	2. Подграф сети	
	3. Путь графа	
	4. Связанный граф	
	 Связанный граф Дерево 	
	а. разомкнутая часть замкнутой схемы, которая соединяет все ее	
	узлы	
	б. любая часть графа	
	в. совокупность ребер, соединяющих две произвольные вершины	
	г. Если две любые вершины соединяются путем	
	д. множество вершин и ребер соединяющих некоторые пары	
	вершин	
4	Составьте правильную последовательность алгоритма расчета	ОПК-1.Д.3
4	установившегося режима для замкнутой сети	ОПК-1.Д.3
	1. определить узловое напряжение	
	2. определить токи в ветвях	
5	3. определить напряжение в узлах Как можно получить матрицу узловых проводимостей, выберите	ОПК-1.Д.3
3	правильный ответ:	ОПК-1.Д.3
	1 по формуле при известной первой матрице соединений	
	2. непосредственно из графа	
	3. использовать контурное уравнение	
6	Что такое электрическая система?	ОПК-4.Д.1
O		ОПК-4.Д.1
	а) электрическая часть энергетической системы, вырабатывающих,	
	преобразующих, передающих, распределяющих и потребляющих	
	электрическую энергию	
	б) отдельные составляющие явлений в элементах системы	
	в) состояние системы в любой момент времени или на некотором	
7	интервале времени	
7	Какие режимы системы существуют?	ОПК-4.Д.1
	а) установившейся режим	
	б)нормальный режим	
	в) ненормальный режим	
	г) аварийный режим	
	д) послеаварийный режим	
	е) переходный режим	OFFICA TO
8	Сопоставьте термины и определения	ОПК-4.Д.1
	6. Граф сети	
	7. Подграф сети	
	8. Путь графа	
	9. Связанный граф	
	10. Дерево	

	а. разомкнутая часть замкнутой схемы, которая соединяет все ее узлы б. любая часть графа в. совокупность ребер, соединяющих две произвольные вершины г. Если две любые вершины соединяются путем			
	д. множество вершин и ребер соединяющих некоторые пары			
	вершин			
9	Как можно получить матрицу узловых проводимостей, выберите			
	правильный ответ:			
	1 по формуле при известной первой матрице соединений			
	2. непосредственно из графа			
	3. использовать контурное уравнение			
10	Составьте правильную последовательность алгоритма расчета	ОПК-4.Д.1		
	установившегося режима для замкнутой сети			
	4. определить узловое напряжение			
	5. определить токи в ветвях			
	6. определить напряжение в узлах			

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п		Перечень контрольных работ
	Не предусмотрено	

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;

- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- Основные теоретические положения и роль математического моделирования в создании сложных технических объектов
 - Методы моделирования компонентовэлектронных и электротехнических схем
 - Методы синтеза и исследования моделей электротехнических устройств.
 - Особенности математического моделирования инженерно-физических объектов
 - . Математические методы оптимизации характеристик схем.
- 11.2. Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

Для успешного достижения учебных целей практических занятий при их организации должны выполняться следующие основные требования:

соответствие действий обучающихся ранее изученным на лекционных и практических занятиях методикам и методам;

- максимальное приближение действий студентов к реальным, соответствующим будущим функциональным обязанностям по профессии;
- поэтапное формирование умений и навыков, т.е. движение от знаний к умениям и навыкам, от простого к сложному и т.д.;
- использование при работе фактических документов, технологических карт, бланков и т.п.;
- выработка индивидуальных и коллективных умений и навыков. Основным методическим документом преподавателя при подготовке и проведении практического занятия являются методические рекомендации.

План занятия: краткое содержание (тезисы) вступительной части: проверка готовности к занятию, объявление темы, учебных целей и вопросов, инструктаж по технике безопасности, распределение по учебным местам и определение последовательности работы на них.

11.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

В текущий контроль успеваемости входит: посещение занятий, наличие письменного конспекта, своевременная сдача и защита отчетов.

11.5. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

- дифференцированный зачет это форма оценки знаний, полученных обучающимся при изучении дисциплины, при выполнении курсовых проектов, курсовых работ, научно-исследовательских работ и прохождении практик с аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».
- На зачете проверяются знания студентов. На зачет выносятся:
- материалы, составляющий основную теоретическую часть данного зачетного раздела, на основе которого формируются ведущие понятия курса;
- фактический материал, составляющий основу предмета;
- решение задач, ситуаций, выполнение заданий, позволяющих судить об уровне умения применять знания;
- задания и вопросы, требующие от учащихся навыков самостоятельной работы, умений работать с учебником, пособием.
- Дифференцированный зачёт проводится по всему материалу, по итогам выставляется традиционная оценка.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой