МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 1

УТВЕРЖДАЮ

Руководитель образовательной программы

доц.,к.т.н.,доц.

(должность, уч. степень, звание)

О.Я. Солёная

ревенициалы, фамилия)

(подпись)

«22» _июня 2025__ г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Математика. Аналитическая геометрия и линейная алгебра» (Наименование дисциплины)

Код направления подготовки/ специальности	13.03.02			
Наименование направления подготовки/ специальности	Электроэнергетика и электротехника			
Наименование направленности	Энергетические электрические машины			
Форма обучения	очная			
Год приема	2023			

Лист согласования рабочей программы дисциплины

программу составил (а)		
ДОЦ.,К.П.Н., ДОЦ (должность, уч. степень, звание)	21.06.2025	И.Ю. Пироженко (инициалы, фамилия)
Программа одобрена на заседа «21» июня 2025 г, протокол .	• •	
Заведующий кафедрой № 1	21.06.25 (подпись, дата)	А.О. Смирнов (инициалы, фамилия)
Заместитель директора инстит	ута №3 по методической рабо	те
Ст. преподаватель	22.06.25	Н.В. Решетникова
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)

Аннотация

Дисциплина «Математика. Аналитическая геометрия и линейная алгебра» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 13.03.02 «Электроэнергетика и электротехника» направленности «Энергетические электрические машины». Дисциплина реализуется кафедрой «№1».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

УК-2 «Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений»

ОПК-3 «Способен применять соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач»

Содержание дисциплины охватывает круг вопросов, связанных с дифференциальным и интегральным исчислением, теорией пределов и рядов и их применением.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 5 зачетных единиц, 180 часов.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Дисциплина «Математика. Аналитическая геометрия и линейная алгебра» является важной составной частью курса высшей математики, который лежит в основе всей системы высшего образования современного специалиста и изучает пространственные формы и количественные соотношения окружающего нас действительного мира.

Изучение данной дисциплины позволяет развить пространственное представление студента; стимулирует его воображение; развивает его счетные способности; позволяет демонстрировать целеустремленность, организованность при проведении большего объема вычислений; объединяет большинство раннее изученных понятий.

Важность указанных положений обусловлена тем, что математика является не только мощным средством решения прикладных задач и универсальным языком науки, но также и элементом общей культуры.

Математические методы исследования, моделирования, проектирования, опирающуюся на данную дисциплину, играют все большую роль в современной науке и технике. В значительной степени это вызвано все убыстряющимся развитием науки и техники, главным образом вычислительной техники и информационных систем, а также компьютеризацией практически всех областей знаний. Возможности успешного использования математики для решения конкретных задач существенно расширяются, что, в свою очередь, приводит к новым требованиям, предъявляемым к математическому образованию современных специалистов в области математических методов.

В области воспитания личности целью подготовки по данной дисциплине является формирование способности логически верно, аргументированно и ясно строить устную и письменную речь.

- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП BO).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа)	Код и наименование	Код и наименование индикатора
компетенции	компетенции	достижения компетенции
Универсальные компетенции	УК-2 Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений	УК-2.3.1 знать виды ресурсов и ограничения для решения поставленных задач УК-2.У.1 уметь проводить анализ поставленной цели и формулировать задачи, которые необходимо решить для ее достижения УК-2.У.3 уметь выдвигать альтернативные варианты действий с целью выбора оптимальных способов решения задач, в том числе с помощью цифровых средств УК-2.В.2 владеть навыками выбора оптимального способа решения задач с учетом имеющихся условий, ресурсов и ограничений
Общепрофессиональные	ОПК-3 Способен	ОПК-3.Д.1 применяет математический

компетенции	применять соответствующий	аппарат аналитической геометрии, линейной алгебры, дифференциального
	физико-	и интегрального исчисления функции
	математический	одной переменной
	аппарат, методы	
	анализа и	
	моделирования,	
	теоретического и	
	экспериментального	
	исследования при	
	решении	
	профессиональных	
	задач	

2. Место дисциплины в структуре ОП

Дисциплина не базируется на знаниях, ранее приобретенных студентами при изучении в высшей школе каких -либо дисциплин.

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и используются при изучении других дисциплин: Математика. Теория вероятностей и математическая статистика

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

		Трудоемкость по	
Вид учебной работы	Всего	семестрам	
		№1	
1	2	3	
Общая трудоемкость дисциплины,	5/ 180	5/ 180	
ЗЕ/ (час)	3/ 180	3/ 100	
Из них часов практической подготовки			
Аудиторные занятия, всего час.	68	68	
в том числе:			
лекции (Л), (час)	34	34	
практические/семинарские занятия (ПЗ),	34	34	
(час)		34	
лабораторные работы (ЛР), (час)			
курсовой проект (работа) (КП, КР), (час)			
экзамен, (час)	54	54	
Самостоятельная работа, всего (час)	58	58	
Вид промежуточной аттестации: зачет,			
дифф. зачет, экзамен (Зачет, Дифф. зач,	Экз.	Экз.	
Экз.**)			

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции (час)	П3 (С3) (час)	ЛР (час)	КП (час)	СРС (час)
	Семестр	` /	(100)	(ide)	(luc)
Раздел 1. Комплексные числа и матрицы	6	8			8
Раздел 2. Системы линейных уравнений	6	9			8
Раздел 3. Линейные пространства	5	0			8
Раздел 4. Векторы	6	8			8
Раздел 5. Прямая на плоскости	4	4			8
Раздел 6. Прямая и плоскость в пространстве	4	5			8
Раздел 7. Кривые второго порядка	3	0			10
Итого в семестре:	34	34			58
Итого:	34	34	0	0	58

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий		
1.	Понятие комплексного числа. Действия над комплексными числами в		
	алгебраической форме. Действия над комплексными числами в		
	тригонометрической форме. Формула Муавра. Извлечение корня из		
	комплексного числа. (2 часа)		
	Понятие матрицы. Линейные операции над матрицами. Линейная		
	зависимость и независимость матриц. Транспонирование матриц.		
	Умножение матриц. Многочлены от квадратных матриц (4 часа)		
2.	Определители и их свойства. Обратная матрица. Решение простейших		
	матричных уравнений. Матричный метод решения линейных		
	уравнений. (2 часа)		
	Метод Крамера. Метод Гаусса. (2 часа)		
	Собственные числа и собственные векторы квадратных матриц.		
	Функции от квадратных матриц (2 часа)		
3.	Линейные пространства. Определение и примеры. Базис и		
	координаты. Линейные преобразования. Матрица линейного		
	преобразования. (5 часов)		
4.	Геометрические векторы. Основные определения. Линейные операции		
	над векторами. Линейная независимость векторов. Базис. Координаты.		
	Системы координат на плоскости и в пространстве (4 часа)		
	Скалярное произведение векторов. Векторное произведение векторов.		
	Смешанное произведение векторов. (2 часа)		
5.	Уравнения прямой на плоскости. Задачи на составление уравнений		
	прямой. (2 часа)		

	Угол между прямыми на плоскости. Расстояние от точки до прямой на		
	плоскости. Расстояние между параллельными прямыми. (2 часа)		
6.	Уравнения плоскости. Задание прямой в пространстве. (2 часа)		
	Угол между плоскостями. Угол между прямыми в пространстве. Угол		
	между прямой и плоскостью. Расстояние от точки до плоскости.		
	Расстояние между параллельными плоскостями. Расстояние от точки		
	до прямой в пространстве. (2 часа)		
7.	Эллипс. Гипербола. Парабола. Полярное уравнение кривой второго		
	порядка. Канонические уравнения кривой второго порядка (3 часа)		

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

№ п/п	Темы практических занятий Действия над комплексными	Формыпракти ческих занятий Семестр 1 Решение	Трудоем-кость, (час)	Из них практической подготовки, (час)	№ раздела дисцип-лины
2.	числами в алгебраической форме. Тригонометрическая форма комплексного числа.	задач	2		1
2.	Действия над комплексными числами в тригонометрической форме	Решение задач	2		1
3.	Линейные операции над матрицами. Транспонирование матриц. Умножение матриц	Решение задач	4		1
4.	Вычисление определителей. Обратная матрица. Решение матричных уравнений.	Решение задач	3		2
5.	Матричный метод решения систем линейных уравнений. Метод Крамера	Решение задач	3		2
6.	Метод Гаусса	Решение задач	3		2
7.	Разложение векторов по базису. Вычисление координат точек в общей декартовой системе координат.	Решение задач	2		4
8.	Скалярное произведение векторов	Решение задач	2		4
9.	Векторное и смешанное произведения векторов	Решение задач	4		4
10.	Уравнения прямой на плоскости.	Решение задач	2		5
11.	Задачи на прямую на плоскости	Решение задач	2		5

12.	Прямая и плоскость в	Решение	5	6
	пространстве	задач		
	Всего:		34	

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	$N_{\underline{0}}$
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	раздела
Π/Π	паименование лаоораторных раоот	(час)	подготовки,	дисцип
			(час)	лины
	Учебным планом не п	редусмотрено		
	Всего			

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего,	Семестр 1,
Вид самостоятсявной расоты	час	час
1	2	3
Изучение теоретического материала	15	15
дисциплины (ТО)	13	13
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю	15	15
успеваемости (ТКУ)	13	13
Домашнее задание (ДЗ)	15	15
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной	13	13
аттестации (ПА)	13	13
Всего:	58	58

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8– Перечень печатных и электронных учебных изданий

Шифр/	Библиографическая ссылка	Количество
URL адрес	виолнографическая севілка	экземпляров в
онд идрес		библиотеке
		(кроме
		электронных
		экземпляров)
517	Пискунов Н. С. Дифференциальное и	159
П34	интегральное исчисления: учебник: В 2 т., Т. 1. /	
	Н. С. Пискунов СПб.: Мифрил, - 1996 416 с.	
517	Пискунов Н.С. Дифференциальное и	145
П34	интегральное исчисление: учебное пособие. Т. 2 /	
	Н. С. Пискунов Изд. стер М.: Интеграл-Пресс,	
	1998 544 c.	
517	Пискунов Н. С. Дифференциальное и	237
П34	интегральное исчисления: В 2 т.: учебное пособие	
	для студентов втузов М.: Интеграл-Пресс, 2004 -	
	- 2004 415 c.	
517	Берман, Г. Н. Сборник задач по курсу	165
Б50	математического анализа: учебное пособие / Г. Н.	
	Берман 22-е изд., перераб СПб.: Профессия,	
	2005 432 c.	
517	Высшая математика. Ряды: учебное пособие / Ю.	167
Γ 96	А. Гусман, С. П. Помыткин, А. О. Смирнов; С	
	Петерб. гос. ун-т аэрокосм. приборостроения	
	СПб. : Изд-во ГУАП, 2015 77 с.	DEC 4
https://e.lanbook.	Фихтенгольц Г.М. Основы математического	ЭБС Лань
com/book/65055	анализа. В 2-х тт. Том 1-ый - Санкт-Петербург:	
https://s.loub.colv	Лань, 2015 448с.	ЭГС Логг
https://e.lanbook.	Фихтенгольц Г.М. Основы математического	ЭБС Лань
com/book/411	анализа. В 2-х тт. том 2-й - Санкт-Петербург: Лань, 2008 464c.	
https://e.lanbook.	Сборник задач по математическому анализу. Том	ЭБС Лань
com/book/2226	1. Предел. Непрерывность. Дифференцируемость	ЭБС Лань
COM/ DOOK/ 2220	/ Л.Д. Кудрявцев [и др.] Москва: Физматлит,	
	2010. — 496 с.	
	Сборник задач по математическому анализу. Том	ЭБС Лань
https://e.lanbook.	2. Интегралы. Ряды: учеб. пособие / Л.Д.	3DC TIMID
com/book/2227	Кудрявцев [и др.] Москва: Физматлит, 2009	
	504 c.	
http://e.lanbook.c	Балдин К.В. Математический анализ. / К.В.	ЭБС Лань
om/book/74580	Балдин, В.Н. Башлыков, А.В. Рукосуев М.:	
	ФЛИНТА, 2015. — 361 с.	
http://e.lanbook.c	Бермант А.Ф. Краткий курс математического	ЭБС Лань
om/book/2660	анализа. / А.Ф. Бермант, И.Г. Араманович СПб.:	
	Лань, 2010 736 с.	
http://e.lanbook.c	Бесов О.В. Лекции по математическому анализу	ЭБС Лань
om/book/72002	М.: Физматлит, 2015 480 с.	
http://e.lanbook.c	Злобина С.В. Математический анализ в задачах и	ЭБС Лань
om/book/2377	упражнениях. / С.В. Злобина, Л.Н. Посицельская.	
	- M. : Физматлит, 2009 360 c.	
https://e.lanbook.	Буркова Е. В. Математический анализ. / Е. В.	ЭБС Лань
com/book/147557	Буркова, О. А. Шушерина Красноярск: СибГУ	

им. академика М. Ф. Решетнёва, 2018. - 128 с.

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование
http://www.math-net.ru	Общероссийский математический портал
http://mathhelpplanet.com/	Математический форум Math Help Planet
http://e.lanbook.com/view	ЭБС «Лань»

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

1 00 0 0 1 1 1 1 1 1 1	· 10 11-p · 1-12 iip · i p · i p · i i i i i i i i i i i
№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	
2	Аудитория для практических занятий	

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

1 1 1 1	$\frac{1}{1}$
Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;

	רד ז	r
	ы	Ι.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	уровия сформированности компетенции	
5-балльная шкала	Характеристика сформированных компетенций	
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 	
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 	
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 	
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 	

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

	1 \ /	
№ п/п	Перечень вопросов (задач) для экзамена	Код
J 11/11	перечень вопросов (задач) для экзамена	индикатора
		УК-2.У.1
1.	Задание 1.	ОПК-3.Д.1
	1) Вычислить произведение комплексных чисел в	

алгебраической форме записи

$$(5+2i)*(6+5i)$$

2) Верно ли утверждение: «Действительная часть произведения комплексных чисел в алгебраической форме записи равна произведению действительных частей сомножителей». Ответ аргументируйте.

Задание 2.

1) Вычислить произведение комплексных чисел в алгебраической форме записи

$$(7-4i)*(1+3i)$$

2) Верно ли утверждение: «Действительная часть произведения комплексных чисел в алгебраической форме записи вычисляется как разность произведения действительных частей и произведения мнимых частей сомножителей». Ответ аргументируйте.

Задание 3.

1) Вычислить произведение комплексных чисел в алгебраической форме записи

$$(7+4i)*(4-3i)$$

2) Верно ли утверждение: «Действительная часть произведения комплексных чисел в алгебраической форме записи вычисляется как сумма произведения действительных частей и произведения мнимых частей сомножителей». Ответ аргументируйте.

Задание 4.

1) Вычислить произведение комплексных чисел в алгебраической форме записи

$$(9-4i)*(8-5i)$$

2) Верно ли утверждение: «Действительная часть произведения комплексных чисел в алгебраической форме записи вычисляется как произведения мнимых частей сомножителей». Ответ аргументируйте.

Задание 5.

1) Вычислить произведение комплексных чисел в алгебраической форме записи

$$(9+6i)*(2-7i)$$

2) Верно ли утверждение: «Произведение комплексных чисел в алгебраической форме записи может быть вычислено по правилу вычисления произведения многочленов» Ответ

	аргументируйте.	
2.	Как называется форма записи комплексного числа, имеющая вид $z= z \cdot(\cos\phi+i\sin\phi)$, как называются в этой записи $ z $ и ϕ ?	УК-2.3.1 ОПК-3.Д.1
3.	Результат какой операции над комплексными числами может быть записан в виде $ z_1 \cdot z_2 \ (\cos(\phi_1+\phi_2)+i\sin(\phi_1+\phi_2))\ ?$	УК-2.3.1 ОПК-3.Д.1
4.	Результат какой операции над комплексными числами может быть записан в виде $ z_1 $: $ z_2 $ · $(cos(\phi_1-\phi_2)+isin(\phi_1-\phi_2))$?	УК-2.3.1 ОПК-3.Д.1
5.	Задание 1. 1) Комплексное число Z записано в алгебраической и в тригонометрической формах: $Z = \frac{\sqrt{3}}{2} + i \frac{1}{2} = 1(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$ Найдите 12-ю степень числа Z 2) Какую форму записи числа вы использовали? Обоснуйте свой выбор Задание 2. 1) Комплексное число Z записано в алгебраической и в тригонометрической формах: $Z = 5 + i 5\sqrt{3} = 10(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})$ Найдите 3-ю степень числа Z 2) Какую форму записи числа вы использовали? Обоснуйте свой выбор	УК-2.У.1 УК-2.В.2 ОПК-3.Д.1
6.	Задание 1. 1) Найти матрицу $C = 4A + 3B^t$, где $A = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 3 & -3 \end{pmatrix} B = \begin{pmatrix} 2 & -2 \\ -1 & 3 \\ 3 & -3 \end{pmatrix}$ 2) Выберите из списка цифровые средства, которые могут быть применены для решения данной задачи. а) Microsoft Access b) Wolfram Mathematica c) Microsoft PowerPoint Задание 2. 1. Найти матрицу $C = 4A - 5B^t$, где	УК-2.3.1 УК-2.У.3

$$A = \begin{pmatrix} 1 & 4 & 2 \\ -1 & 3 & -4 \end{pmatrix} B = \begin{pmatrix} 2 & -2 \\ -1 & 4 \\ 3 & -3 \end{pmatrix}$$

- 2. Выберите из списка цифровые средства, которые могут быть применены для решения данной задачи.
 - a) Microsoft Access
 - b) Wolfram Mathematica
 - c) Microsoft PowerPoint

Задание 3.

1. Найти матрицу $C = 2A + 3B^t$, где

$$A = \begin{pmatrix} 1 & 4 & 2 \\ -2 & 3 & -3 \end{pmatrix} B = \begin{pmatrix} 2 & -2 \\ -1 & 4 \\ -4 & -3 \end{pmatrix}$$

- 2. Выберите из списка цифровые средства, которые могут быть применены для решения данной задачи.
 - a) Microsoft Access
 - b) Wolfram Mathematica
 - c) Microsoft PowerPoint

Задание 4.

1. Найти матрицу $C = 3A - 5B^t$, где

$$A = \begin{pmatrix} 1 & 0 & 2 \\ -2 & 3 & -3 \end{pmatrix} B = \begin{pmatrix} 1 & -2 \\ -1 & 3 \\ 3 & -3 \end{pmatrix}$$

- 2. Выберите из списка цифровые средства, которые могут быть применены для решения данной задачи.
 - a) Microsoft Access
 - b) Wolfram Mathematica
 - c) Microsoft PowerPoint

Задание 5.

1. Найти матрицу $C = 4A + 3B^{t}$, где

$$A = \begin{pmatrix} 1 & 4 & 2 \\ -2 & 3 & -4 \end{pmatrix} B = \begin{pmatrix} 1 & -2 \\ -1 & 4 \\ 3 & -3 \end{pmatrix}$$

- 2. Выберите из списка цифровые средства, которые могут быть применены для решения данной задачи.
- a) Microsoft Access
- b) Wolfram Mathematica
- c) Microsoft PowerPoint
 - 1. Запишите результат действий над матрицами.

УК-2.3.1

7. A+0=...

2. Запишите результат действий над матрицами

A + (-A) =

	2. The area ways to the area ways	
	3. Продолжите формулу	
	7(A+B)= 4. Продолжите формулу	
	5A-5B= 5	
	5. Продолжите формулу	
	$2 \times (4A) =$	
	Задание 1.	УК-2.У.3
	1) Найти произведение матриц $A * B$, где	УК-2.В.2
	$A = \begin{pmatrix} 0 & -2 & -4 \end{pmatrix} B = \begin{pmatrix} 2 & 5 \\ 0 & 3 \end{pmatrix}$	
	$A = \begin{pmatrix} 0 & -2 & -4 \\ 2 & -4 & 5 \end{pmatrix} B = \begin{pmatrix} 2 & 5 \\ 0 & -2 \\ 2 & 0 \end{pmatrix}$	
	2) Выберите из списка цифровые средства, которые могут	
	быть применены для решения данной задачи. Обоснуйте	
	выбор цифрового средства а) Microsoft Access	
	b) Microsoft PowerPoint	
	c) Wolfram Mathematica	
	Задание 2.	
	1) Найти произведение матриц $A * B$, где	
	(4 3)	
	$A = \begin{pmatrix} 0 & -2 & -3 \\ 1 & 3 & 0 \end{pmatrix} B = \begin{pmatrix} 4 & 3 \\ 1 & -2 \\ 3 & 0 \end{pmatrix}$	
	(3 0 /	
8.	2) Выберите из списка цифровые средства, которые могут	
	быть применены для решения данной задачи.	
	a) Microsoft Access	
	b) Microsoft PowerPointc) Wolfram Mathematica	
	vv omani vranicinanca	
	Задание 3.1) Найти произведение матриц <i>A</i> * <i>B</i>, где	
	$A = \begin{pmatrix} 0 & -2 & -3 \\ 2 & 3 & 5 \end{pmatrix} B = \begin{pmatrix} 4 & 3 \\ 0 & -3 \\ 2 & 0 \end{pmatrix}$	
	(2 0 /	
	2) Выберите из списка цифровые средства, которые могут быть применены для решения данной задачи.	
	a) Microsoft Accessb) Microsoft PowerPoint	
	c) Wolfram Mathematica	
	Задание 4.	
		i .

	1) Найти произведение матриц $A * B$, где $\begin{pmatrix} 4 & 5 \end{pmatrix}$	
	$A = \begin{pmatrix} 0 & -2 & -3 \\ 2 & -4 & 0 \end{pmatrix} B = \begin{pmatrix} 4 & 5 \\ 1 & -3 \\ 3 & 0 \end{pmatrix}$	
	2) Выберите из списка цифровые средства, которые могут быть применены для решения данной задачи. а) Microsoft Access	
	a) Microsoft Accessb) Microsoft PowerPointc) Wolfram Mathematica	
	Задание 5.	
	Найти произведение матриц $A * B$, где $A = \begin{pmatrix} 4 & -1 & -4 \\ 1 & -4 & 0 \end{pmatrix} B = \begin{pmatrix} 2 & 3 \\ 1 & -2 \\ 2 & 0 \end{pmatrix}$	
	$\begin{pmatrix} 1 & -4 & 0 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 2 & 0 \end{pmatrix}$ 2. Выберите из списка цифровые средства, которые могут быть	
	применены для решения данной задачи. a) Microsoft Access	
	b) Microsoft PowerPoint c) Wolfram Mathematica	
	Задание 1.	УК-2.У.1
	1) Найти определитель 2-го порядка матрицы 2 5	УК-2.В.2
	2) Обоснуйте как вычислить определитель второго порядка.	
	Задание 2. 1) Найти определитель 2-го порядка матрицы 2 3 4 -5	
	2) Обоснуйте как вычислить определитель второго порядка.	
9.	Задание 3. 1) Найти определитель 2-го порядка матрицы $\begin{vmatrix} 1 & -3 \\ 5 & 8 \end{vmatrix}$	
	2) Обоснуйте как вычислить определитель второго порядка.	
	Задание 4. 1) Найти определитель 2-го порядка матрицы 7	
	2) Обоснуйте как вычислить определитель второго порядка.	
	16	

	n	1
	Задание 5. 1) Найти определитель 2-го порядка матрицы 5 2 10 3	
	2) Обоснуйте как вычислить определитель второго порядка.	
	Задание: дана матрица $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ 4 & -2 & 5 \end{pmatrix}$ Найдите алгебраические дополнения: 1. A_{11}	УК-2.У.1
10.	2. A ₁₂	
	3. A ₃₂	
	4. A ₂₃	
	5. A ₃₃	
11.	Чему равен определитель треугольной матрицы?	УК-2.3.1
11.		
12.	Обозначим $A_1, A_2,, A_m$ — строки матрицы и $a_1; a_2;; a_m$ — действительные числа. Если существует такой набор чисел, среди которых есть хотябы одно число отличное от нуля, и при этом линейная комбинация строк матрицы с этими числами равна нулевой строке: $a_1A_1 + a_2A_2 + \cdots + a_mA_m \equiv 0$, где $0 = (0,0,,0)$. Как в этом случае называются строки матрицы?	УК-2.3.1
13.	Пусть матрицы A и A^{-1} удовлетворяют условию $A \cdot A^{-1} = A^{-1} \cdot A = E$, где E — единичная матрица n -го порядка. Как называются такие матрицы?	УК-2.3.1
14.	Задание 1. Найти матрицу X из уравнения $A*X=B$, где $A=\begin{pmatrix} -1 & 2 \\ -2 & 5 \end{pmatrix}$ $B=\begin{pmatrix} -7 & -4 \\ -17 & -9 \end{pmatrix}$ Задание 2. Найти матрицу X из уравнения $A*X=B$, где $A=\begin{pmatrix} -1 & 2 \\ 3 & -4 \end{pmatrix}$ $B=\begin{pmatrix} -9 & -4 \\ 23 & 10 \end{pmatrix}$	УК-2.У.1 УК-2.В.2
	$A = \begin{pmatrix} 3 & -4 \end{pmatrix}$ $B = \begin{pmatrix} 23 & 10 \end{pmatrix}$ Задание 3. Найти матрицу X из уравнения $A * X = B$, где $A = \begin{pmatrix} -1 & 3 \\ 2 & -4 \end{pmatrix}$ $B = \begin{pmatrix} -10 & -7 \\ 14 & 12 \end{pmatrix}$	

	Задание 4. Найти матрицу X из уравнения $A*X=B$, где $A=\begin{pmatrix} 1 & -2 \\ 3 & -7 \end{pmatrix}$ $B=\begin{pmatrix} 9 & 6 \\ 29 & 19 \end{pmatrix}$	
	Задание 5. Найти матрицу X из уравнения $A*X=B$, где $A=\begin{pmatrix} 1 & -3 \\ 2 & -8 \end{pmatrix}$ $B=\begin{pmatrix} 14 & 5 \\ 34 & 12 \end{pmatrix}$	
15.	Как называется система алгебраических уравнений, каждое из которых является линейным?	УК-2.3.1
16.	Какие методы решения систем линейных алгебраических уравнений вам известны?	УК-2.3.1
17.	Сравните условия применения методов решения систем линейных уравнений. Какой метод решения системы линейных алгебраических уравнений применяются в том случае, если определитель матрицы системы равен нулю?	УК-2.У.3
18.	Сравните условия применения методов решения систем линейных уравнений. Какой метод решения системы линейных алгебраических уравнений применяются в том случае, если матрица системы не является квадратной?	ОПК-1.У.1 УК-2.У.3
19.	При каком условии однородная система линейных уравнений имеет ненулевое решение?	УК-2.3.1
20.	Как называется двумерная система координат, в которой каждая точка на плоскости определяется двумя числами - полярным углом и полярным радиусом?	ОПК-1.3.1
21.	Как называется система координат, в которой каждая точка в пространстве определяется тремя числами - (r, θ, ϕ) , где r радиус-вектор точки, θ и ϕ – зенитный и азимутальный углы соответственно?	УК-2.3.1
22.	Что такое вектор?	УК-2.3.1
23.	Как называется вектор, начало которого совпадает с его концом?	УК-2.3.1
24.	По какой формуле определяется скалярное произведение векторов?	УК-2.3.1
25.	По какой формуле вычисляется скалярное произведение векторов \overrightarrow{a} и \overrightarrow{b} , если известны координаты векторов в декартовой системе (в системе : $0x$, $0y$, $0z$)	УК-2.3.1
26.	По какой формуле вычисляется векторное произведение векторов, если известны их координаты в декартовой системе	УК-2.3.1

	координат (х, у, z)?	
27.	По какой формуле определяется модуль векторного произведения векторов?	УК-2.3.1
28.	Чему равно расстояние от точки до прямой?	УК-2.3.1
29.	Задание 1. Составить уравнение прямой проходящей через точку $M(2,4)$ и перпендикулярной прямой $\frac{x+2}{-5} = \frac{y-9}{-4}$. Ответ записать в виде уравнения прямой с угловым коэффициентом Задание 2. Составить уравнение прямой проходящей через точку $M(1,-4)$ и перпендикулярной прямой $-4x-5y+14=0$. Ответ записать в виде уравнения прямой с угловым коэффициентом Задание 3. Составить уравнение прямой проходящей через точку $M(-1,-3)$ и параллельной прямой $\frac{x+16}{-4} = \frac{y-9}{-5}$. Ответ записать в виде уравнения прямой с угловым коэффициентом Задание 4. Составить уравнение прямой проходящей через точку $M(1,-1)$ и перпендикулярной прямой $y=-5x+2$. Ответ записать в виде уравнения прямой с угловым коэффициентом Задание 5. Составить уравнение прямой проходящей через точку $M(3,1)$ и перпендикулярной прямой $\frac{x+1}{-5} = \frac{y-6}{-4}$. Ответ записать в виде уравнения прямой с угловым коэффициентом	
30.	Каким уравнением описывается плоскость в декартовых координатах (x, y, z)?	УК-2.3.1
31.	Сформулируйте необходимое и достаточное условие параллельности прямой и плоскости.	УК-2.3.1
32.	Каким уравнением описывается прямая, проходящая через точку (x_0, y_0, z_0) и имеющая направляющий вектор с координатами (l, m, n) ?	УК-2.3.1
33.	Каким уравнением описывается прямая, проходящая через две точки (x_1, y_1, z_1) и (x_2, y_2, z_2) ?	УК-2.3.1

34.	Каким образом можно задать прямую с помощью двух плоскостей?	УК-2.3.1
35.	С помощью какой формулы можно найти угол между прямыми?	УК-2.3.1
36.	Нормаль к плоскости имеет координаты (A, B, C) ; координаты направляющего вектора прямой (l,m,n) / С помощью какой формулы можно найти угол между прямой и плоскостью?	УК-2.3.1
37.	По какой формуле можно определить расстояние от точки до плоскости?	УК-2.3.1
38.	Напишите каноническое уравнение эллипса.	УК-2.3.1
39.	Напишите каноническое уравнение гиперборы.	УК-2.3.1
40.	Напишите каноническое уравнение параболы.	УК-2.3.1

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

1 4031	таолица 18 – примерный перечень вопросов для тестов				
№ п/п	Примернь	ий перечень вопросов для тестов	Код индикатора		
		Типовой вариант тестов			
		1 семестр			
1	Дана матрица	1) a_{22}	УК-2.3.1		
	a_{11} a_{12}	2) -a ₁₂	УК-2.У.1 УК-2.У.3 УК-2.В.2		
	$A^{-}(a_{21} a_{22})$. Её алгебраическое	3) a ₁₁			
	дополнение A_{22}	4) $-a_{22}$			

(Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа) 2 Из приведённых матриц обратшые существуют у матриц 2 (1) (2 (2 (2 (2 (2 (3 (2 (2 (3 (2 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3		равно	Ответ: 3)	
2 Из приведённых матриц обратпые существуют у матриц 1) (31 1 312			(Инструкция: Прочитайте текст, выберите	
2 Из приведённых матриц обратные существуют у матриц 1) (a₁1 a₁2 a₂2 0 a₃2) ОПК-3.Д.1 2) (0 0 a₁2 0 a₂3 0 a₃3) 2) (0 0 a₂3 0 a₃3) (0 a₂2 a₂3 0 a₃3) 3) (a₁1 a₁2 a₁3 0 a₂2 a₂3 0 0 a₃3) (инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа) 3 Каким методом можно решить систему, определитель основной матрицы которой равен нулю 1) Г. Крамера уК-2.3.1 уК-2.У.3 уК-2.У.			правильный ответ и запишите аргументы,	
матриц обратные существуют у матриц 1)			обосновывающие выбор ответа)	
матриц обратные существуют у матриц 1)				
3 Каким методом правильный ответ и запишите аргументы, обосновывающие выбор ответа) 3 Каким методом можно решить систему, определитель основной матрицы которой равен нулю 4 Система совместна тогда и только тогда, 2 ранг матрицы системы равен 4 Система совместна тогда и только тогда, 2 ранг матрицы системы равен	2	матриц обратные существуют у		ОПК-3.Д.1
4) $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 0 \end{pmatrix}$ Ответ: 3) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа) 3 Каким методом можно решить систему, определитель основной матрицы которой равен нулю 4) Любым способом Ответ: 2) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа) 4 Система совместна тогда и только тогда, 2) ранг матрицы системы равен			$\begin{pmatrix} 0 & 0 & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix}$	
Ответ: 3) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа) 3 Каким методом можно решить систему, определитель основной матрицы которой равен нулю 4) любым способом Ответ: 2) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа) 4 Система совместна 1) больше 1 тогда и только тогда, 2) ранг матрицы системы равен			3) $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix}$	
(Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа) 3 Каким методом можно решить систему, определитель основной матрицы которой равен нулю 4) любым способом Ответ: 2) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа) 4 Система совместна 1) больше 1 тогда и только тогда, 2) ранг матрицы системы равен			4) $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 0 \end{pmatrix}$	
правильный ответ и запишите аргументы, обосновывающие выбор ответа) 3 Каким методом можно решить систему, определитель основной матрицы которой равен нулю 4) любым способом которой равен нулю Ответ: 2) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа) 4 Система совместна 1) больше 1 тогда и только тогда, 2) ранг матрицы системы равен			Ответ: 3)	
обосновывающие выбор ответа) 3 Каким методом можно решить систему, определитель основной матрицы которой равен нулю 4) любым способом Ответ: 2) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа) 4 Система совместна 1) больше 1 ОПК-3.Д.1 Тогда и только тогда, 2) ранг матрицы системы равен			(Инструкция: Прочитайте текст, выберите	
3 Каким методом можно решить систему, определитель основной матрицы которой равен нулю Ответ: 2) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа) 4 Система совместна тогда и только тогда, 2) ранг матрицы системы равен 1) Г. Крамера УК-2.3.1 УК-2.У.3 УК-2.У.3 УК-2.У.3 УК-2.В.2 ОТВет: 2) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа)			правильный ответ и запишите аргументы,	
можно решить систему, определитель основной матрицы 4) любым способом которой равен нулю Ответ: 2) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа) 4 Система совместна 1) больше 1 тогда и только тогда, 2) ранг матрицы системы равен			обосновывающие выбор ответа)	
можно решить систему, определитель основной матрицы 4) любым способом которой равен нулю Ответ: 2) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа) 4 Система совместна 1) больше 1 тогда и только тогда, 2) ранг матрицы системы равен				
определитель основной матрицы которой равен нулю Ответ: 2) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа) 4 Система совместна 1) больше 1 Тогда и только тогда, 2) ранг матрицы системы равен	3	Каким методом	1) Г. Крамера	
определитель основной матрицы 4) любым способом (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа) 4 Система совместна тогда и только тогда, 2) ранг матрицы системы равен		1	2) К. Ф. Гаусса	УК-2.У.3
которой равен нулю Ответ: 2) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа) 4 Система совместна 1) больше 1 тогда и только тогда, 2) ранг матрицы системы равен		•	3) с помощью обратной матрицы	7 K 2.D.2
Ответ: 2) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа) 4 Система совместна 1) больше 1 ОПК-3.Д.1 тогда и только тогда, 2) ранг матрицы системы равен		1	4) любым способом	
правильный ответ и запишите аргументы, обосновывающие выбор ответа) 4 Система совместна 1) больше 1 ОПК-3.Д.1 тогда и только тогда, 2) ранг матрицы системы равен		которой равен нулю	Ответ: 2)	
обосновывающие выбор ответа) 4 Система совместна 1) больше 1 тогда и только тогда, 2) ранг матрицы системы равен			(Инструкция: Прочитайте текст, выберите	
4 Система совместна 1) больше 1 ОПК-3.Д.1 тогда и только тогда, 2) ранг матрицы системы равен			правильный ответ и запишите аргументы,	
тогда и только тогда, 2) ранг матрицы системы равен			обосновывающие выбор ответа)	
тогда и только тогда, 2) ранг матрицы системы равен	4	Система совместна	1) больше 1	ОПК-3.Д.1

		системы	
		3) ранг равен 0	
		4) ранг равен 1	
		, 1 1	
		Ответ: 2)	
		(Инструкция: Прочитайте текст, выберите	
		правильный ответ и запишите аргументы,	
		обосновывающие выбор ответа)	
5	п 🛨 📝	1) векторы перпендикулярны	УК-2.3.1
3	Для векторов \vec{a} и \vec{b}	, , , , , , , , , , , , , , , , , , , ,	УК-2.У.1
	выполняются	2) векторы параллельны	УК-2.У.3
	условия:	3) векторы не могут лежать на одной	УК-2.В.2
		прямой	
	$\frac{b_x}{b_x} = \frac{b_y}{b_z} = \frac{b_z}{b_z}$	4) векторы лежат на одной прямой	
	a_x a_y a_z	Ответ:2) 4)	
	тогда	(Инструкция: Прочитайте текст, выберите	
		правильные варианты ответов и запишите	
		аргументы, обосновывающие выбор	
		ответов)	
6	Векторное	1) коллинеарной плоскости, в которой	ОПК-3.Д.1
	произведение	лежат перемножаемые вектора	
	векторов \vec{a} и \vec{b} — это	2) перпендикулярный плоскости, в	
	_	которой лежат перемножаемые	
	вектор	векторы 3) нулевой	
		4) совпадающий с одним из	
		,	
		перемножаемых векторов	
		Ответ: 2)	
		(Инструкция: Прочитайте текст, выберите	
		правильный ответ и запишите аргументы,	
		обосновывающие выбор ответа)	
		occinobabatomite batoop orbota)	

7	Расстояние от точки	1) $\frac{ Ax_0+By_0+C }{\sqrt{A^2+B^2}\sqrt{A^2+C^2}}$	ОПК-3.Д.1
	до плоскости можно	$\sqrt{A^2 + B^2} \sqrt{A^2 + C^2}$	
	вычислить по	$\frac{A_1 \cdot A_2 + B_1 B_2 + C_1 C_2}{\sqrt{2} + 2 \cdot 2 \cdot 2}$	
	формуле	$2) \frac{A_1 \cdot A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \cdot \sqrt{A_2^2 + B_2^2 + C_2^2}}$	
		3) $\frac{ Ax_0 + By_0 + Cz_0 + D }{\sqrt{A^2 + B^2 + C^2}}$	
		4) $\frac{ Am+Bn+Cp }{\sqrt{A^2+B^2+C^2}\cdot\sqrt{m^2+n^2+p^2}}$	
		Ответ: 3)	
		(Инструкция: Прочитайте текст, выберите	
		правильный ответ и запишите аргументы,	
		обосновывающие выбор ответа)	
8	Геометрическое	1) гиперболой	ОПК-3.Д.1
	место точек	2) ====================================	
	плоскости, сумма	2) параболой	
	расстояний от	3) окружностью	
	каждой из которых	4) эллипсом	
	до двух данных	Omn om 4)	
	точек этой	Ответ: 4)	
	плоскости есть	(Инструкция: Прочитайте текст, выберите	
	величина	правильный ответ и запишите аргументы,	
	постоянная,	обосновывающие выбор ответа)	
	называется		
9	Найти уравнение	x+1 - y-2 - z-4	УК-2.3.1
	прямой, проходящей	1) $\frac{x+1}{-3} = \frac{y-2}{2} = \frac{z-4}{4}$	УК-2.У.1
	через точку	x+1 - y+2 - z+4	УК-2.У.3 УК-2.В.2
	A(-1;2;4),	$2) \frac{x+1}{3} = \frac{y+2}{2} = \frac{z+4}{4}$	
	перпендикулярно	3) $\frac{x-1}{-3} = \frac{y-2}{-2} = \frac{z-4}{-4}$	
	плоскости	-3 -2 -4	
	3x-2y-4z+1=0	4) $\frac{x+1}{-3} = \frac{y+2}{-2} = \frac{z+4}{-4}$	
		Ответ: 1)	

		(Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа)	
10	Решить систему линейных уравнений методом Гаусса $ \begin{cases} x + y + z = -2 \\ 2x - y + 3z = -10 \\ -x + 2y - z = 5 \end{cases} $	1) x=0, y=1, z= -3 2) x=0, y=1, z= -2 3) x=0, y= -1, z=2 4) x=0, y= -1, z= -2	ОПК-3.Д.1
		Ответ: 1) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа)	
11	Вычислить $\begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & -2 \\ 3 & 2 \end{pmatrix}$	1) $\begin{pmatrix} -1 & -6 \\ 7 & 2 \end{pmatrix}$ 2) $\begin{pmatrix} 7 & 2 \\ 1 & 0 \end{pmatrix}$ 3) $\begin{pmatrix} 0 & 0 \\ 1 & -2 \end{pmatrix}$ 4) $\begin{pmatrix} 7 & 2 \\ -6 & -1 \end{pmatrix}$ Other: 1)	ОПК-3.Д.1
		(Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа)	
12	Дана матрица $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}.$	1) a_{22} 2) $-a_{12}$ 3) a_{11}	УК-2.3.1 УК-2.У.1 УК-2.У.3 УК-2.В.2
	Её алгебраическое дополнение A_{21}	4) -a ₁₁ Ответ: 2)	

	равно	(Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы,	
		обосновывающие выбор ответа)	
13	Матрица A^{-1}	$1) A^{-1} \cdot A \neq A \cdot A^{-1}$	ОПК-3.Д.1
	называется обратной матрице А, если	$2) A^{-1} \cdot A \neq 1$	
	матрице А, если выполняется условие	$3) A^{-1} \cdot A = A \cdot A^{-1} = E$	
		$4) A^{-1} \cdot A = 0$	
		Ответ: 3)	
		(Инструкция: Прочитайте текст, выберите	
		правильный ответ и запишите аргументы,	
		обосновывающие выбор ответа)	
14	Скалярным	1) $ \vec{a} \vec{b} $ arccos α	ОПК-3.Д.1
	произведением двух		
	ненулевых векторов	2) $ \vec{a} \vec{b} \operatorname{ctg} \alpha$	
	\vec{a} и \vec{b} называется	3) $ \vec{a} \vec{b} \cos \alpha$	
	число, равное	4) $ \vec{a} \vec{b} \lg \alpha$	
		Ответ: 3)	
		(Инструкция: Прочитайте текст, выберите	
		правильный ответ и запишите аргументы,	
		обосновывающие выбор ответа)	
15	How nonvo	1) 0	ОПК-3.Д.1
13	Чему равно смешанное	1) 0	ОПК-3.Д.1
	произведение	2) 1	
	векторов	3) -2	
	$\vec{a}\vec{b}\vec{a}$	4) 2	
		Ответ: 1)	
		(Инструкция: Прочитайте текст, выберите	
		правильный ответ и запишите аргументы,	

		обосновывающие выбор ответа)	
16	Уравнение прямой, проходящей через две точки можно составить по формуле	1) $(x-a)+(y-b)=0$ 2) $\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}$ 3) $A(x-x_0)+B(y-y_0)=0$ 4) $y-y_0=k(x-x_0)$ Ответ: 2) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа)	ОПК-3.Д.1
17	Геометрическое место точек, которые характеризуют эксцентриситет є >1 представляет собой	1) Параболу 2) окружность 3) гиперболу 4) эллипс Ответ: 3) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа)	ОПК-3.Д.1
18	Отношение - а называется	1) действительной осью 2) асимптотой 3) эксцентриситетом 4) фокальным радиусом Ответ: 3) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа)	ОПК-3.Д.1

19	Найти уравнение прямой, проходящей через точку $A(-1;2;4)$, перпендикулярно плоскости $3x-2y-4z+1=0$	1) $\frac{x+1}{3} = \frac{y-2}{-2} = \frac{z-4}{-4}$ 2) $\frac{x+1}{3} = \frac{y+2}{2} = \frac{z+4}{4}$ 3) $\frac{x-1}{-3} = \frac{y-2}{-2} = \frac{z-4}{-4}$ 4) $\frac{x+1}{-3} = \frac{y+2}{-2} = \frac{z+4}{-4}$ Ответ: 1)	ОПК-3.Д.1
		правильный ответ и запишите аргументы, обосновывающие выбор ответа)	
20	Определить какое уравнение линии соответствует параболе	 x²+y²-8x=0 x=-¹/₃√25 - y² -2x²+3y²-4x+15y+4=0 x+4y-2y²-5=0 Ответ: 4) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа) 	ОПК-3.Д.1
21	Решить систему линейных уравнений методом Γ аусса $ \begin{cases} x+y+z=2 \\ 2x-y+3z=10 \\ -x+2y-z=-5 \end{cases} $	 x=0, y=1, z=-2 x=0, y=-1, z=2 x=0, y=1, z=2 x=0, y=-1, z=3 Ответ: 4) (Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа) 	ОПК-3.Д.1

22	D		ОПИ 2 П 1
22	Вычислить (-1 -1) (4 -2)	1) (7 1)	ОПК-3.Д.1
	$\begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 & -2 \\ 3 & 2 \end{pmatrix}$	1) (-7 0)	
		$2) \begin{pmatrix} -7 & 0 \\ 7 & 0 \end{pmatrix}$	
		3) $\begin{pmatrix} 1 & 0 \\ 7 & -7 \end{pmatrix}$	
		4) $\begin{pmatrix} 0 & 1 \\ -7 & 7 \end{pmatrix}$	
		Ответ: 2)	
		(Инструкция: Прочитайте текст, выберите	
		правильный ответ и запишите аргументы,	
		обосновывающие выбор ответа)	
23	Какая из точек	1) (0; 3)	ОПК-3.Д.1
	лежит на прямой у =	2) (-1; 3)	
	-2x + 1?	3) (2; 3)	
		4) (-2; 5)	
		Ответ: 2) 4)	
		(Инструкция: Прочитайте текст, выберите	
		правильные варианты ответов и запишите	
		аргументы, обосновывающие выбор	
		ответов)	
2.1		1) (5)	OFFIC 2 T 1
24	Прямая $y = 2x + 5$	1) tg (5)	ОПК-3.Д.1
	образует с	2) tg(-2)	
	положительным	3) arctg(2)	
	направлением оси	4) tg (2)	
	OX угол α , равный	Ответ: 3)	
		Инструкция: Прочитайте текст, выберите	
		правильный ответ и запишите аргументы,	
		обосновывающие выбор ответа)	

25	Угол между прямыми $y = x + 1, y = 5x + 3$ определяется по формуле:	 tg φ =	ОПК-3.Д.1
26	При решении системы линейных уравнений $\begin{cases} x_1 + 3x_2 = 5 \\ 4x_1 - 7x_2 = 8 \end{cases}$ по правилу Крамера определитель Δ имеет вид:	1)	ОПК-3.Д.1
27	При решении системы линейных уравнений $ \begin{cases} x_1 + 2x_2 = 0 \\ 4x_1 + 8x_2 = 1 \end{cases} $ методом Крамера получен ответ	1) (2; -1) 2) метод Крамера неприменим 3) (1; 2) 4) (2; 1) Ответ: 2) Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы,	ОПК-3.Д.1

		обосновывающие выбор ответа)	
28	Решить систему линейных уравнений методом Крамера: $ \begin{cases} x_1 + x_2 - x_3 = 0 \\ 2x_1 - x_2 + x_3 = 3 \\ x_1 - 2x_2 + x_3 = 2 \end{cases} $	1) (1; 0; 0) 2) (0; 1; 0) 3) (0; 0; 1) 4) (1; 0; 1) Ответ: 4) Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа)	ОПК-3.Д.1
29	Показательная форма комплексного числа $z = -1 + i \text{ имеет вид:}$	1) $\sqrt{2}e^{i\frac{-8\pi}{2}}$ 2) $\sqrt{2}e^{i\frac{3\pi}{4}}$ 3) $\sqrt{2}e^{i\frac{\pi}{2}}$ 4) $\sqrt{2}e^{i\frac{\pi}{2}}$ Ответ: 2) Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа)	ОПК-3.Д.1
30	Модуль комплексного числа $z=-i$ равен:	1) 0 2) 1 3) 2 4) 5 Ответ: 2) Инструкция: Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа)	ОПК-3.Д.1
	Какой метод решения системы линейных алгебраических уравнений	1) определитель 2) Крамера системы равен 6 3) определитель 4) Гаусса системы равен нулю	ОПК-3.Д.1

применяются в том случае, если	5) Матрица не квадратная	б) Обратной мтрицы
	Ответ	
	1)	2)
	1)	4)
	1)	6)
	3)	4)
	5)	4)
	(Инструкция: Прочи установите соответс позиции, данной в подберите соответсти (или несколько сооправом столбце)	твие. К каждой левом столбце, вующую позицию ответствующих) в
Решите матричное уравнение. Выполните проверку.	Найти матрицу X из урагде $A = \begin{pmatrix} -1 & 2 \\ 3 & -4 \end{pmatrix}$ $B = \begin{pmatrix} - \\ 2 \end{pmatrix}$ Ответ: $X = \begin{pmatrix} 5 & 2 \\ -2 & -1 \end{pmatrix}$ (Прочитайте текст и запиобоснованный ответ).	

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ	
	Не предусмотрено	

- 10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.
 - 11. Методические указания для обучающихся по освоению дисциплины (Ниже приводятся рекомендации по составлению данного раздела)
- 11.1. Методические указания для обучающихся по освоению лекционного материала (если предусмотрено учебным планом по данной дисциплине).

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- Определения математических терминов.
- Формулировка теоремы.
- Доказательство теоремы.
- Иллюстрирующие примеры.

11.2. Методические указания для обучающихся по прохождению практических занятий (если предусмотрено учебным планом по данной дисциплине)

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

32

Требования к проведению практических занятий

Практические занятия начинаются с записи в журнал преподавателя присутствующих студентов. Затем объявляется тема практических занятий.

Преподаватель читает условие задачи и предлагает студентам самостоятельно решить задачу, используя знания, полученные студентом на лекции. Студент, который первым решил задачу, вызывается к доске. В случае если студент правильно решил задачу, он получает 5 баллов. Если студент решает задачу с помощью преподавателя, то получает 4 балла. Затем, в конце семестра, оценки студентов (включая оценку посещаемости) переводятся в бонусы (качество) от 0 до 5 баллов. Эти бонусы добавляются к общей сумме баллов в рамках модульно-рейтинговой системы.

Студентам выдается домашнее задание в виде задач, которые они сдают в установленные сроки.

11.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- 11.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

В течение семестра в системе дистанционного обучения ГУАП в форме тестирования проводятся две проверочные работы по решению задач и один теоретический опрос (перечень вопросов для тестов размещен в «Банке вопросов» в системе дистанционного обучения ГУАП).

Результаты текущего контроля успеваемости будут учитываться при проведении промежуточной аттестации (при использовании бально-рейтинговой системы оценивания, каждый вид контроля оценивается в баллах, из которых формируется итоговый результат).

11.5. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

– экзамен – форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в

период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой