МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 1

УТВЕРЖДАЮ

Руководитель образовательной программы

доц.,к.т.н.,доц.

(должность, уч. степень, звание)

О.Я. Солёная

(инициалы, фамилия)

(подпись)

«22» _июня 2025 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Прикладная механика» (Наименование дисциплины)

Код направления подготовки/ специальности	13.03.02		
Наименование направления подготовки/ специальности	Электроэнергетика и электротехника		
Наименование направленности	Энергетические электрические машины		
Форма обучения	очная		
Год приема	2023		

Лист согласования рабочей программы дисциплины

Программу составил (а)	f		
Доцент, к.т.н.	2	1.06.25	Е.Э. Аман
(должность, уч. степень, звание)	(подпись, дата	1)	(инициалы, фамилия)
Программа одобрена на заседа «21» июня 2025 г, протокол Ј	1 1		
Заведующий кафедрой № 1	0	1	
д.фм.н.,доц.	21.06.25		А.О. Смирнов
(уч. степень, звание)	(подпись, дата	1)	(инициалы, фамилия)
Заместитель директора инстит		еской работе	
Ст. преподаватель	22.06.25		Н.В. Решетникова
(должность, уч. степень, звание)	(подпись, дата	1)	(инициалы, фамилия)

Аннотация

Дисциплина «Прикладная механика» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 13.03.02 «Электроэнергетика и электротехника» направленности «Энергетические электрические машины». Дисциплина реализуется кафедрой «№1».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

УК-2 «Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений»

ОПК-3 «Способен применять соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач»

ОПК-5 «Способен использовать свойства конструкционных и электротехнических материалов в расчетах параметров и режимов объектов профессиональной деятельности»

Содержание дисциплины «Прикладная механика» охватывает круг вопросов, связанных с предметной областью решения профессиональных задач расчета, проектирования и конструирования механических и электромеханических элементов и устройств, используемых в электромеханических системах. Формирование базовых знаний по расчету, проектированию и конструированию механических и электромеханических элементов и устройств основано на изучении студентами основных понятий и законов механики в приложении к вопросам оптимального построения структурных и кинематических схем механизмов, расчета на прочность и жесткость деталей и узлов механизмов, оптимизации конструктивных параметров и проектирования механизмов.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 6 зачетных единиц, 216 часов.

Язык обучения по дисциплине «русский».

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Цель преподавания дисциплины состоит в формировании базовых знаний по расчету, проектированию и конструированию механических и электромеханических элементов и устройств, изучении методов моделирования, конструирования, исследования и оптимизации параметров и конструкций механических и электромеханических элементов и устройств, используемых в электромеханических системах, привитии обучающимся навыков инженерных расчетов.

- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа)	Код и наименование	Код и наименование индикатора
компетенции	компетенции	достижения компетенции
Универсальные компетенции	УК-2 Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений	УК-2.3.1 знать виды ресурсов и ограничения для решения поставленных задач УК-2.У.1 уметь проводить анализ поставленной цели и формулировать задачи, которые необходимо решить для ее достижения УК-2.У.3 уметь выдвигать альтернативные варианты действий с целью выбора оптимальных способов решения задач, в том числе с помощью цифровых средств УК-2.В.2 владеть навыками выбора оптимального способа решения задач с учетом имеющихся условий, ресурсов и ограничений
Общепрофессиональные компетенции	ОПК-3 Способен применять соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач	ОПК-3.Д.4 демонстрирует знание элементарных основ оптики, квантовой механики и атомной физики ОПК-3.Д.5 демонстрирует понимание физических явлений и умеет применять физические законы механики, молекулярной физики, термодинамики, электричества и магнетизма для решения типовых задач
Общепрофессиональные компетенции	ОПК-5 Способен использовать свойства конструкционных и	ОПК-5.Д.3 выполняет электромагнитные, тепловые и вибрационные исследования для определения запаса прочности и

электротехнических	усталости материалов
материалов в	
расчетах	
параметров и	
режимов объектов	
профессиональной	
деятельности	

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Математика. Аналитическая геометрия и линейная алгебра»,
- «Математика. Математический анализ»,
- «Физика»

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- «Электрические машины»,
- «Электрические и электронные аппараты»,

«Материаловедение

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам №4
1	2	3
Общая трудоемкость дисциплины, 3E/ (час)	6/ 216	6/ 216
Из них часов практической подготовки		
Аудиторные занятия, всего час.	51	51
в том числе:		
лекции (Л), (час)	34	34
практические/семинарские занятия (ПЗ), (час)		
лабораторные работы (ЛР), (час)	17	17
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)	36	36
Самостоятельная работа, всего (час)	129	129
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.	Экз.

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции (час)	ПЗ (СЗ) (час)	ЛР (час)	КП (час)	CPC (час)
Сем	естр 4				
Раздел 1. Основные положения кинематического и силового анализа и синтеза механизмов, используемых в электромеханических системах Тема 1.1. Понятие о числе степеней свободы. Формулы Чебышева и Малышева Тема 1.2. Структурный, кинематический и силовой анализ и синтез механизмов	8 4 4		2 2		11 12 11
Раздел 2. Оценка и обеспечение прочности и жесткости элементов и механизмов, используемых в электромеханических системах. Тема 2.1. Основные требования, предъявляемые к конструкциям деталей механизмов. Тема 2.2. Виды деформаций и напряжений. Тема 2.3. Оценка работоспособности элементов конструкций в общем случае комплексных воздействий внешних силовых факторов:	12 4 4 4		12 3 3 3 3 3		12 12 12 12
Раздел 3. Типовые детали и узлы механизмов, используемых в электромеханических системах Тема 3.1. Валы, оси, опоры и муфты Тема 3.2. Зубчатые и фрикционные передачи	10 5 5				11 12 12
Раздел 4. Проектирование типовых механизмов, используемых в электромеханических системах	4		3		12
Итого в семестре:	34		17		129
Итого	34	0	17	0	129

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий				
1	Раздел 1. Основные положения кинематического и силового анализа и				
	синтеза механизмов, используемых в электромеханических системах				
	Тема 1.1. Понятие о числе степеней свободы. Формулы Чебышева и				
	Малышева				
	Тема 1.2. Структурный, кинематический и силовой анализ и синтез				
	механизмов				
2	Раздел 2. Оценка и обеспечение прочности и жесткости элементов и				
	механизмов, используемых в электромеханических системах.				
	Тема 2.1. Основные требования, предъявляемые к конструкциям деталей				
	механизмов.				
	Тема 2.2. Виды деформаций и напряжений.				
	Тема 2.3. Оценка работоспособности элементов конструкций в общем случае				
	комплексных воздействий внешних силовых факторов:				
3	Раздел 3. Типовые детали и узлы механизмов, используемых в				
	электромеханических системах				
	Тема 3.1. Валы, оси, опоры и муфты				

	Тема 3.2. Зубчатые и фрикционные передачи						
4	Раздел 4. Проектирование типовых механизмов, используемых в						
	электром	иехан	нических системах				

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

				Из них	$N_{\underline{0}}$
$N_{\underline{0}}$	Темы практических	Формы практических	Трудоемкость,	практической	раздела
Π/Π	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
Учебным планом не предусмотре					
Всего					

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	No
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	раздела
Π/Π	паименование лаоораторных раоот	(час)	подготовки,	дисцип
			(час)	лины
	Семестр 5	5		
1	Структурный анализ механизма	2		1
2	Определение механических характеристик	3		2
	материала при растяжений			
3	Определение модуля сдвига при кручении	3		2
4	Исследование плоского изгиба	3		2
	консольного стержня прямоугольного			
	поперечного сечения			
5	Исследование косого изгиба консольного	3		2
	стержня прямоугольного поперечного			
	сечения			
6	Проектирование механического привода	3		4
	Всего	17		

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Deve assessment water and and	Всего,	Семестр 4,
Вид самостоятельной работы	час	час
1	2	3

Изучение теоретического материала дисциплины (TO)	43	43
Курсовое проектирование (КП, КР)		
Расчетно-графические задания (РГЗ)		
Выполнение реферата (Р)		
Подготовка к текущему контролю успеваемости (ТКУ)	43	43
Домашнее задание (ДЗ)		
Контрольные работы заочников (КРЗ)		
Подготовка к промежуточной аттестации (ПА)	43	43
Всего:	129	129

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8. Таблица 8— Перечень печатных и электронных учебных изданий

Количество экземпляров в Шифр/ библиотеке URL Библиографическая ссылка (кроме электронных адрес экземпляров) Бусыгин, А. М. Прикладная механика: учебник / А. М. Бусыгин. — Москва: МИСИС, 2019. — 156 c. – ISBN 978-5-907226-17-3. — Текст: электронный // Лань : электронно-библиотечная система. — URL: Режим доступа: https://e.lanbook.com/book/128996 Степин, П. А. Сопротивление материалов: учебник/ П. А. Степин. – 13-е изд., стер. – СПб.: Лань, 2014 -320 с.- Режим доступа: https://e.lanbook.com/book/3179#authors Загл. с экрана Сопротивление материалов: учебник/ Схиртладзе А.Г., Чеканин А.В., Волков В.В. - М.:КУРС, ИНФРА-М, 2018. - 192 с.-- Режим доступа: https://znanium.com/read?id=303322 Загл. с экрана Теория механизмов и машин (проектирование и моделирование механизмов и их элементов): учебник. /Соболев А.Н., Некрасов А.Я., Схиртладзе А.Г. - М.:КУРС, НИЦ ИНФРА-М, 2016. - 256 с.-Режим доступа: http://znanium.com/catalog.php?item=booksearch&code Загл. с экрана Прикладная механика (основы структурного, кинематического анализа динамического механизмов):учебник/Соболев А.Н., Некрасов А.Я.,

<u>Схиртладзе А.Г.</u> ,Бровкина Ю.И М.:КУРС, ИНФРА-М, 2017 160 с
Режим доступа:
https://znanium.com/read?id=18015
Загл. с экрана
Жуков, В.А. Детали машин и основы
конструирования: Основы расчета и проектирования
соединений и передач: учебное пособие. – 2-е изд.
[Электронный ресурс] - Электрон. дан
М.:ИНФРА-М,2015 416 с Режим доступа:
http://znanium.com/bookread2.php?book=501585 Загл.
с экрана

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование
https://e.lanbook.com/	ЭБС «Лань»

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование	
	Не предусмотрено	

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально- технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория – укомплектована	Фонд
	специализированной (учебной) мебелью, набором	лекционных

	демонстрационного оборудования и учебно-наглядными пособиями, обеспечивающими тематические	аудиторий ГУАП
	иллюстрации, соответствующие рабочим учебным программам дисциплин (модулей).	
2	Аудитории для проведения лабораторных занятий — укомплектованы специализированной (учебной) мебелью, техническими средствами обучения, служащими для представления учебной информации. В лаборатории исследования механических элементов приборов (ауд. 11-05) имеются следующие лабораторные установки: разрывная машина ИМ-4Р; лабораторная установка для измерения прогиба консольного стержня; лабораторная установка для определения момента трения в подшипниках качения; установка для определения модуля сдвига, главных напряжений при кручении и совместном действии изгиба и кручения ТМт11М-14М. В лаборатории исследования кинематических и точностных характеристик приборов (ауд. 12-06) имеются следующие лабораторные установки: автоматизированный лабораторный комплекс «Детали машин. Передачи редукторные»; лабораторная установка для экспериментального исследования винтового механизма; лабораторная установка для исследования ременных передач.	Фонд аудиторий ГУАП для проведения лабораторных занятий (ул. Гастелло 15, ауд. 11-05, 12-06)
3	Помещение для самостоятельной работы — укомплектовано специализированной (учебной) мебелью, оснащено компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечено доступом в электронную информационно-образовательную среду организации.	Фонд аудиторий ГУАП
4	Учебная аудитория для текущего контроля и промежуточной аттестации — укомплектована специализированной (учебной) мебелью, техническими средствами обучения, служащими для представления	Фонд аудиторий ГУАП (ул. Гастелло 15, ауд. 11-05, 12-06)
	учебной информации.	

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила

использования которой, установлены соответствующим локальным нормативным актом Γ УАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

таолица 14 – критерии оценки уровня сформированности компетенции		
Оценка компетенции	Характеристика сформированных компетенций	
5-балльная шкала		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 	
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 	
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 	
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 	

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

<u>№</u>	Перечень вопросов (задач) для экзамена	Код
п/п		индикатора
1	Назовите критерии работоспособности передачи.	УК-2.3.1
2	Какие напряжения возникают в ремне при работе?	
3	Напишите соотношение для закона Гука при растяжении (сжатии),	
	изгибе.	
4	С какой целью в механизм вводятся лишние степени свободы?	УК-2.У.1
5	В чем состоит проблема надежности?	
6	Какова общая схема расчета на прочность элементов конструкции?	
7	Что является причиной отказа машин?	УК-2.У.3
8	Назовите условия эксплуатации механизмов. Основные требования,	
	предъявляемые к конструкциям деталей механизмов.	

9	Что из себя представляют внутренние силы и каким методом они выявляются?	
10	Что понимают под тяговой способностью передачи и каким образом можно увеличить в 2 раза тяговую способность действующей передачи?	УК-2.В.2
11	Проверить прочность детали, если в опасной точке действуют напряжения: $\sigma_x = 200$ МПа, $\sigma_y = 500$ МПа, $\tau_{xy} = 100$ МПа. Допускаемое напряжение для материала детали $[\sigma] = 1600$ МПа. Проверку производят по 3й теории прочности.	
12	Определить напряжения в опасных точках балки из прокатной угловой равнополочной стали с профилем № 7 (ГОСТ 8509-86) при действии изгибающего момента M = 5350 Hмм.	
13	Какой вид деформации называют изгибом? Что отличает чистый изгиб от поперечного?	ОПК-3.Д.4
14	Что называют деталью и сборочной единицей?	
15	Выведите дифференциальное уравнение изогнутой оси стержня. Из каких условий находятся постоянные интегрирования, входящие в уравнения углов поворота и прогибов сечений стержня.	ОПК-3.Д.5
16	Какие расчетные модели используют в расчетах валов?	
17	Спроектируйте прямозубую цилиндрическую передачу одноступенчатого редуктора при следующих параметрах: $T1 = 34,5$ Hm, $n1 = 1000$ мин-1, $n2 = 250$ мин-1. Ресурс работы передачи 1 год, работа двухсменная с коэффициентом часовой загрузки $v4 = 0,5$. Передача нереверсивная, нагрузка с малыми толчками (коэффициент режима $KA = 1,2$).	ОПК-5.Д.3
18	Произведите проверочный расчет вертикального вала механизма ткацкого станка (см. рисунок и данные в билете). Вал изготовлен методами резания из стали 45 (σ в = 650 МПа, σ т = 470 МПа, σ -1 = 275 МПа, τ -1 = 160 МПа).	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

,	
№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	Код индикатора
1	Прочитайте текст, выберите правильный ответ и запишите	УК-2.3.1
	аргументы, обосновывающие выбор ответа	
	Какой тип передачи наиболее часто используется в автомобилях	

	для передачи крутящего момента от двигателя к колесам?
	А) Цепная передача
	В) Зубчатая передача
	С) Ременная передача
	D) Фрикционная передача
	Обоснование: В автомобилях для передачи крутящего момента от
	двигателя к колесам чаще всего используется зубчатая передача,
	поскольку она обеспечивает высокую надежность и эффективность
	передачи мощности.
2	Прочитайте текст, выберите правильные варианты ответа и
	запишите аргументы, обосновывающие выбор ответов
	Какие из перечисленных свойств материалов важны для деталей
	машин?
	А) Прочность
	В) Устойчивость к коррозии
	С) Стоимость
	D) Цвет
	Обоснование: Для деталей машин важны прочность и устойчивость
	к коррозии, поскольку эти свойства напрямую влияют на
	долговечность и надежность работы деталей.
3	Прочитайте текст и установите соответствие. К каждой позиции,
	данной в левом столбце, подберите соответствующую позицию в
	правом столбце
	Соответствие между типом соединения и его характеристикой:
	А) Резьбовое соединение: 1) Обеспечивает передачу больших
	крутящих моментов и осевых сил.
	Б) Шпоночное соединение: 2) Используется для создания
	неразъёмных конструкций.
	В) Шлицевое соединение: 3) Применяется для передачи крутящего
	момента между валом и ступицей.
	Г) Заклёпочное соединение: 4) Обеспечивает прочное и надёжное
	соединение деталей с помощью резьбы.
4	Прочитайте текст и установите последовательность. Запишите
	соответствующую последовательность букв слева направо
	Последовательность этапов проектирования прибора:
	А) Разработка технического задания.
	Б) Анализ требований к прибору.
	В) Выбор материалов и комплектующих.
	Г) Разработка конструкторской документации.
	Д) Изготовление опытного образца.
	Е) Испытания и доработка.
	Последовательность действий при анализе механизма:
	А) Определение кинематических характеристик.
	Б) Расчёт сил и моментов, действующих на звенья механизма.
	В) Оценка прочности и долговечности деталей механизма.
	Г) Оптимизация параметров механизма для повышения
	эффективности работы.
5	Прочитайте текст и запишите развернутый обоснованный ответ
	Опишите основные этапы процесса проектирования прибора,
	начиная с разработки технического задания и заканчивая
	испытаниями и доработкой.
	Ответ: Процесс проектирования прибора включает в себя несколько
	1 - 1211. Inpodett inpodettinpobanimi inpiroopa bisino iaet b eeon neekosibko

	WHICHOPLIN OTTOHORU MOOMO COMMO TOWN TOWN TOWN TO THE TOWN	
	ключевых этапов: разработка технического задания, анализ	
	требований к прибору, выбор материалов и комплектующих,	
	разработка конструкторской документации, изготовление опытного образца, испытания и доработка.	
6	Прочитайте текст, выберите правильный ответ и запишите	УК-2.У.1
0	аргументы, обосновывающие выбор ответа	3 K-2.3.1
	Что из перечисленного не является основным критерием при	
	выборе материала для изготовления деталей машин?	
	А) Прочность	
	В) Устойчивость к коррозии	
	С) Стоимость	
	D) Цвет	
	Обоснование: Цвет не является основным критерием при выборе	
	материала для изготовления деталей машин, поскольку цвет не	
	оказывает прямого влияния на эксплуатационные характеристики	
	деталей.	
7	Прочитайте текст, выберите правильные варианты ответа и	
	запишите аргументы, обосновывающие выбор ответов	
	Какие методы анализа используются для оценки прочности деталей	
	машин?	
	А) Метод конечных элементов	
	В) Метод Эйлера	
	С) Метод Гаусса	
	D) Метод Ньютона	
	Обоснование: Для оценки прочности деталей машин используются	
	метод конечных элементов и метод Эйлера, поскольку они	
ı	позволяют анализировать напряжения и деформации в деталях.	
8	Прочитайте текст и установите соответствие. К каждой позиции,	
	данной в левом столбце, подберите соответствующую позицию в	
	правом столбце	
	Соответствие между критерием расчёта прочности и его	
	определением:	
	А) Критерии статической прочности: 1) Определяет способность	
	детали выдерживать статические нагрузки.	
	Б) Критерии усталостной прочности: 2) Учитывает влияние	
	циклических нагрузок на долговечность детали.	
	В) Критерии жёсткости: 3) Определяет деформации детали под	
	нагрузкой.	
	Г) Критерии устойчивости: 4) Оценивает способность детали	
	сохранять первоначальную форму под действием внешних сил.	
9	Прочитайте текст и установите последовательность. Запишите	
	соответствующую последовательность букв слева направо	
	Последовательность операций при расчёте зубчатой передачи:	
	А) Выбор материала зубчатых колёс.	
	Б) Определение геометрических параметров зубчатых колёс.	
	В) Расчёт контактных напряжений.	
10	Г) Расчёт изгибных напряжений.	
10	Прочитайте текст и запишите развернутый обоснованный ответ	
	Объясните, какие факторы необходимо учитывать при выборе	
	материалов для изготовления деталей машин и почему это важно.	
	Ответ: При выборе материалов для изготовления деталей машин	
L	необходимо учитывать ряд факторов, таких как механические	

	свойства (прочность, твердость, упругость), химические свойства (коррозионная стойкость, окисляемость), физические свойства (плотность, теплопроводность), экономические аспекты (стоимость,	
	доступность). Правильный выбор материалов обеспечивает долговечность, надежность и эффективность работы деталей	
	машин.	
11	Прочитайте текст, выберите правильный ответ и запишите аргументы, обосновывающие выбор ответа	УК-2.У.3
	Какой из перечисленных методов анализа используется для оценки	
	усталостной прочности деталей машин?	
	А) Метод конечных элементов	
	В) Метод Эйлера	
	С) Метод Гаусса	
	D) Метод Ньютона	
	Обоснование: Метод конечных элементов широко используется для	
	анализа напряжений и деформаций в деталях машин, включая	
	оценку усталостной прочности.	
12	Прочитайте текст, выберите правильные варианты ответа и	
	запишите аргументы, обосновывающие выбор ответов	
	Какие факторы влияют на выбор материала для изготовления	
	деталей машин?	
	А) Условия эксплуатации	
	В) Геометрические параметры детали	
	С) Стоимость	
	D) Требования к точности изготовления	
	Обоснование: На выбор материала для изготовления деталей машин	
	влияют условия эксплуатации, геометрические параметры детали и	
	стоимость, поскольку эти факторы определяют необходимые	
	свойства материала.	
13	Прочитайте текст и установите соответствие. К каждой позиции,	
	данной в левом столбце, подберите соответствующую позицию в	
	правом столбце	
	Соответствие между методом повышения износостойкости и его	
	описанием:	
	А) Термическая обработка: 1) Изменяет структуру и свойства	
	материала.	
	Б) Химико-термическая обработка: 2) Насыщает поверхностный	
	слой детали различными элементами.	
	В) Нанесение покрытий: 3) Создаёт защитный слой на поверхности	
	детали.	
	Г) Изменение геометрии поверхности: 4) Способствует снижению	
	износа путём упрочнения или создания микрорельефа.	
14	Прочитайте текст и установите последовательность. Запишите	
	соответствующую последовательность букв слева направо	
	Последовательность действий при проектировании детали машины:	
	А) Выбор материала детали.	
	Б) Определение размеров и формы детали.	
	В) Расчёт на прочность и долговечность.	
	Г) Разработка чертежа детали.	
15	Прочитайте текст и запишите развернутый обоснованный ответ	
1.5	Расскажите о методах повышения износостойкости деталей машин	
	и приведите примеры их использования.	
	п приводите приморы их понользования.	

	Ответ: Методы повышения износостойкости деталей машин	
	включают в себя различные подходы, такие как термическая	
	обработка (закалка, отпуск), химико-термическая обработка	
	(цементация, азотирование), нанесение покрытий (хромирование,	
	никелирование), использование специальных материалов	
	(керамика, композиты). Эти методы позволяют увеличить срок	
	службы деталей, снизить затраты на обслуживание и ремонт	
	оборудования.	
16	Прочитайте текст, выберите правильный ответ и запишите	УК-2.В.2
	аргументы, обосновывающие выбор ответа	
	Какой из перечисленных факторов не влияет на выбор материала	
	для изготовления деталей машин?	
	А) Условия эксплуатации	
	В) Геометрические параметры детали	
	С) Личные предпочтения конструктора	
	D) Требования к точности изготовления	
	Обоснование: Личные предпочтения конструктора не являются	
	определяющим фактором при выборе материала для изготовления	
	деталей машин, поскольку выбор материала должен основываться	
	на объективных характеристиках и требованиях к детали.	
17	Прочитайте текст, выберите правильные варианты ответа и	
	запишите аргументы, обосновывающие выбор ответов	
	Какие методы экспериментального исследования применяются для	
	определения характеристик материалов?	
	А) Рентгеновская дифракция	
	В) Спектроскопия	
	С) Термодинамика	
	D) Электростатика	
	Обоснование: Для определения характеристик материалов	
	применяются рентгеновская дифракция и спектроскопия, поскольку	
	эти методы позволяют получить информацию о структуре и	
	свойствах материалов.	
18	Прочитайте текст и установите соответствие. К каждой позиции,	
	данной в левом столбце, подберите соответствующую позицию в	
	правом столбце	
	Соответствие между видом деформации и её описанием:	
	А) Срез: 1) Деформация, возникающая при действии силы,	
	направленной параллельно оси элемента.	
	Б) Изгиб: 2) Деформация, возникающая при действии силы,	
	перпендикулярной оси элемента.	
	В) Растяжение: 3) Деформация, возникающая при действии силы,	
	направленной вдоль оси элемента.	
	Г) Сжатие: 4) Деформация, возникающая при действии силы,	
	направленной противоположно оси элемента.	
19	Прочитайте текст и установите последовательность. Запишите	
	соответствующую последовательность букв слева направо	
	Последовательность этапов расчёта балки на изгиб:	
	А) Определение опорных реакций.	
	Б) Построение эпюр поперечных сил и изгибающих моментов.	
	В) Подбор сечения балки из условия прочности.	
	Г) Проверка жёсткости балки.	
20	Прочитайте текст и запишите развернутый обоснованный ответ	

	Опишите процесс расчета зубчатой передачи, включая выбор	
	материала зубчатых колес, определение геометрических параметров	
	и расчет контактных и изгибных напряжений.	
	Ответ: Расчет зубчатой передачи включает в себя выбор материала	
	зубчатых колес (сталь, чугун, бронза), определение геометрических	
	параметров (модуль зуба, число зубьев, ширина венца), расчет	
	контактных напряжений (на основе теории Герца) и изгибных	
	напряжений (с использованием методов сопротивления	
	материалов). Эти расчеты позволяют обеспечить долговечность и	
	надежность работы зубчатой передачи.	
21	Прочитайте текст, выберите правильный ответ и запишите	ОПК-3.Д.4
	аргументы, обосновывающие выбор ответа	
	Какой из перечисленных методов экспериментального	
	исследования применяется для определения характеристик	
	материалов?	
	А) Рентгеновская дифракция	
	В) Спектроскопия	
	С) Термодинамика	
	D) Электростатика	
	Обоснование: Рентгеновская дифракция позволяет определить	
	структуру и свойства материалов, что важно для понимания их	
	поведения в различных условиях эксплуатации.	
22	Прочитайте текст, выберите правильные варианты ответа и	
	запишите аргументы, обосновывающие выбор ответов	
	Какие факторы влияют на устойчивость конструкции?	
	А) Масса конструкции	
	В) Жесткость конструкции	
	С) Площадь поверхности конструкции	
	D) Объем конструкции	
	Обоснование: На устойчивость конструкции влияют масса	
	конструкции и жесткость конструкции, поскольку эти факторы	
	определяют способность конструкции сопротивляться внешним	
	воздействиям.	
23	Прочитайте текст и установите соответствие. К каждой позиции,	
	данной в левом столбце, подберите соответствующую позицию в	
	правом столбце	
	Соответствие между типом механизма и его применением:	
	А) Рычажный механизм: 1) Используется для преобразования	
	вращательного движения в поступательное.	
	Б) Кулачковый механизм: 2) Применяется для обеспечения	
	возвратно-поступательного движения.	
	В) Зубчатый механизм: 3) Предназначен для передачи	
	вращательного движения между валами.	
	Г) Фрикционный механизм: 4) Основан на трении между двумя	
	поверхностями для передачи движения.	
24	Прочитайте текст и установите последовательность. Запишите	
	соответствующую последовательность букв слева направо	
	Последовательность операций при сборке узла машины:	
	А) Подготовка деталей к сборке.	
	Б) Установка и фиксация деталей.	
	В) Контроль качества сборки.	
	Г) Регулировка и испытание узла.	

25	П	
25	Прочитайте текст и запишите развернутый обоснованный ответ	
	Объясните, как проводится анализ механизма, включая определение	
	кинематических характеристик, расчет сил и моментов, оценку	
	прочности и долговечности деталей.	
	Ответ: Анализ механизма включает в себя определение	
	кинематических характеристик (скорости, ускорения, траектории	
	движения), расчет сил и моментов, действующих на звенья	
	механизма, оценку прочности и долговечности деталей с	
	использованием методов сопротивления материалов и теории	
	механизмов и машин. Этот анализ позволяет оптимизировать	
	конструкцию механизма, повысить его эффективность и	
	надежность.	
26	Прочитайте текст, выберите правильный ответ и запишите	ОПК-3.Д.5
	аргументы, обосновывающие выбор ответа	31Ht 3.A.
	Какой из перечисленных методов анализа вибрации применяется	
	при проектировании деталей машин?	
	А) Анализ Фурье	
	В) Анализ Лапласа	
	С) Анализ Гамильтона	
	D) Анализ Шредингера	
	Обоснование: Анализ Фурье широко используется для анализа	
	вибраций в деталях машин, поскольку он позволяет разложить	
	сложные сигналы на составляющие частоты.	
27	Прочитайте текст, выберите правильные варианты ответа и	
	запишите аргументы, обосновывающие выбор ответов	
	Какие свойства материалов важны для деталей, работающих в	
	условиях высоких температур?	
	А) Теплопроводность	
	В) Устойчивость к коррозии	
	С) Стоимость	
	D) Жаропрочность	
	Обоснование: Для деталей, работающих в условиях высоких	
	температур, важны теплопроводность и жаропрочность, поскольку	
	эти свойства обеспечивают эффективное охлаждение деталей и их	
	способность выдерживать высокие температуры без разрушения.	
28	Прочитайте текст и установите соответствие. К каждой позиции,	
	данной в левом столбце, подберите соответствующую позицию в	
	правом столбце	
	Соответствие между типом детали и её функцией:	
	А) Подшипник: 1) Служит для поддержания вала и уменьшения	
	трения.	
	Б) Муфта: 2) Используется для соединения валов и передачи	
	крутящего момента.	
	В) Шкив: 3) Является элементом ременной передачи и	
	предназначен для изменения скорости вращения.	
	предназначен для изменения скорости вращения. Г) Пружина: 4) Применяется для амортизации ударов и вибраций.	
29		
49	Прочитайте текст и установите последовательность. Запишите	
	соответствующую последовательность букв слева направо	
	Последовательность действий при проектировании муфты:	
	А) Выбор типа муфты.	
	Б) Определение размеров муфты.	
	В) Расчёт на прочность и долговечность.	

	Г) Разработка чертежа муфты.			
30	Прочитайте текст и запишите развернутый обоснованный ответ			
30	Опишите процесс проектирования детали машины, включая выбор			
	материала, определение размеров и формы, расчет на прочность и			
	долговечность, разработку чертежа.			
	Ответ: Проектирование детали машины включает в себя выбор			
	материала на основе требуемых свойств (прочность,			
	износостойкость, коррозионная стойкость), определение размеров и			
	формы с учетом нагрузок и условий эксплуатации, расчет на			
	прочность и долговечность с использованием методов сопротивления материалов, разработку чертежа с соблюдением			
31	стандартов и норм.	ОПИ 5 П 2		
31	Прочитайте текст, выберите правильный ответ и запишите	ОПК-5.Д.3		
	аргументы, обосновывающие выбор ответа			
	Какой из перечисленных факторов влияет на устойчивость			
	конструкции?			
	А) Масса конструкции			
	В) Жесткость конструкции			
	С) Площадь поверхности конструкции			
	D) Объем конструкции			
	Обоснование: Жесткость конструкции является ключевым			
	фактором, влияющим на ее устойчивость, поскольку она определяет			
22	способность конструкции сопротивляться внешним воздействиям.			
32	Прочитайте текст, выберите правильные варианты ответа и			
	запишите аргументы, обосновывающие выбор ответов			
	Вопрос 3. Какие из перечисленных типов соединений используются			
	в деталях машин?			
	А) Резьбовые соединения.			
	Б) Шпоночные соединения.			
	В) Шлицевые соединения.			
	Г) Заклёпочные соединения.			
	Обоснование: В деталях машин используются различные типы			
	соединений, такие как резьбовые соединения, обеспечивающие			
	прочное и надёжное соединение деталей с помощью резьбы,			
	шпоночные соединения, предназначенные для передачи крутящего			
	момента между валом и ступицей, шлицевые соединения,			
	позволяющие передавать большие крутящие моменты и осевые			
	силы, и заклёпочные соединения, применяемые для создания			
	неразъёмных конструкций.			
33	Прочитайте текст и установите соответствие. К каждой позиции,			
	данной в левом столбце, подберите соответствующую позицию в			
	правом столбце			
	Соответствие между типом материала и его характеристикой:			
	А) Сталь: 1) Обладает высокой прочностью и твёрдостью.			
	Б) Чугун: 2) Имеет хорошие литейные свойства и низкую			
	стоимость.			
	В) Алюминий: 3) Лёгкий и прочный материал, широко			
	используемый в авиации.			
	Г) Медь: 4) Характеризуется высокой электропроводностью и			
	теплопроводностью.			
34	Прочитайте текст и установите последовательность. Запишите			
	соответствующую последовательность букв слева направо			

	Последовательность этапов расчёта вала на прочность и жёсткость:
	А) Определение нагрузок на вал.
	Б) Выбор материала вала.
	В) Расчёт диаметра вала.
	Г) Расчёт на прочность и жёсткость.
35	Прочитайте текст и запишите развернутый обоснованный ответ
	Объясните, как проводится расчет балки на изгиб, включая
	определение опорных реакций, построение эпюр поперечных сил и
	изгибающих моментов, подбор сечения балки из условия прочности
	и проверку жесткости.
	Ответ: Расчет балки на изгиб включает в себя определение опорных
	реакций, построение эпюр поперечных сил и изгибающих
	моментов, подбор сечения балки из условия прочности (с
	использованием методов сопротивления материалов) и проверку
	жесткости (с учетом допустимых прогибов). Этот расчет позволяет
	обеспечить надежность и долговечность конструкции.

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п		Пе	еречень контрольных работ
	Не предусмотрено		

- 10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.
 - 11. Методические указания для обучающихся по освоению дисциплины (Ниже приводятся рекомендации по составлению данного раздела)
- 11.1. Методические указания для обучающихся по освоению лекционного материала (если предусмотрено учебным планом по данной дисциплине).

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;

- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала: изложена в разделе 4.

- 11.2. Методические указания для обучающихся по выполнению лабораторных работ (если предусмотрено учебным планом по данной дисциплине)
- В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Лабораторные работы по дисциплине «Прикладная механика» проводятся в лабораториях кафедры № 1 (ауд. 11-05, 12-06). Для проведения лабораторных работ используются лабораторные установки, позволяющие выполнять экспериментальные исследования по всем основным разделам дисциплины «Механика».

Цель лабораторных работ — исследование кинематических и силовых параметров механизмов, механических характеристик материалов, изучение стандартов и нормалей, регламентирующих механические испытания элементов конструкций, кинематическую точность, а также получение навыков обработки экспериментальных данных с использованием современных информационных технологий.

Порядок проведения лабораторной работы:

- 1. Вводная часть
- получение обучающимся допуска к работе (устный опрос)
- получение обучающимся задания
- сообщение преподавателем указаний к работе (описание лабораторной установки, напоминание о порядке выполнения работы и исследуемых параметрах, показ способов выполнения отдельных операций, предупреждение о возможных ошибках)
 - 2. Основная часть
 - выполнение обучающимся поставленной в ходе эксперимента задачи
- сообщение преподавателем (в случае необходимости) дополнительных указаний (повторный показ или разъяснение исполнительских действий)
 - 3. Заключительная часть

B заключительной части студент должен продемонстрировать полученные результаты преподавателю.

Структура и форма отчета о лабораторной работе

Отчет о лабораторной работе должен содержать следующие разделы:

- цель лабораторной работы
- формулировка задания
- основная часть (должна содержать описание лабораторной установки, необходимые таблицы, графики, экспериментальные данные и результаты расчетов)
- вывод (описываются итоги работы, проводится анализ полученных результатов).

Требования к оформлению отчета о лабораторной работе

Требования к оформлению отчета о лабораторной работе изложены в действующем стандарте ГОСТ 7.32-2001 (с учетом изменений 2019 г.) «Отчет о научно-исследовательской работе. Структура и правила оформления», который можно найти в Интернете на сайте ГУАП http://guap.ru/guap/standart/titl_main.shtml.

11.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- В ходе выполнения самостоятельной работы обучающийся изучает теоретический материал дисциплины, выполняет отчеты по лабораторным работам, размещенные в ИСО ГУАП: https://lms.guap.ru/
- 11.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

11.5. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

– экзамен – форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности

применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой