МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 31

УТВЕРЖДАЮ Руководитель образовательной программы

доц.,к.т.н.,доц.

(должность, уч. степень, звание)

О.Я. Солёная

(подпись) «17» июня_ 2025 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Промышленная электроника» (Наименование дисциплины)

Код направления подготовки/ специальности	13.03.02
Наименование направления подготовки/ специальности	Электроэнергетика и электротехника
Наименование направленности	Энергетические электрические машины
Форма обучения	очная
Год приема	2023

Лист согласования рабочей программы дисциплины

Доц., к.т.н.	Тот 17-06. 25 В.И. Гончарова
(должность, уч. степень, звание)	(подпись, дата) В.Я. ГОНЧарова (инициалы, фамилия
Программа одобрена на заседан	ин кафенту № 21
«17»_июня 2025 г, протокол №	6
Заведующий кафеллой № 31	
Заведующий кафедрой № 31 д.т.н.,проф.	2 12 m 2
	томпись, дата) В.Ф. Шишлаков
д.т.н.,проф.	полінсь, дата) 35 В.Ф. Шишлаков (инициалы, фамилия)
Д.Т, н., проф. (уч. степень, звание)	(инициалы, фамилия)
д.т.н.,проф. (уч. степень, звание) Ваместитель директора института	а №3 по методической работе.
Д.Т, н., проф. (уч. степень, звание)	(инициалы, фамилия)

Аннотация

Дисциплина «Промышленная электроника» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 13.03.02 «Электроэнергетика и электротехника» направленности «Энергетические электрические машины». Дисциплина реализуется кафедрой «№31».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ОПК-4 «Способен использовать методы анализа и моделирования электрических цепей и электрических машин»

ПК-3 «Способен принимать участие в проектировании объектов профессиональной деятельности в соответствии с техническим заданием и нормативно-технической документацией»

Содержание дисциплины охватывает круг вопросов, связанных с принципами работы полупроводниковых приборов: диодов, стабилитронов, полевых и биполярных транзисторов, операционных усилителей, а также схем различных электронных усилительно-преобразовательных устройств, построенных на их основе.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, практические занятия, самостоятельная работа обучающегося, курсовое проектирование, консультации.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 7 зачетных единиц, 252 часа.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Изучение дисциплины «Электроника» дает возможность студентам не только изучать физические закономерности, лежащие в основы полупроводниковых приборов и схемы усилительно-преобразовательных устройств, но понимать их роль и значение при проектировании САУ в энергетике.

- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

<u> таолица т – ггеречень ком</u>		ров их достижения
Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Общепрофессиональные компетенции	ОПК-4 Способен использовать методы анализа и моделирования электрических цепей и электрических машин	ОПК-4.Д.4 демонстрирует понимание принципа действия электронных устройств
Профессиональные компетенции	ПК-3 Способен принимать участие в проектировании объектов профессиональной деятельности в соответствии с техническим заданием и нормативнотехнической документацией	ПК-3.Д.1 выполняет сбор и анализ данных для проектирования объектов профессиональной деятельности ПК-3.Д.2 разрабатывает эскизные и рабочие чертежи графической части рабочей и проектной документации ПК-3.Д.3 использует средства автоматизированного проектирования для оформления рабочей документации объектов профессиональной деятельности ПК-3.Д.4 осуществляет контроль соответствия разрабатываемых проектов и технической документации стандартам, техническим условиям и другим нормативным документам ПК-3.Д.5 выполняет расчеты для проектирования объектов профессиональной деятельности

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- « Математика. Математический анализ»;
- «Физика»;
- «Информатика»;

- «Электротехника»

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- Теория автоматического управления

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Dryg ywefyrai'r mefenyy	Всего	Трудоемкость по семестрам		
Вид учебной работы	Beero	№ 4	№5	
1	2	3	4	
Общая трудоемкость дисциплины, 3E/ (час)	7/ 252	4/ 144	3/ 108	
Из них часов практической подготовки	34	17	17	
Аудиторные занятия, всего час.	102	51	51	
в том числе:				
лекции (Л), (час)	34	17	17	
практические/семинарские занятия (ПЗ), (час)	17	17		
лабораторные работы (ЛР), (час)	34	17	17	
курсовой проект (работа) (КП, КР), (час)	17		17	
экзамен, (час)	63	27	36	
Самостоятельная работа, всего (час)	87	66	21	
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз., Экз.	Экз.	Экз.	

Примечание: **кандидатский экзамен

[Трудоемкость, распределенная на часы практической подготовки не должна превышать общую трудоемкость по виду учебной работы].

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

таолица з тазделы, темы дисципл	1111D1, 117 1Py		•	T	1
Разделы, темы дисциплины	Лекции	ПЗ (СЗ)	ЛР	КΠ	CPC
	(час)	(час)	(час)	(час)	(час)
	Семестр 4				
Раздел 1. Электропроводность	2		3		10
полупроводников					
Тема 1.1.Собственный (беспримесный)					
полупроводник					
Тема 1.2.Примесный полупроводник					
Тема 1.3. Электронно-дырочный					
переход					
Тема 1.4. Вольт-амперная характеристика					
р-и перехола					

Раздел 2. Полупроводниковые диоды	4	2	3		13
Тема 2.1. Выпрямительные					
полупроводниковые диоды: принцип					
действия, характеристики, параметры.					
Тема2.2. Полупроводниковые					
стабилитроны: принцип действия,					
характеристики, параметры.					
Тема2.3.Параметрический стабилизатор					
напряжения на стабилитроне					
Раздел 3. Тиристоры	2				10
Тема3.1. Диодные тиристоры					
Тема3.2. Триодные тиристоры					
Тема 3.3. Симисторы					
Раздел 4. Биполярные транзисторы	5	13	6		13
Тема 4.1. Принцип действия биполярного					
транзистора					
Тема 4.2. Транзистор как усилительный					
прибор					
Тема 4.3. Режимы работы биполярного					
транзистора					
Тема 4.4. Статические вольт-амперные					
характеристики и параметры биполярных					
транзисторов	2	2	2		10
Раздел 5. Полевые транзисторы	2	2	3		10
Тема 5.1. Полевой транзистор с р-					
ппереходом Тема 5.2. Полевой транзистор с					
изолированным затвором					
Раздел 6 Фотоприемники	2		2		10
Тема 6.1. Светоизлучающий диод	2		2		10
Тема 6.2. Фотоприемники					
Тема 6.3. Оптопары					
•					66
Итого в семестре:	17	17	17	17	00
D 7 V	~				
Раздел 7. Усилительно-	5				
преобразовательные устройства					
Тема 7.1. Классификация усилителей					
Тема 7.2. Показатели качества					
усилительныхустройств					
Тема 7.3. Режимы работы усилителя					
Тема 7.4. Особенности построения			4		2
силовых каскадов			4		3
Тема 7.5. Трансформаторный					
усилитель мощности					
Тема 7.6. Бестрансформаторный					
усилитель мощности					
Тема 7.7. Усилители мощности в					
ключевом режиме					
Раздел 8. Операционные усилители	2				
Тема 8.1. Типовые схемы включения					
ОУ			4		4
			•		l l
Тема 8.2. Реализация			•		
Тема 8.2. Реализация корректирующих устройств на ОУ			•		

Раздел 9. Схемы нелинейного	2				
преобразования непрерывных	_				
сигналов					
Тема 9.1. Схемы, построенные на			4		4
основе ДРЯ					
Тема 9.2. Схемы, построенные на					
основе ОУ					
Раздел 10. Генераторы	4				
Тема 10.1 Генераторы гармонических					
колебаний					
Тема 10.2. Генераторы линейно-			2		2
изменяющегося напряжения			2		3
Тема 10.3. Мультивибраторы					
Тема 10.4. Одновибраторы					
Тема 10.5. Блокинг-генератор					
Раздел 11. Триггеры	2				
Тема 11.1 Симметричный триггер			2		4
Тема 11.2. Триггер с эмиттерной					4
связью					
Раздел 12. Модуляторы и	2				
демодуляторы					
Тема 12.1. Амплитудные модуляторы			1		3
Тема 12.2. Частотные модуляторы					
Тема 12.3. Фазовые модуляторы					
Выполнение курсовой работы					
Итого в семестре:	17	17	17		21
Итого:	34	17	34	17	87

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий
1	Собственный (беспримесный) полупроводник, примесный полупроводник, электронно-дырочный переход, вольт-амперная
	характеристика р-п перехода
2	Выпрямительные полупроводниковые диоды: принцип действия, характеристики, параметры. Полупроводниковые стабилитроны: принцип действия, характеристики, параметры. Параметрический

	стабилизатор напряжения на стабилитроне
3	Диодные тиристоры: принцип действия, характеристики, параметры. Триодные тиристоры: принцип действия, характеристики, параметры. Симисторы: принцип действия, характеристики, параметры.
4	Принцип действия биполярного транзистора. Транзистор как усилительный прибор. Режимы работы биполярного транзистора.
	Статические вольт-амперные характеристики и параметры биполярных
	транзисторов
5	Полевой транзистор с р-п переходом: принцип действия,
	характеристики, параметры. Полевой транзистор с изолированным
	затвором: принцип действия, характеристики, параметры
6	Светоизлучающий диод: принцип действия, характеристики,
	параметры.
	Фотоприемники (фоторезистор, фотодиод, фототранзистор, фототиристор: принцип действия, характеристики, параметры.
	Оптопары: принцип действия, характеристики, параметры.
7	Классификация усилителей. Показатели качества усилительных
,	устройств. Режимы работы усилителя. Особенности построения
	силовых каскадов. Трансформаторный усилитель мощности.
	Бестрансформаторный усилитель мощности. Усилители мощности в
	ключевом режиме.
8	Типовые схемы включения ОУ (инвертирующее и неинвертирующее
	включение). Реализация корректирующих устройств на ОУ.
9	Реализация нелинейных характеристик на основе диодно-резистивной
	ячейки. Построение схем, реализующих нелинейные статические и
	динамические характеристики элементов и устройств систем
	автоматического управления на основе операционных усилителей.
10	Генераторы гармонических колебаний. Генераторы линейно-
	изменяющегося. напряжения. Мультивибраторы. Одновибраторы.
	Блокинг-генератор
11	Симметричный триггер. Триггер с эмиттерной связью
12	Амплитудные модуляторы. Частотные модуляторы. Фазовые
	модуляторы. Амплитудные демодуляторы. Частотные демодуляторы

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

№ п/п	темы практических		Формы практических занятий	Трудоемкос ть, (час)	Из них практической подготовки, (час)	№ раздела дисциплины
				Семестр 4		
Расчет параметрического 1 стабилизатора напряжения на стабилитроне		Решение задач	2		2	
2	Выбо	ор силовых	Решение задач	1		4

	транзисторов по				
	параметрам нагрузки				
	Расчет числа	Решение задач			
3	параллельно		2		4
	включаемых		<i>-</i>		
	транзисторов				
4	Расчет площади	Решение задач	4		4
	теплоотвода				
	Расчет величин	Решение задач			
5	уравнительных		1	1	4
	резисторов				
	Расчет	Решение задач			
6	термостабилизирую		5		4
	щих резисторов				
	Расчет схем	Решение задач			
7	корректирующих		2		5
,	устройств на основе		2		3
	ОУ				
	·	Всего:	17		

4.4. Лабораторные занятия Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

№ π/π	Наименование лабораторных работ	Трудоемкость (час)	Из них Практической подготовки (час)	№ раздела дисцип лины
		Семестр 4		
1	Вольт-амперные характеристики диодов и стабилитронов	2		2
2	Исследование параметрического стабилизатора напряжения на стабилитроне	1		2
3	Исследование двухполупериодного выпрямителя	2		3
4	Вольт-амперные характеристики тиристоров	1		3
5	Вольт-амперные характеристики биполярного транзистора (схемы включения с ОБ и ОЭ)	2		4
6	Исследование однокаскадного усилителя мощности на биполярном транзисторе (Класс A)	2		4
7	Исследование однокаскадного усилителя мощности на биполярном транзисторе (Класс В)	2		4
8	Вольт-амперные характеристики	1		5

	полевых тр	ранзисторов		
9	Исследование однокаскадного			
	усилителя	мощности на полевом	2	5
	транзистор	e		
10	Вольт-амп	ерные характеристики	2	6
	фотоприем	ников и светодиодов	<u> </u>	0
		В семестре	17	
			Семестр 5	
11	Усилитель	мощности (Класс D)	4	7
12	Усилитель	но-преобразовательные	4	8
	устройства	на ОУ	4	8
13	Схемы нел	инейного преобразования	2	9
	сигналов н	а ОУ	2	,
14		синусоидального	2	9
	напряжени	я на ОУ	2	
15		линейно-изменяющегося	2	10
	напряжени	я на ОУ	2	10
16	Мультиви	братор и одновибратор на	2	11
	ОУ		2	
17 Амплитудный демодулятор		1	12	
В семестре		17		
		Всего	34	

4.5. Курсовое проектирование/ выполнение курсовой работы

Цель курсового проекта:

Часов практической подготовки:

Примерные темы заданий на курсовой проект приведены в разделе 10 РПД.

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

Вид самостоятельной работы	Всего, час	Семестр 4, час	Семестр 5, час
1	2	3	4
Изучение теоретического материала дисциплины (TO)	52	49	3
Подготовка к текущему контролю успеваемости (ТКУ)	15	7	8
Подготовка к промежуточной аттестации (ПА)	20	10	10
Всего:	87	66	21

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8- Перечень печатных и электронных учебных изданий

Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п		Наименование
	Не предусмотрено	

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории
1	Мультимедийная лекционная аудитория	ул. Большая Морская, д.67, а. 52-35, 32-02
2	Компьютерный класс: Исследование ВАХ диодов, стабилитронов, биполярных и полевых транзисторов.	ул. Большая Морская, д.67,

	Исследование работы выпрямителей	a.21-12, 21-13
3	Стенды:	ул. Большая Морская,
	Исследование ВАХ диодов, стабилитронов, биполярных и	д.67,
	полевых транзисторов. Исследование работы	a.21-09
	выпрямителей	2

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств	
Экзаменационный тест	пример Тестовых вопросов.	
	Список вопросов	
Выполнение курсового проекта	Экспертная оценка на основе требований к	
	содержанию курсового проекта.	

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	Характеристика сформированных компетенций		
5-балльная шкала	ларактеристика сформированных компетенции		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 		
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 		
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; 		

Оценка компетенции	Vарантаристина сформирорании IV изменетациний	
5-балльная шкала	Характеристика сформированных компетенций	
	 – затрудняется в формулировании выводов и обобщений; – частично владеет системой специализированных понятий. 	
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 	

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	Перечень вопросов (задач) для экзамена	Код
31_ 11/ 11	• • • • • • • • • • • • • • • • • • • •	индикатора
1	Собственный (беспримесный) полупроводник	ОПК-4.Д.4
2	Примесный полупроводник	ПК-3.Д.1
3	Электронно-дырочный переход	ПК-3.Д.2
4	Вольт-амперная характеристика р-п перехода	ПК-3.Д.3
5	Выпрямительные полупроводниковые диоды: принцип	ПК-3.Д.4
3	действия, характеристики, параметры	
6	Полупроводниковые стабилитроны: принцип действия,	ПК-3.Д.5
U	характеристики, параметры.	
7	Параметрический стабилизатор напряжения на	ОПК-4.Д.4
/	стабилитроне	
8	Диодные тиристоры: принцип действия, характеристики,	ПК-3.Д.1
O	параметры.	
9	Триодные тиристоры: принцип действия, характеристики,	ПК-3.Д.2
9	параметры.	
10	Симисторы: принцип действия, характеристики, параметры.	ПК-3.Д.3
11	Принцип действия биполярного транзистора.	ПК-3.Д.4
12	Транзистор как усилительный прибор. Схема ОБ.	ПК-3.Д.5
13	Транзистор как усилительный прибор. Схема ОЭ.	ОПК-4.Д.4
14	Режимы работы биполярного транзистора.	ПК-3.Д.1
15	Статические вольт-амперные характеристики и параметры	ПК-3.Д.2
13	биполярных транзисторов	
16	Полевой транзистор с р-п переходом: принцип действия,	ПК-3.Д.3
16	характеристики, параметры	
	Полевой транзистор с изолированным затвором и	ПК-3.Д.4
17	встроенным каналом: принцип действия, характеристики,	
	параметры.	
	Полевой транзистор с изолированным затвором и	ПК-3.Д.5
18	индуцированным каналом: принцип действия,	
	характеристики, параметры.	
10	Светоизлучающий диод: принцип действия, характеристики,	ОПК-4.Д.4
19	параметры.	
20	Фотоприемники (фоторезистор, фотодиод: принцип	ПК-3.Д.1

	действия, характеристики, параметры.	
21	Фотоприемники (фототранзистор, фототиристор: принцип	ПК-3.Д.2
21	действия, характеристики, параметры).	
22	Оптопары: принцип действия, характеристики, параметры.	ПК-3.Д.3
23	Классификация усилителей	ПК-3.Д.4
24	Показатели качества усилительных устройств.	ПК-3.Д.5
25	Режимы работы усилителя.	ОПК-4.Д.4
26	Особенности построения силовых каскадов	ПК-3.Д.1
27	Трансформаторный усилитель мощности.	ПК-3.Д.2
28	Бестрансформаторный усилитель мощности.	ПК-3.Д.3
29	Усилители мощности в ключевом режиме. Симметричная	ПК-3.Д.4
29	коммутация ключей.	
30	Усилители мощности в ключевом режиме. Несимметричная	ПК-3.Д.5
30	коммутация ключей.	
31	Усилители мощности в ключевом режиме. Диагональная	ОПК-4.Д.4
31	коммутация ключей.	
32	Типовые схемы включения ОУ (инвертирующее	ПК-3.Д.1
	включение).	
33	Типовые схемы включения ОУ (неинвертирующее	ПК-3.Д.2
	включение).	H14 2 H 2
34	Реализация корректирующих устройств на ОУ.	ПК-3.Д.3
35	Реализация нелинейных характеристик на основе диодно-	ПК-3.Д.4
	резистивной ячейки.	писа п л
	Построение схем, реализующих нелинейные статические и	ПК-3.Д.5
26	динамические характеристики элементов и устройств	
36	систем автоматического управления на основе	
	операционных усилителей. Нелинейность вида	
	«Ограничение»	ОПК-4.Д.4
37	Построение схем, реализующих нелинейные статические и динамические характеристики элементов и устройств	ОПК-4.Д.4
	систем автоматического управления на основе	
	операционных усилителей. Нелинейность вида «Зона	
	нечувствительности»	
	пелуветвительности//	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 — Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код индикатора
	Учебным планом не предусмотрено	

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

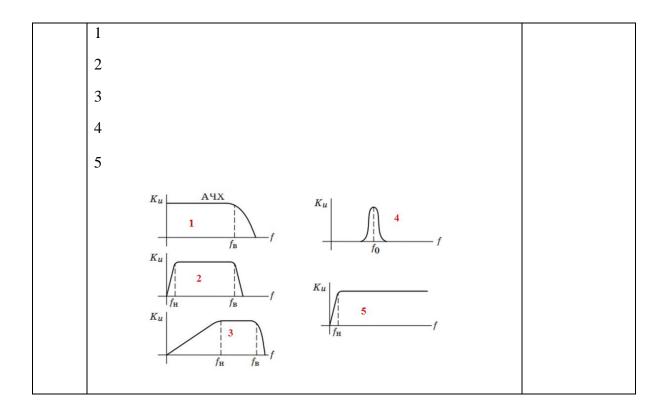
№ п/п Примерный перечень тем для курсового проектирования/выпол курсовой работы	
1	Проектирование электронных усилительных устройств малой мощности. Индивидуальное Т3

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

Ma	тримериын перетень вопросов для тестов	I/
№ п/п	Примерный перечень вопросов для тестов	Код индикатора
1	Как должны быть связаны критическое значение коэффициента обратной связи βкр с коэффициентом усиления К усилителя без обратной связи для возникновения самовозбуждения? 1 βкр = 1 / K 2 βкр ≥ 1 / K	ОПК-4.Д.4
	σ ρκρ <u>></u> 1 / Κ	
2	Как должны быть связаны сдвиг фаз фус напряжения усилителем со сдвигом фаз фос напряжения в цепи обратной связи для возникновения самовозбуждения?	ПК-3.Д.1
	1 $\phi yc + \phi oc = 2\pi n (n - целое число)$	
	2 $\phi yc + \phi oc = 1/2\pi n \ (n - целое число)$	
	3 $\phi yc + \phi oc = \pi n (n - целое число)$	
3	Как зависит период Т колебаний от индуктивности L и емкости С колебательного контура в LC-генераторе синусоидальных колебаний?	ПК-3.Д.2
	$1 T = 2\pi (LC)1/2$	
	$T = 2\pi / (LC)1/2$	
	$3 T = 2\pi LC$	
4	Как найти период Т следования импульсов симметричного мультивибратора?	ПК-3.Д.3
	1 T = 1.4R6C	
	2 T = R6C	
	T = 0.7R6C	
5	Как повысить стабильность частоты генератора?	ПК-3.Д.4
	1 Использовать схемы кварцевых генераторов	
	2 Использовать схемы RC-генераторов	
	3 Использовать схемы LC-генераторов	

6	Что такое амплитудный модулятор?	ПК-3.Д.5
	1 это преобразователь постоянного сигнала в переменный фиксированной частоты	
	2 это преобразователь переменного сигнала в постоянный	
	з это преобразователь переменного сигнала в переменный другой частоты.	
7	Что такое амплитудный демодулятор?	ОПК-4.Д.4
	1 это преобразователь переменного сигнала в постоянный	
	2 это преобразователь переменного сигнала в переменный другой частоты.	
	3 это преобразователь постоянного сигнала в переменный	
8	Что значит "фазонечувствительный демодулятор"?	ПК-3.Д.1
	1 это обычный выпрямитель переменного тока	
	2 это демодулятор для входного сигнала с постоянной фазой	
	3 это демодулятор для постоянного входного сигнала	
9	Что происходит с мощностью выходного сигнала по сравнению с мощностью входного сигнала на диодном демодуляторе?	ПК-3.Д.2
	1 Мощность выходного сигнала снижается	
	2 Мощность выходного сигнала такая же как и входного сигнала	
	3 Мощность выходного сигнала повышается	
10	В каких устройствах САУ чаще всего применяются выпрямители?	ПК-3.Д.3
	1 в источниках питания	
	2 в сетевых фильтрах	
	3 в силовых приводах	
11	В каких устройствах САУ чаще всего применяются	ПК-3.Д.4


	выпрямители?	
	1 в источниках питания	
	2 в сетевых фильтрах	
	3 в силовых приводах	
12	Что такое триггер?	ПК-3.Д.5
	1 это переключающее устройство, вырабатывающее напряжение с крутыми фронтами в заданные моменты времени.	
	2 это переключающее устройство, вырабатывающее выходное напряжение в заданные моменты времени.	
	3 это переключающее устройство, вырабатывающее значительное выходное напряжение произвольной формы	
	4 это переключающее устройство, вырабатывающее значительное выходное напряжение в определённые моменты времени	
13	Какой формы напряжение формируется на выходе триггера?	ОПК-4.Д.4
	1 прямоугольной	
	2 треугольной	
	3 синусоидальной	
	4 произвольной	
14	Триггер формирует выходной сигнал при подаче	ПК-3.Д.1
	входного сигнала	
	1 произвольной формы	
	2 определённого вида	
	3 с нулевой амплитудой	
15	Важнейшей характеристикой триггера является его	ПК-3.Д.2
	1 Быстродействие	
	2 нагрузочная способность	
	3 входное сопротивление	
	4 выходное сопротивление	

16	Для чего нужны нелинейные преобразования непрерывных сигналов?	ПК-3.Д.3
	1 для моделирования нелинейных процессов	
	2 для повышения качества работы устройства	
	3 для обеспечения заданных показателей качества системы управления	
17	Для чего нужны диодно-резистивные ячейки (ДРЯ)?	ПК-3.Д.4
	1 для реализации типовых кусочно-линейных характеристик	
	2 для ограничения параметров входного сигнала	
	3 для ограничения параметров выходного сигнала	
	4 для преобразования сигналов переменного тока в постоянный	
18	Укажите пример принципиальной электрической схема ДРЯ:	ПК-3.Д.5
	$1 \qquad \qquad$	
	2 1 2	
	3	
	4 Unix Unix Unix	
	3 4	

19	Если подать на вход и на диоды VD1 VD2 положительное	ОПК-4.Д.4
17	напряжение при +Uaon и +Ubon напряжениях,	оти пд. г
	$+$ \emptyset $^{U_{aon}}$	
	$\bigcap_{R_1}^{VD1}$	
	$U_{ m BMX}$	
	V_{BMX} $VD2$ $VD2$	
	· []	
	→ 5 U _{bon}	
	то получим характеристику вида	
	1 U_y	
	U_x	
	'	
	2	
	U_y U_x	
	3	
	U_x	
20	Hand babie akabasa habasanna biya masa ahana na	ПК-3.Д.1
20	Чему равна скорость нарастания выходного сигнала на выходе интегратора?	ПК-3.Д.1
	2 пропорциональна скорости изменеиня напряжения на	
	входе	
	3 пропорциональна времени запаздывания сигнала на	
	входе	
	4 пропорциональна частоте напряжения на входе	
21	При подаче синусоидального сигнала на вход интегратора	ПК-3.Д.2
	получаем	

	1 фильтр верхних частот	
	2 фильтр нижних частот	
	3 фильтр средних частот	
22	Что такое дрейф нуля в реальном интеграторе?	ПК-3.Д.3
	The range Apont Thurs promises interpreter	
	1 появление выходного напряжения при нулевом	
	входном напряжении	
	2 снижение выходного напряжения	
	3 изменение частоты выходного напряжения	
	1	
23	Когда применяют интегратор?	ПК-3.Д.4
	1 когда нужно усилить постоянную составляющую	, ,
	входного сигнала и сгладить пульсации входного сиглала	
	2 когда нужно уменьшить постоянную составляющую	
	входного сигнала и сгладить пульсации выходного сигнала	
	3 когда нужно скомпенсировать температурную	
	составляющую входного сигнала	
	Total Dio	
24	В чём заключатся суть работы усилителя в ключевом	ПК-3.Д.5
	режиме?	, ,
	1 Нагрузка периодически подключается/отключается к	
	источнику питания	
	2 Нагрузка постоянно подключена к источнику	
	питания, напряжение которого регулируется усилителителем	
	3 Нагрузка подключается к источнику питания на	
	строго определённое время.	
25	при симметричной коммутации ключей, для случая активно-	ОПК-4.Д.4
	индуктивной нагрузки, ток в нагрузке	
	1 не прерывается	
	2	
	2 прерывается	
	3 имеет кратковременные разрывы	
	3 имеет кратковременные разрывы	
26	К недостаткам режима симметричной коммутации относится	ПК-3.Д.1
	1 повышенный уровень пульсаций тока на нагрузке	
	71	
	2 не стабильность выходного напряжения	
	3 узкий диапазон изменеия скважности импульсов	
27	Когда используется ключевой режим работы?	ПК-3.Д.2
	1 ~	
	1 при релейном управлении или при широтно-	
	импульсной модуляции	

	2 при повышенных требованиях к качеству выходного сигнала	
	3 при токах нагрузки более 100А	
•		
28	Дайте определение усилителя	ПК-3.Д.3
	1 Усилитель это устройство, предназначенное для увеличения параметров сигнала (напряжения, тока, мощности).	
	2 Усилитель это устройство, предназначенное для изменения параметров сигнала	
	3 Усилитель это устройство, предназначенное для выполнения определённых задач в САУ	
29	По какому параметру классифицируют усилители?	ПК-3.Д.4
	1 по режиму работы (линейные и нелинейные),	
	2 по количеству каскадов усиления	
	3 по элементной базе	
	4 по названию	
30	По какому параметру классифицируют усилители ?	ПК-3.Д.5
	1 по роду тока (постоянный и переменный),	
	2 по частотным характеристикам	
	3 по количеству каскадов усиления	
	4 по названию	
31	Какие наиболее важные классификационные признаки усилителей для САУ ?	ОПК-4.Д.4
	1 режим работы	
	2 частотные характеристики	
	3 название	
	4 количество каскадов	
	5 массо-габаритные характеристики	
32	Укажите амплитудно-частотную характеристику (АЧХ) усилителя постоянного тока:	ПК-3.Д.1

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ	
	Не предусмотрено	

- 10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.
 - 11. Методические указания для обучающихся по освоению дисциплины (Ниже приводятся рекомендации по составлению данного раздела)
- 11.1. Методические указания для обучающихся по освоению лекционного материала (если предусмотрено учебным планом по данной дисциплине).

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;

- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- лекция с использованием слайдов
- основные понятия о проводимости полупроводников
- структура полупроводника
- строение полупроводниковых приборов
- ВАХ различных полупроводниковых приборов
- построение различных электрических схем на основании свойств полупроводниковых приборов

Лекции основываются на учебном пособии:

Шишлаков В.Ф., Полякова Т.Г., Шишлаков Д.В. Электроника: учебное пособие / Под ред. Шишлакова В.Ф. _ СПб.: ГУАП. -2015.-216c

11.2. Методические указания для обучающихся по прохождению практических занятий (если предусмотрено учебным планом по данной дисциплине)

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

Обязательно для заполнения преподавателем

Методические указания и требования к проведению практических занятий приведены в следующих источниках:

Шишлаков В.Ф., Д.В. Шишлаков, Е.В. Анисимова. Проектирование электронных усилительных устройств малой мощности: учебное пособие. – СПб.: ГУАП.- 2015 – 99с

11.3. Методические указания для обучающихся по выполнению лабораторных работ (если предусмотрено учебным планом по данной дисциплине)

В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Методические указания, варианты исходных данных и требования к выполнению лабораторных работ выдаются каждому студенту перед проведением исследований.

Проведение лабораторных работ регламентируется правилами охраны труда и техники безопасности, утвержденными ректором ГУАП. Задание на выполнение лабораторных работ определяется преподавателем в соответствии с настоящей программой дисциплины «Электроника» и учебным планом направления 16.03.01 (методические указания приведены в электронных ресурсах кафедры)

Структура и форма отчета о лабораторной работе

Отчет о лабораторной работе имеет форму гипертекстового документа,

содержащего задание на лабораторную работу, краткие теоретические сведения по теме работы, описание схем и алгоритмов, использованных при выполнении работы, результаты вычислительных экспериментов в виде графиков (диаграмм), а также выводы по итогам проделанной работы

Требования к оформлению отчета о лабораторной работе

Отчет должен содержать титульный лист, а его содержание должно быть оформлено согласно ГОСТ 7.32-2017. Нормативная документация, необходимая для оформления, приведена на электронном ресурсе ГУАП: https://guap.ru/standart/doc

11.4. Методические указания для обучающихся по прохождению курсового проектирования/выполнения курсовой работы (если предусмотрено учебным планом по данной дисциплине)

Курсовой проект/ работа проводится с целью формирования у обучающихся опыта комплексного решения конкретных задач профессиональной деятельности.

Методические указания к курсовой работе приведены в источнике:

Шишлаков В.Ф., Д.В. Шишлаков, Е.В. Анисимова. Проектирование электронных усилительных устройств малой мощности: учебное пособие. – СПб.: ГУАП.- 2015 – 99с

Структура пояснительной записки курсового проекта/ работы

- 1. Титульный лист
- 2. Введение

- 3. Анализ технического задания
- 4. Расчет оконечного каскада усиления, работающего в классе В
- 4.1. Выбор транзисторов мощного каскада усиления
- 4.2. Расчет площади теплоотвода и числа параллельно включенных транзисторов
- 4.3. Расчет велечин сопротивлений уравнительных резисторов
- 4.4. Расчет термостабилизирующих резисторов выходного каскада
- 5. Расчет предварительных касадов усиления
- 5.1. Выбор транзисторов предварительных каскадов усиления
- 5.2. Расчет сопротивлений промежуточных каскадов усиления
- 5.3. Стыковка каскадов усиления многокаскадного усилителя
- 6. Расчет внешних цепей усилителя
- 6.1. Расчет коэффициента усиления охватываемой части усилителя и коэффициента передачи отрицательной обратной связи
- 6.2. Расчет параметров внешних цепей усилителя с параллельной отрицательной обратной связью по напряжению
- 6.3. Расчет требуемой точности и выбор типа резисторов
- 7. Принципиальная электрическая схема усилителя
- 8. Математическое моделирование электрической схемы усилителя.
- 9. Сборочный чертёж конструкции разработанного усилителя.
- 10. Заключение
- 11. Библиографический список

Требования к оформлению пояснительной записки курсового проекта/ работы Нормативная документация, необходимая для оформления, приведена на электронном ресурсе ГУАП: https://guap.ru/standart/doc

11.5. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.6. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Текущий контроль успеваемости студентов проводится путем мониторинга результатов выполнения лабораторных работ, контрольным вопросами на защите практических и лабораторных работ, путем получения обратной связи во время проведения лекций

11.7. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

– экзамен – форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой