МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 31

УТВЕРЖДАЮ

Руководитель образовательной программы

доц.,к.т.н.,доц.

(должность, уч. степень, звание)

О.Я. Солёная

(подпись)

(инише**ль (Уб**улилия)

«17» июня 2025 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Теория автоматического управления» (Наименование дисциплины)

Код направления подготовки/ специальности	13.03.02
Наименование направления подготовки/ специальности	Электроэнергетика и электротехника
Наименование направленности	Энергетические электрические машины
Форма обучения	очная
Год приема	2023

Лист согласования рабочей программы дисциплины

Программу составил (а)	()	
Ст. преп.	W17-06	25А.В. Решетникова
(должность, уч. степень, звание)	(подпись, дата)	(инициалы, фамилия)
Программа одобрена на заседан	ии кафедры № 31	
«17»_июня 2025 г, протокол N	₾ 6	
Заведующий кафедрой № 31	100	
д.т.н.,проф.	17.08.2	В.Ф. Шишлаков
(уч. степень, звание)	(иодпись, дата)	(инициалы, фамилия)
Заместитель директора институ	та №3 по методической рабо	OTC 25
Ст. преп.		Н.В. Решетникова
(должность, уч. степень, звание)	(nogrifich, harray	(инициалы, фамилия)

Аннотация

Дисциплина «Теория автоматического управления» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 13.03.02 «Электроэнергетика и электротехника» направленности «Энергетические электрические машины». Дисциплина реализуется кафедрой «№31».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ПК-3 «Способен принимать участие в проектировании объектов профессиональной деятельности в соответствии с техническим заданием и нормативно-технической документацией»

ПК-5 «Способен проводить анализ и контроль параметров и условий работы отдельных компонентов электроэнергетической системы»

Содержание дисциплины охватывает круг вопросов, связанных с изучением теоретических основ и прикладных алгоритмов разработки и исследования систем автоматического управления, в том числе:

- основные положения теории управления, современные тенденции в развитии и применении систем автоматического управления.
- применение теоретических знаний к решению конкретных инженерных задач проектирования систем автоматического управления различными объектами;
- использование современных пакетов математического моделирования для решения задач анализа и синтеза систем автоматического управления.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, практические занятия, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 5 зачетных единиц, 180 часов.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Теория автоматического управления представляет собой научную дисциплину, имеющую важное фундаментальное и прикладное значение. Она занимает одно из центральных мест среди технических наук общего применения. Теория управления является базой для проектирования и исследования автоматических и автоматизированных систем во всех отраслях производства.

Целью преподавания дисциплины является изучение студентами основ теории автоматического управления, а также получение практических навыков, необходимых при создании, исследовании и эксплуатации систем и средств автоматизации и управления..

- 1.2. Дисциплина входит в состав части, формируемой участниками образовательных отношений, образовательной программы высшего образования (далее ОП ВО).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблине 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа)	Код и наименование	Код и наименование индикатора
компетенции	компетенции	достижения компетенции
Профессиональные компетенции	ПК-3 Способен принимать участие в проектировании объектов профессиональной деятельности в соответствии с техническим заданием и нормативнотехнической документацией	ПК-3.Д.3 использует средства автоматизированного проектирования для оформления рабочей документации объектов профессиональной деятельности
Профессиональные компетенции	ПК-5 Способен проводить анализ и контроль параметров и условий работы отдельных компонентов электроэнергетической системы	ПК-5.Д.1 анализирует зависимости между параметрами и характеристиками компонентов электроэнергетической системы ПК-5.Д.4 использует специальное программное обеспечение для программирования микроконтроллеров и настройки технологических параметров и режимов работы объектов профессиональной деятельности

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Информатика»,
- «Математика. Математический анализ».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- «Аналитические системы для управления объектами энергетики».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам №5
1	2	3
Общая трудоемкость дисциплины, 3E/ (час)	2/72	2/72
Из них часов практической подготовки	34	34
Аудиторные занятия, всего час.	68	68
в том числе:		
лекции (Л), (час)	34	34
практические/семинарские занятия (ПЗ), (час)	17	17
лабораторные работы (ЛР), (час)	17	17
курсовой проект (работа) (КП, КР), (час)		
экзамен, (час)		
Самостоятельная работа, всего (час)	4	4
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Дифф. Зач.	Дифф. Зач.

Примечание: **кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

Разделы, темы дисциплины	Лекции (час)	ПЗ (СЗ) (час)	ЛР (час)	КП (час)	СРС (час)
Сем	естр 5			. , ,	
Раздел 1. Основные понятия теории автоматического управления.	8	-	-	-	1
Раздел 2. Преобразование Лапласа и аппарат передаточных функций	8	6	7	-	1
Раздел 3. Корневые оценки устойчивости и качества систем управления	9	-	3	-	1
Раздел 4. Частотные методы анализа и синтеза систем управления	9	11	7	-	1
Итого в семестре:	34	17	17		4
Итого	34	17	17	0	4

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий.

Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер	Hoopeywa waa yamwayya maa ya y
раздела	Название и содержание разделов и тем лекционных занятий
1	Основные понятия теории автоматического управления (ТАУ).
	История развития ТАУ. классификация объектов и систем управления (СУ);
	этапы синтеза системы управления; примеры СУ техническими, экономическими
	и организационными объектами; задачи теории управления. Разомкнутые и замкнутые системы; компенсация возмущений; системы с компенсацией
	параметрических возмущений; идентификация, адаптивное управление.
	Классификации СУ: по типу сигналов; по типу алгоритма.
2	Преобразование Лапласа и аппарат передаточных функций.
2	Линейные СУ и их свойства. Принципы и примеры линеаризации. Линеаризация
	системы со многими входами. Операторная форма записи уравнений СУ.
	Преобразование Лапласа. Передаточная функция. Нули и полюса. Типовые
	динамические звенья. Единичная ступенчатая функция и дельта-функция.
	Переходная функция и функция веса. Правила преобразования структурных схем
	систем автоматического управления. Использование графовой модели: формула
	Мейсона. Преимущества и недостатки введения обратной связи. Частные
	передаточные функции. Чувствительность систем управления. Точность в
	установившихся режимах. Инвариантные системы.
3	Корневые оценки устойчивости и качества систем управления.
	Показатели качества переходного процесса во временной области. Корневые
	оценки качества переходного процесса. Влияние нулей. Интегральные оценки
	качества переходного процесса. Установившаяся ошибка системы управления с
	обратной связью. Статические и астатические системы. Необходимое и достаточное условие устойчивости. Алгебраический критерий устойчивости.
	Структурно неустойчивые системы. Корневые показатели качества переходного
	процесса. Корневой годограф. Прямой синтез параметров регулятора.
4	Частотные методы анализа и синтеза систем управления.
•	Частотная характеристика динамического звена. Полоса пропускания и частота
	среза. Логарифмические частотные характеристики: ЛАЧХ и ЛФЧХ. Алгоритм
	построения ЛАЧХ разомкнутой системы. Критерий устойчивости Михайлова.
	Формулировка частотного критерия устойчивости Найквиста. Критерий
	Найквиста для систем с запаздыванием. Оценка запасов устойчивости по ЛАЧХ
	и ЛФЧХ разомкнутой системы. Частотные критерии качества. Запасы
	устойчивости. Точность при гармоническом воздействии. Оценка качества
	следящей системы по виду ЛАЧХ разомкнутой системы. Коррекция с помощью
	дифференцирующего устройства и интегро-дифференцирующей цепи.
	Частотный синтез последовательного корректирующего устройства общего вида.
	Типовые аналоговые корректирующие звенья.

4.3. Практические (семинарские) занятия Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

	•	1 7/1		Из них	$N_{\underline{0}}$
No	Темы практических	Формы практических	Трудоемкость,	практической	раздела
Π/Π	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
	Семестр 5				
1	Линеаризация нелинейных систем	Решение задач	3	3	2
2	Сигнальные графы	Решение задач	3	3	2

	и формула Мейсона				
3	Частотные	Решение задач	3	3	4
	характеристики	т оштопито ощент	· ·		-
	Логарифмические				
4	частотные	Решение задач	4	4	4
	характеристики				
5	Критерии	Dayyayyya aa yay	1	4	4
)	устойчивости	Решение задач	4	4	4
	Всег	0	17	17	

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	No॒
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	раздела
Π/Π	паименование наобраторных работ	(час)	подготовки,	дисцип
			(час)	ЛИНЫ
	Семестр :	5		
1	Динамические звенья и их характеристики	3	3	2
	во временной области			
2	Исследование преобразований	4	4	2
	структурных схем			
3	Исследование ПИД-регуляторов	3	3	3
4	Частотный синтез корректирующего	4	4	4
	устройства			
5	Синтез регулятора двигателя постоянного	3	3	4
	тока			
	Всего	17	17	

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся

Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

	1 *	/ ٢ 1
Вид самостоятельной работы	Всего,	Семестр 5,
Вид самостоятсявной рассты	час	час
1	2	3
Изучение теоретического материала дисциплины (TO)	1	1
Подготовка к текущему контролю успеваемости (ТКУ)	1	1
Подготовка к промежуточной аттестации (ПА)	2	2
Всего:	4	4

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8– Перечень печатных и электронных учебных изданий

таолица о- перечень печатных и электронных	учесных издании	
Шифр/ URL адрес	тт Биониографическая ссынка н	
	Теория автоматического управления: учебное пособие. Ч. 1 / М. В. Бураков; СПетерб. гос. ун-т аэрокосм. приборостроения Электрон. текстовые дан СПб.: Изд-во ГУАП, 2013 254 с.	
681.5 E 78	Ерофеев, А. А. Теория автоматического управления [Текст]: учебник для вузов / А. А. Ерофеев 2-е изд., доп. и перераб СПб.: Политехника, 2005 302 с.	99
681.5 Б 53	Бесекерский, Виктор Антонович (проф., лауреат Гос. премии). Теория систем автоматического управления [Текст] / В. А. Бесекерский, Е. П. Попов 4-е изд., перераб. и доп СПб. : Профессия, 2007 752 с.	10
https://new.znanium.com/catalog/product/548433	Панкратов, В. В. Избранные разделы современной теории автоматического управления/ПанкратовВ.В., НосО.В., ЗимаЕ.А Новосибирск: НГТУ, 2011 223 с.: ISBN 978-5-7782-1810-9 Текст: электронный.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 – Перечень электронных образовательных ресурсов информационно-

телекоммуникационной сети «Интернет»

URL адрес	Наименование
	Не предусмотрено

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10– Перечень программного обеспечения

№ п/п	Наименование
1	Matlab

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Н	Гаименование
N5 II/II	11	таимспование
	Не предусмотрено	

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лекционная аудитория	
2	Компьютерный класс	

10. Оценочные средства для проведения промежуточной аттестации

10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила

использования которой, установлены соответствующим локальным нормативным актом Γ УАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

	оценки уровня сформированности компетенции	
Оценка компетенции	Характеристика сформированных компетенций	
5-балльная шкала		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 	
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 	
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 	
«неудовлетворительно» «не зачтено»	 обучающийся не усвоил значительной части программного материала; допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; испытывает трудности в практическом применении знаний; не может аргументировать научные положения; не формулирует выводов и обобщений. 	

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

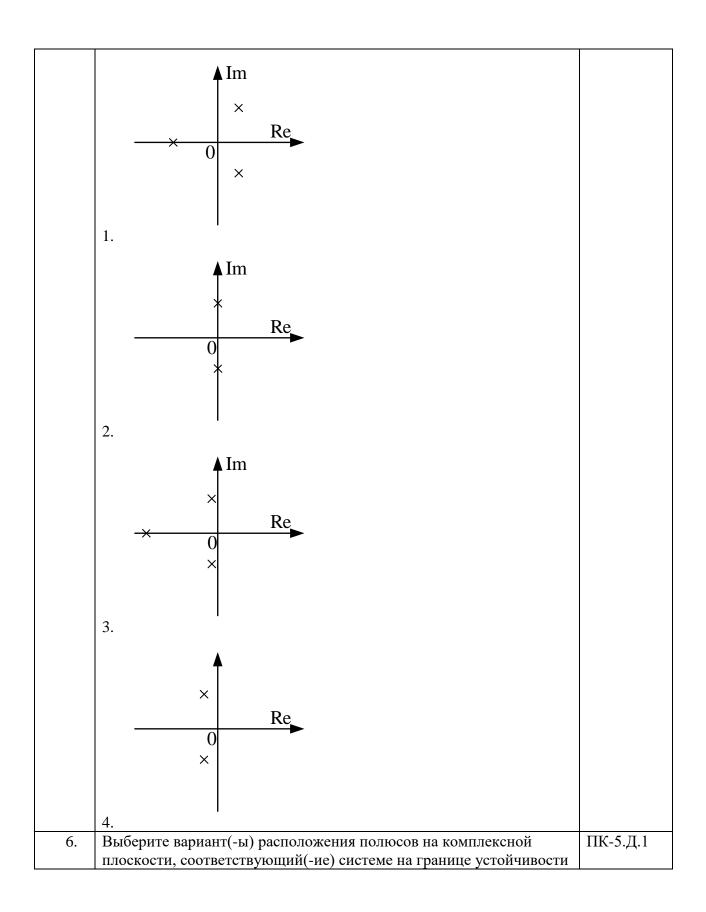
№ п/п	Перечень вопросов (задач) для экзамена	Код
JN2 11/11		индикатора
1.	Классификация систем управления и история развития ТАУ	ПК-5.Д.1
2.	Этапы синтеза системы управления	ПК-5.Д.1
3.	Способы математического описания объектов управления	ПК-5.Д.1
4.	Линейные системы управления и их свойства. Принципы	ПК-5.Д.1
	линеаризации.	
5.	Линеаризация: системы со многими входами	ПК-5.Д.1
6.	Операторная форма записи уравнений системы управления	ПК-5.Д.1
7.	Преобразование Лапласа	ПК-5.Д.1
8.	Передаточная функция. Нули и полюса	ПК-5.Д.1
9.	Типовые динамические звенья	ПК-5.Д.1

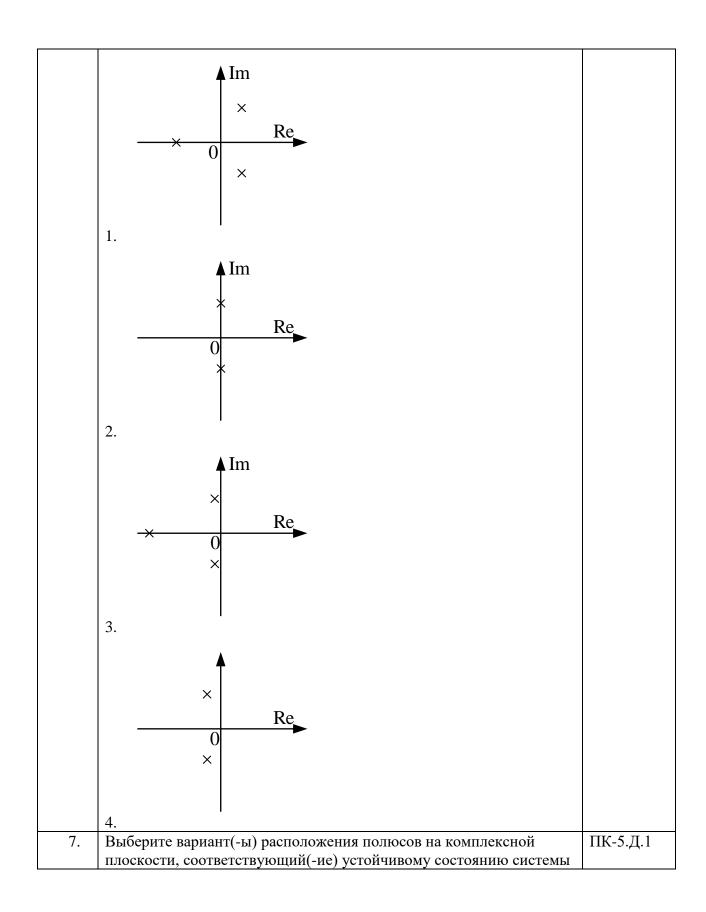
 10. Единичная ступенчатая функция и дельта-функция. Перехофункция и функция веса 11. Передаточная функция системы с обратной связью 12. Частные передаточные функции 13. Чувствительность систем управления 14. Инвариантные системы 15. Показатели качества переходного процесса во временной обрать и качества переходного процесса. Влияние 17. Интегральные оценки качества переходного процесса 18. Теорема о конечном значении и установившаяся ошибка си управления с обратной связью 19. Частотная характеристика динамического звена. Полоса 	ПК-5.Д.1 ПК-5.Д.1 ПК-5.Д.1 ПК-5.Д.1 ПК-5.Д.1 ПК-5.Д.1 ПК-5.Д.1
 11. Передаточная функция системы с обратной связью 12. Частные передаточные функции 13. Чувствительность систем управления 14. Инвариантные системы 15. Показатели качества переходного процесса во временной о 16. Корневые оценки качества переходного процесса. Влияние 17. Интегральные оценки качества переходного процесса 18. Теорема о конечном значении и установившаяся ошибка си управления с обратной связью 	ПК-5.Д.1 ПК-5.Д.1 ПК-5.Д.1 ПК-5.Д.1 ПК-5.Д.1 ПК-5.Д.1
 12. Частные передаточные функции 13. Чувствительность систем управления 14. Инвариантные системы 15. Показатели качества переходного процесса во временной о 16. Корневые оценки качества переходного процесса. Влияние 17. Интегральные оценки качества переходного процесса 18. Теорема о конечном значении и установившаяся ошибка си управления с обратной связью 	ПК-5.Д.1 ПК-5.Д.1 ПК-5.Д.1 ПК-5.Д.1 ПК-5.Д.1 ПК-5.Д.1
13. Чувствительность систем управления 14. Инвариантные системы 15. Показатели качества переходного процесса во временной о 16. Корневые оценки качества переходного процесса. Влияние 17. Интегральные оценки качества переходного процесса 18. Теорема о конечном значении и установившаяся ошибка си управления с обратной связью	ПК-5.Д.1 ПК-5.Д.1 бласти ПК-5.Д.1 нулей ПК-5.Д.1 ПК-5.Д.1
 14. Инвариантные системы 15. Показатели качества переходного процесса во временной о 16. Корневые оценки качества переходного процесса. Влияние 17. Интегральные оценки качества переходного процесса 18. Теорема о конечном значении и установившаяся ошибка си управления с обратной связью 	ПК-5.Д.1 бласти ПК-5.Д.1 нулей ПК-5.Д.1 ПК-5.Д.1
 15. Показатели качества переходного процесса во временной о 16. Корневые оценки качества переходного процесса. Влияние 17. Интегральные оценки качества переходного процесса 18. Теорема о конечном значении и установившаяся ошибка си управления с обратной связью 	бласти ПК-5.Д.1 нулей ПК-5.Д.1 ПК-5.Д.1
 16. Корневые оценки качества переходного процесса. Влияние 17. Интегральные оценки качества переходного процесса 18. Теорема о конечном значении и установившаяся ошибка си управления с обратной связью 	нулей ПК-5.Д.1 ПК-5.Д.1
 17. Интегральные оценки качества переходного процесса 18. Теорема о конечном значении и установившаяся ошибка си управления с обратной связью 	ПК-5.Д.1
18. Теорема о конечном значении и установившаяся ошибка си управления с обратной связью	
управления с обратной связью	истем ПК-5.Д.1
10 Постотная узрактернетика пинаминаского врана Почаса	
13. частотная характеристика динамического звена. Полоса	ПК-5.Д.1
пропускания и частота среза	
20. Логарифмические частотные характеристики	ПК-5.Д.1
21. Частотные критерии качества	ПК-5.Д.1
22. Критерий устойчивости Михайлова	ПК-5.Д.1
23. Формулировка частотного критерия устойчивости Найквис	та ПК-5.Д.1
24. Правила преобразования структурных схем систем	ПК-5.Д.1
автоматического управления	
25. Сигнальные графы и метод Мейсона	ПК-5.Д.1
26. Устойчивые и неустойчивые системы. Оценка устойчивост	и по ПК-5.Д.1
полюсам передаточной функции	
27. Метод <i>D</i> -разбиения	ПК-5.Д.1
28. Критерий устойчивости Рауса-Гурвица	ПК-5.Д.1
29. Корневой годограф	ПК-5.Д.1
30. Анализ систем управления в частотной области. Получение	е ПК-5.Д.1
частотных характеристик по передаточным функциям	
31. Примеры ЛЧХ типовых звеньев	ПК-5.Д.1
32. Алгоритм построения ЛАЧХ разомкнутой системы. Приме	р ПК-5.Д.1
33. ПИД-регуляторы	ПК-5.Д.1
34. Необходимое условие устойчивости систем управления	ПК-5.Д.1
35. Прямой синтез параметров регулятора	ПК-5.Д.1
36. Физический смысл критерия устойчивости Найквиста	ПК-5.Д.1
37. Оценка запасов устойчивости по ЛАЧХ и ЛФЧХ разомкнут	
системы	
38. Частотный синтез последовательного корректирующего уст	тройства ПК-5.Д.1
39. Коррекция с помощью дифференцирующих устройств	ПК-5.Д.1
40. Коррекция с помощью интегрирующих устройств	ПК-5.Д.1
41. Коррекция с помощью интегро-дифференцирующих устрой	- ' '
42. Корректирующие звенья на операционных усилителях	ПК-5.Д.1
43. Безынерционные и динамические нелинейные элементы	ПК-5.Д.1

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16. Таблица 16 — Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код инликатора
	Учебным планом не предусмотрено	, , <u>1</u>

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.


Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы


№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

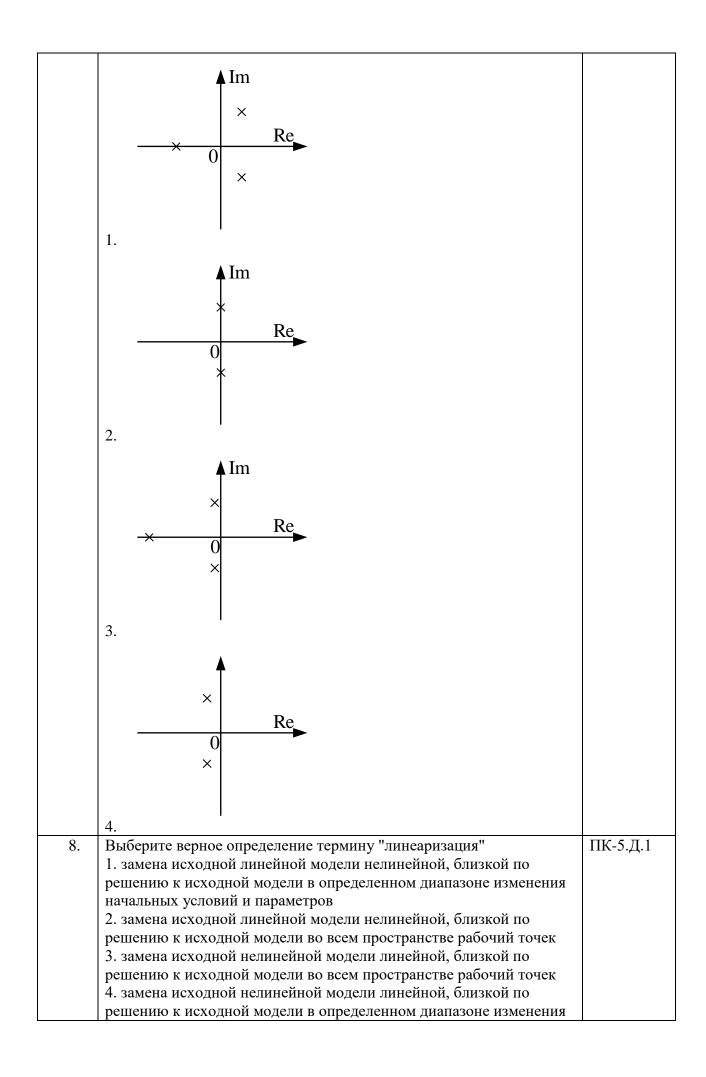
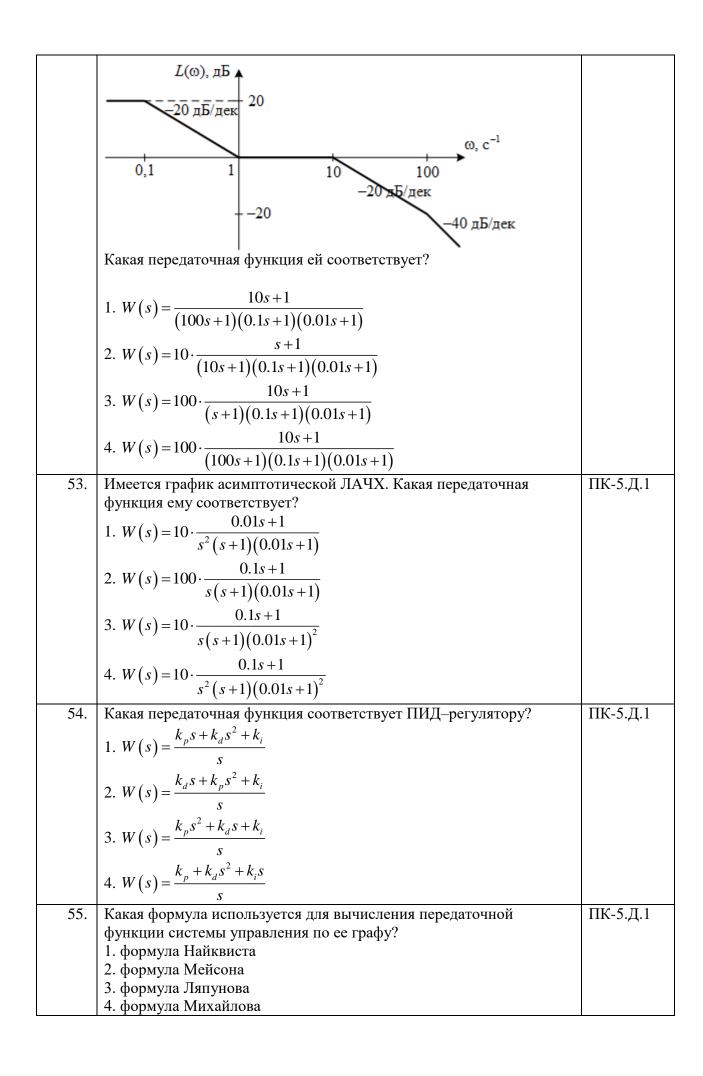

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

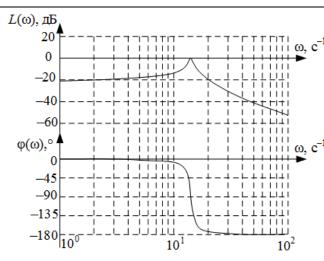
№ п/п	Примерный перечень вопросов для тестов	Код индикатора
1.	Алгебраический критерий устойчивости Рауса-Гурвица позволяет: 1. Судить об устойчивости по полюсам системы 2. Судить об устойчивости по корням характеристического уравнения 3. Судить об абсолютной устойчивости по коэффициентам	ПК-5.Д.1
	з. Судить об абсолютной устоичивости по коэффициентам характеристического уравнения 4. Судить о запасах устойчивости по коэффициентам характеристического уравнения	
2.	В каком бытовом приборе используется принцип управления с обратной связью? 1. Микроволновая печь 2. Холодильник 3. Кофеварка 4. Вентилятор	ПК-5.Д.1
3.	В каком случае система имеет склонность к колебаниям? 1. Система неустойчива 2. Характеристическое уравнение содержит только комплексные корни 3. Характеристическое уравнение содержит комплексные корни 4. Характеристическое уравнение содержит только вещественные корни	ПК-5.Д.1
4.	В чем особенность принципа управления по отклонению? 1. принцип позволяет не учитывать влияние возмущений на САУ 2. принцип позволяет получать информацию о выходной величине в течение работы САУ 3. принцип позволяет не использовать информацию о выходной величине 4. принцип позволяет "отрабатывать" действующие на систему возмущения 5. принцип основан на использовании сигнала отрицательной обратной связи, с помощью которого вычисляется ошибка управления	ПК-5.Д.1
5.	Выберите вариант(-ы) расположения полюсов на комплексной плоскости, соответствующий(-ие) неустойчивому состоянию системы	ПК-5.Д.1

	начальных условий и параметров	
9.		ПК-5.Д.1
	Дано дифференциальное уравнение $\frac{d^2y}{dt^2} + \frac{3dy}{dt} + y = \frac{10dx}{dt}$, какая	
	передаточная функция ему соответствует?	
	1. $W(s) = \frac{10}{s^2 + s + 1}$	
	10c	
	$2. W(s) = \frac{10s}{2 + 2 + 1}$	
	s + 3s + 1	
	2. $W(s) = \frac{10s}{s^2 + 3s + 1}$ 3. $W(s) = \frac{10s^2}{s^2 + 3s + 1}$	
	$s^2 + 3s + 1$	
	4. $W(s) = \frac{10}{s^2 + 3s + 1}$	
	$s^2 + 3s + 1$	
10.	Выберите системы, в которых используется принцип управления по	ПК-5.Д.1
	отклонению	
	1. система с ЧПУ	
	2. автопилот, поддерживающий определенный курс и высоту полета	
	самолета без помощи летчика	
	3. холодильник	
	4. автоматический регулятор скорости вращения двигателя,	
	поддерживающий постоянную угловую скорость двигателя	
	независимо от внешней нагрузки	
	5. утюг	
	6. система самонаведения снаряда на цель	
	7. автомат, выбрасывающий какие-либо предметы (билеты,	
11.	шоколад) при опускании в него определенной комбинации монет	пи 5 п 1
11.	Выберите системы, в которых может быть использован принцип	ПК-5.Д.1
	разомкнутого управления 1. система с ЧПУ	
	2. автопилот, поддерживающий определенный курс и высоту полета	
	самолета без помощи летчика	
	3. холодильник	
	4. автоматический регулятор скорости вращения двигателя,	
	поддерживающий постоянную угловую скорость двигателя	
	независимо от внешней нагрузки	
	5. утюг	
	6. система самонаведения снаряда на цель	
	7. автомат, выбрасывающий какие-либо предметы (билеты,	
	шоколад) при опускании в него определенной комбинации монет	
12.	Что такое "корневой годограф"?	ПК-5.Д.1
	1. Совокупность траекторий перемещения всех корней	
	характеристического уравнения замкнутой системы при изменении	
	какого-либо параметра этой системы	
	2. Совокупность траекторий перемещения всех корней	
	характеристического уравнения разомкнутой системы при	
	изменении какого-либо параметра этой системы	
	3. Положение полюсов передаточной функции замкнутой системы	
	на комплексной плоскости.	
	4. Положение полюсов передаточной функции разомкнутой	
4.5	системы на комплексной плоскости	THC 5 7 1
13.	Какая система называется детерминированной?	ПК-5.Д.1
	1. система, оператор которой устанавливает однозначное	

		1
	соответствие между входными и выходной переменными	
	2. система, в которой выходной сигнал в текущий момент времени	
	не зависит от значений входного сигнала в последующие моменты	
	времени	
	3. система, оператор которой является случайным	
	4. система, параметры которой (коэффициенты дифференциального	
	уравнения) не изменяются во времени	
14.	Какая система называется стационарной?	ПК-5.Д.1
	1. система, оператор которой устанавливает однозначное	
	соответствие между входными и выходной переменными	
	2. система, в которой выходной сигнал в текущий момент времени	
	не зависит от значений входного сигнала в последующие моменты	
	времени	
	3. система, оператор которой является случайным	
	4. система, параметры которой (коэффициенты дифференциального	
	уравнения) не изменяются во времени	
15.	Какая система называется стохастической?	ПК-5.Д.1
	1. система, оператор которой устанавливает однозначное	
	соответствие между входными и выходной переменными	
	2. система, в которой выходной сигнал в текущий момент времени	
	не зависит от значений входного сигнала в последующие моменты	
	времени	
	3. система, оператор которой является случайным	
	4. система, параметры которой (коэффициенты дифференциального	
	уравнения) не изменяются во времени	
16.	Какая система называется физически реализуемой?	ПК-5.Д.1
	1. система, оператор которой устанавливает однозначное	
	соответствие между входными и выходной переменными	
	2. система, в которой выходной сигнал в текущий момент времени	
	не зависит от значений входного сигнала в последующие моменты	
	времени	
	3. система, оператор которой является случайным	
	4. система, параметры которой (коэффициенты дифференциального	
	уравнения) не изменяются во времени	
17.	Дайте определение задаче идентификации	ПК-5.Д.1
	1. оценка показателей качества работы САУ	
	2. настройка параметров модели с целью достижения наибольшего	
	сходства между ее выходом и выходом объекта	
	3. нахождение нулей и полюсов передаточной функции	
	4. построение переходного процесса системы	
18.	Какие задачи требуется решать при разработке САУ?	ПК-5.Д.1
	1. дефектовка	
	2. оценка экономической эффективности	
	3. анализ	
	4. синтез	
19.	Как называется методика настройки ПИД – регулятора?	ПК-5.Д.1
	1. Метод Рауса-Гурвица	
	2. Метод Зиглера-Николса	
	3. Метод Гаусса-Зейделя	
	4. Метод Рунге-Кутта	
20.	Как называется переходный процесс без перерегулирования?	ПК-5.Д.1
	1. Апериодический	


	2 A amamyuya ayuyiy	
	2. Астатический	
	3. Колебательный	
21	4. Неустойчивый	ПК-5.Д.1
21.		
	1. Экстремальные САУ - это такие САУ, в которых один из	
	показателей качества работы нужно удерживать на предельном	
	уровне	
	2. Экстремальные системы - это системы, изменения в которых	
	происходят под воздействием случайных факторов.	
	3. Экстремальной называют такую систему управления, в которой	
	возможно изменение закона управления в условиях меняющихся	
	параметров объекта или среды с целью поддержания показателя	
	качества в заданных границах.	
	4. Экстремальной называется такая система, которая содержит хотя	
	бы одно звено, описываемое нелинейным уравнением	
22.	Для какого устройства были созданы первые автоматические	ПК-5.Д.1
	регуляторы?	
	1. Дирижабль	
	2. Паровоз	
	3. Аэроплан	
	4. Паровая машина	
23.	Для ошибки управления справедливо	ПК-5.Д.1
	1. используется регулятором для формирования сигнала управления	
	u(t)	
	2. равна $e(t)=g(t)-y(t)$	
	3. может появляться только в нелинейных системах	
	4. измеряется в градусах	ПК-5.Д.1
24.	24. Какие критерии относятся к показателям качества управления?	
	1. корневой годограф	
	2. перерегулирование	
	3. линеаризация	
	4. время переходного процесса	
	5. статическая ошибка	
25	6. астатизм	пис с п 1
25.	Какие системы называются оптимальными?	ПК-5.Д.1
	1. Система, все параметры которой не изменяются во времени	
	2. Системы, в которых обеспечивается минимум соответствующей	
	оценки качества	
	3. Система, параметр(ы) которой изменяются во времени	
	4. Система, в которой присутствует хотя бы один элемент,	
26	производящий квантование сигналов	
26.	26. Какие системы называются инвариантными?	
	1. системы, параметры которых не изменяются во времени	
	2. системы, в которых выходной сигнал в текущий момент времени	
	не зависит от значений входного сигнала в последующие моменты	
	времени	
	3. системы, оператор которых устанавливает однозначное	
	соответствие между входными и выходной переменными	
	4. системы, в которых по окончании переходного процесса,	
	обусловленного ненулевыми начальными условиями, ошибка и	
27	регулируемая величина не зависят от этого входного сигнала	пили
27.	Какие полюса системы дают наиболее медленно затухающую	ПК-5.Д.1

	составляющую переходного процесса?	O MORNINO	
	1. Отрицательные, имеющие наименьшую п	о модулю	
	вещественную часть	o Morryino	
	2. Отрицательные, имеющие наибольшую п	о модулю	
	вещественную часть		
	3. Положительные, имеющие наименьшую в		
28.	4. Положительные, имеющие наибольшую в	вещественную часть	ПК-5.Д.1
28.	Какие операторы относятся к линейным? 1. Интегрирования		11К-3.Д.1
	± ±		
	2. Дифференцирования 3. Возведения в степень		
	4. Логарифмирования		
29.	Какие операторы не относятся к линейным?		ПК-5.Д.1
29.	1. Интегрирования		тк-э.д.т
	2. Дифференцирования		
	2. дифференцирования 3. Возведения в степень		
	4. Логарифмирования		
30.	4. Логарифмирования Сопоставьте передаточную функцию и назв	апие эрепа	ПК-5.Д.1
30.			111Х-Э.Д.1
	M/I G I $=$	пьное енцирующее с	
	0.1s+1 диффер	* *	
	$W(s) = \frac{1}{0.1.2 + 0.02 + 1}$ инерцио		
	$0.1s^2 + 0.02s + 1$ изодром		
	<u> </u>	енцирующее	
	$W(s) = \frac{\pi}{0.1s^2 + s}$	рующее с	
	W(s) = 15s запазды		
	$W(s) = \frac{3}{0.01s+1}$ колебат		
31.	Если у инерционного звена уменьшить пост		ПК-5.Д.1
31.	нуля, звено преобразуется в	омпую времени т де	3.4.1
	1. интегрирующее		
	2. пропорциональное		
	3. консервативное		
	4. дифференцирующее		
32.	Если на вход линейной динамической систе	мы подать	ПК-5.Д.1
	гармоническое воздействие, то выходной си		, ,
	представлять собой:	3	
	1. гармоническую функцию с той же фазой,	но с измененной	
	амплитудой и частотой		
	2. гармоническую функцию той же частоты	, но с измененной	
	амплитудой и фазой		
	3. гармоническую функцию, но с измененно	ой частотой, амплитудой	
	и фазой		
	4. гармоническую функцию с той же амплит	гудой, но с измененной	
	частотой и фазой		
33.	Если динамика системы описывается диффе	еренциальными	ПК-5.Д.1
	уравнениями, коэффициенты которых меня	ются со временем, то	
	такую систему называют		
	1. цифровой		
	2. нелинейной		
l	3. дискретной		
	*		
34.	4. нестационарной Линеаризация нелинейной системы предпол		ПК-5.Д.1


	1. Разложение в ряд Тейлора в рабочей точке	
	2. Разложение в ряд Лагранжа в рабочей точке	
	3. Преобразование Лапласа в рабочей точке	
	4. Использование полиномов Баттерворта	
35.	Какой эффект вызывает линеаризация?	ПК-5.Д.1
	1. Обобщает математическое описание процесса	
	2. Усложняет математическое описание процесса	
	3. Уточняет математическое описание процесса	
	4. Упрощает математическое описание процесса	
36.	Единицы измерения функции $L(\omega)$ по оси ординат ЛАЧХ?	ПК-5.Д.1
	1. октавы	
	2. градусы	
	3. декады	
	4. ангстремы	
	5. децибелы	
37.	Звено, выходная величина которого в каждый момент времени	ПК-5.Д.1
07.	пропорциональна входной величине, называется	1111 0.71
	1. усилительным	
	2. форсирующим	
	3. дифференциальным	
	4. астатическим	
	5. апериодическим первого порядка	
38.	К каким последствиям приводит введение отрицательной обратной	ПК-5.Д.1
56.	связи?	11К-3.Д.1
	1. Коэффициент усиления уменьшается, а чувствительность	
	увеличивается	
	2. Уменьшаются коэффициент усиления и чувствительность	
	· · · · · · · · · · · · · · · · · · ·	
	системы	
	3. Коэффициент усиления увеличивается, а чувствительность	
	уменьшается	
	4. Увеличиваются коэффициент усиления и чувствительность	
20	СИСТЕМЫ	ПС 5 П 1
39.	Какие эффекты вызывает увеличение дифференциального	ПК-5.Д.1
	коэффициента в ПИД-регуляторе?	
	1. Уменьшение перерегулирования	
	2. Рост времени нарастания и статической ошибки, уменьшение	
	перерегулирования	
	3. Уменьшение времени нарастания и статической ошибки, рост	
	перерегулирования	
	4. Уменьшение времени нарастания, рост статической ошибки и	
	перерегулирования	
40.	Полюсами передаточной функции называются	ПК-5.Д.1
	1. наиболее близкие друг к другу корни характеристического	
	уравнения	
	2. числитель и знаменатель передаточной функции	
	3. корни полинома числителя передаточной функции	
	4. наиболее удаленные друг от друга корни характеристического	
	уравнения	
	5. корни полинома знаменателя передаточной функции	
41.	Порядок передаточной функции определяется:	ПК-5.Д.1
	1. суммой степеней полиномов числителя и знаменателя	
	2. порядком следования элементов знаменателя	i

	3. степенью полинома знаменателя	
	4. степенью полинома числителя	
	5. порядком следования элементов числителя	
42.	Укажите верное утверждение:	ПК-5.Д.1
	1. Одной передаточной функции может соответствовать только	
	одна модель в пространстве состояний.	
	2. Одной модели в пространстве состояний может соответствовать	
	несколько вариантов передаточной функции.	
	3. Разным моделям в пространстве состояния может	
	соответствовать одна и та же передаточная функция.	
	4. Разным передаточным функциям может соответствовать одна и	
	та же модель в пространстве состояния.	
43.	Передаточной функцией в изображениях Лапласа называют:	ПК-5.Д.1
43.	1 17 1	тк-э.д.т
	1. отношение выхода к входу при нулевых начальных условиях	
	2. отношение выходного сигнала к входному сигналу при нулевых	
	начальных условиях	
	3. реакцию системы на единичное импульсное воздействие при	
	нулевых начальных условиях	
	4. реакцию системы на единичное ступенчатое воздействие при	
	нулевых начальных условиях	
	5. отношение изображения выходной переменной к изображению	
	входной переменной при нулевых начальных условиях	
44.	Выходной сигнал будет монотонно возрастать, если ступенчатый	ПК-5.Д.1
	входной сигнал подать на звено с передаточной функцией	
	1. $W(s) = \frac{k}{s^2 + 1}$	
	2. W(s) = ks	
	k	
	3. $W(s) = \frac{k}{s}$ 4. $W(s) = \frac{k}{s^2 + 0.002s + 1}$	
	k	
	$4. W(s) = \frac{\kappa}{2 + 0.002 + 1}$	
4.5	$s^2 + 0.002s + 1$	TT . 5 H . 1
45.	Для параллельного соединения <i>п</i> динамических звеньев	ПК-5.Д.1
	справедлива формула:	
	$1. W(s) = \sum_{i=1}^{n} W_i(s)$	
	$1. W(S) = \sum_{i=1}^{n} W_i(S)$	
	n	
	$2. W(s) = \prod_{i=1}^{n} W_{i}(s)$	
	i=1	
	$1 \frac{n}{\Pi} W(x)$	
	3. $W(s) = \frac{1}{n} \prod_{i=1}^{n} W_i(s)$	
	$4. W(s) = n \sum_{i=1}^{n} W_i(s)$	
	i=1	
46.	Для последовательного соединения <i>п</i> динамических звеньев	ПК-5.Д.1
	справедлива формула:	
	$1. W(s) = \sum_{i=1}^{n} W_i(s)$	
	i=1	
	$2. W(s) = \prod^{n} W_{i}(s)$	
	I=I	

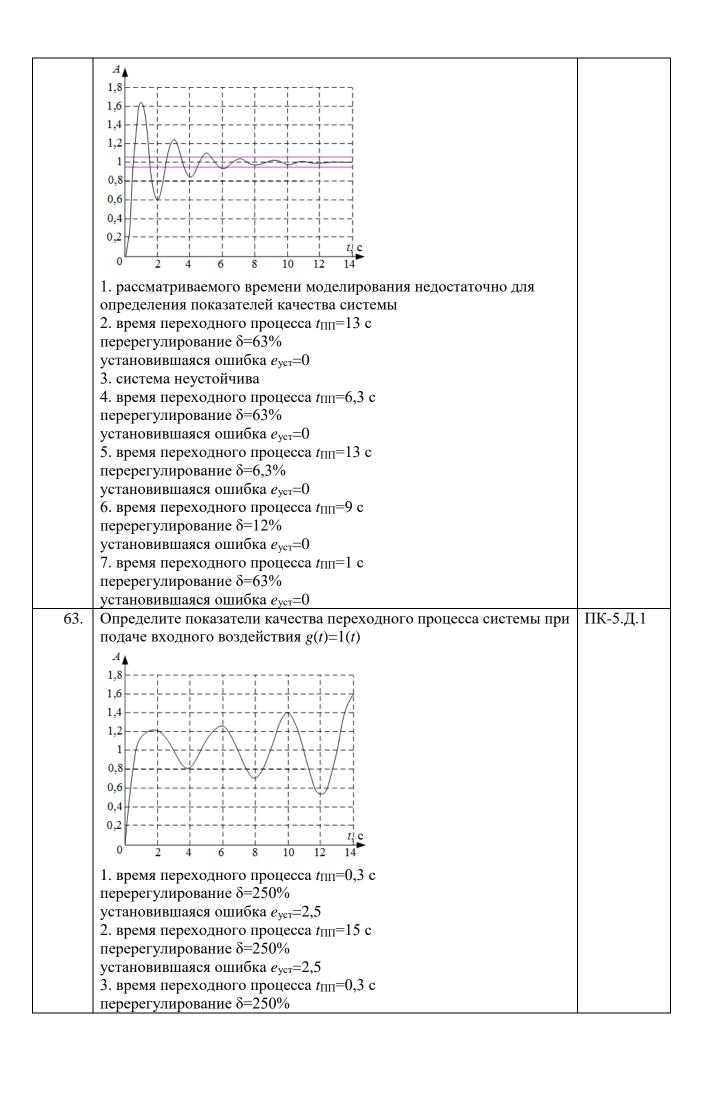
		1		
	3. $W(s) = \frac{1}{n} \prod_{i=1}^{n} W_i(s)$			
	$4. W(s) = n \sum_{i=1}^{n} W_i(s)$			
47.	Единичная импульсная функция описывается формулой:	ПК-5.Д.1		
	$1. \ x(t) = \begin{cases} 0, \ t \neq 0 \\ \infty, \ t = 0 \end{cases}$			
	$\int_{2}^{\infty} r(t) = \int_{0}^{\infty} 1, \ t \leq 0$			
	2. $x(t) = \begin{cases} 1, & t \le 0 \\ 0, & t > 0 \end{cases}$			
	3. $x(t) = \begin{cases} \infty, & t \neq 0 \\ 1, & t = 0 \end{cases}$ 4. $x(t) = \begin{cases} 0, & t \leq 0 \\ 1, & t > 0 \end{cases}$			
	3. $x(t) = \begin{cases} 1, & t = 0 \\ 1, & t = 0 \end{cases}$			
	$(1, t \equiv 0)$			
	$A r(t) = \int_{-\infty}^{\infty} 0, \ t \leq 0$			
	(1, t > 0)			
48.	Единичная ступенчатая функция описывается формулой:	ПК-5.Д.1		
		, ,		
	1. $x(t) = \begin{cases} 0, \ t \ll 0 \\ 1, \ t \ge 0 \end{cases}$			
	$(1, t \ge 0)$			
	$2. \ x(t) = \begin{cases} 1, \ t \le 0 \\ 0, \ t > 0 \end{cases}$			
	$\left(0,t>0\right)$			
	$3. \ x(t) = \begin{cases} \infty, \ t \le 0 \\ 0, \ t > 0 \end{cases}$			
	$3. x(t) = \begin{cases} 0, t > 0 \end{cases}$			
	$(0, t \geq 0)$			
	4. $x(t) = \begin{cases} 0, & t \le 0 \\ \infty, & t > 0 \end{cases}$			
	$(\infty, t > 0)$			
49.	Если η – степень устойчивости системы, то время переходного	ПК-5.Д.1		
	процесса можно оценить по формуле:			
	1. $t \approx 2\eta$			
	2. $t \approx 5\eta$			
	3. $t \approx \frac{1}{x}$			
	η			
	•			
	4. $t \approx \frac{3}{n}$			
50.	<u>'</u>	ПК 5 П 1		
30.	Звено 1 называется:	ПК-5.Д.1		
	2s+1			
	1. астатическим			
	2. консервативным			
	3. пропорциональным			
	4. инерционным 5. колебательным			
51.	Изображение по Лапласу 1 соответствует типовому воздействию	ПК-5.Д.1		
J1.	1. 1(t)	тих-э.д.1		
	2. t			
	$3. \delta(t)$			
	4. $\sin(t)$			
52.	Имеется график асимптотической ЛАЧХ.	ПК-5.Д.1		
	1 1			

	5. формула Рауса-Гурвица		
56.	Какие из представленных ма	триц Гурвица соответствуют	ПК-5.Д.1
	устойчивой системе?		
	$1. G = \begin{bmatrix} -1.2 & 0.5 \\ 3 & 1 \end{bmatrix}$		
	1. G = 2		
	$\begin{bmatrix} 2 & C & 0 & -0.2 \end{bmatrix}$		
	$\begin{vmatrix} 2 \cdot G = \\ 5 & 2 \end{vmatrix}$		
	$ 3, G ^{-2}$ 0.2		
	$\begin{bmatrix} -10 & 1 \end{bmatrix}$		
	[-3 -0.4]		
	4. G = 0.5		
	2. $G = \begin{bmatrix} 0 & -0.2 \\ 5 & 2 \end{bmatrix}$ 3. $G = \begin{bmatrix} -2 & 0.2 \\ -10 & 1 \end{bmatrix}$ 4. $G = \begin{bmatrix} -3 & -0.4 \\ 8 & 0.5 \end{bmatrix}$ 5. $G = \begin{bmatrix} 3 & 0.2 \\ -3 & 1.5 \end{bmatrix}$		
	$\begin{bmatrix} 5 & 0 & 0.2 \end{bmatrix}$		
	$\begin{vmatrix} 5. & G = \\ -3 & 1.5 \end{vmatrix}$		
57.	Нуппи переположей функа	HAIT HOST IDOLOTOR	ПК-5.Д.1
51.	Нулями передаточной функц		11К-3.Д.1
	1. корни полинома числител: 2. корни полинома знаменато		
		ругу корни характеристического	
	уравнения		
	4. наиболее удаленные друг от друга корни характеристического		
	уравнения	v 1	
	5. числитель и знаменатель г		
58.	Сопоставьте понятия и их оп	±	ПК-5.Д.1
		процесс на входе ОУ,	
		обеспечивающий такое	
	Управление	протекание процессов на	
	o inpublication	выходе ОУ, при котором не	
		достигается заданная цель	
		управления;	
		система, в которой происходит	
	Возмущение	не подлежащий управлению	
		процесс;	
	Объект управления	воздействие на ОУ, зависящие	
	овект управления	от системы управления;	
		система, в которой происходит	
		подлежащий управлению	
		процесс;	
		процесс на входе ОУ,	
		обеспечивающий такое	
		протекание процессов на	
		выходе ОУ, при котором	
		достигается заданная цель	
		управления;	
		воздействие на ОУ, не	
		зависящие от системы	
		управления;	
59.	Определите запасы устойчин	вости по амплитуде и фазе по	ПК-5.Д.1
	диаграммам Боде	-70 T3 - M3	1

- 1. запас устойчивости по амплитуде 20 дБ запас устойчивости по фазе 180°
- 2. система неустойчива, следовательно, запасов устойчивости нет
- 3. запас устойчивости по амплитуде 38 дБ запас устойчивости по фазе 70°
- 4. запас устойчивости по амплитуде 54 дБ запас устойчивости по фазе 70°
- 5. запас устойчивости по амплитуде 20 дБ запас устойчивости по фазе 70°
- 6. запас устойчивости по амплитуде 38 дБ запас устойчивости по фазе 90°
- 7. запас устойчивости по амплитуде 38 дБ запас устойчивости по фазе 180°
- 8. запас устойчивости по амплитуде 54 дБ запас устойчивости по фазе 180°
- 9. запасы устойчивости невозможно определить по данным характеристикам

ПК-5.Д.1

Определите коэффициенты передаточной функции для 60. апериодического звена 1 го порядка $W(s) = \frac{k}{T_{s+1}}$ по графику


1,5 1

переходного процесса

- 1. *k*=4 T=1,25
- 2. k=2,5
- T=1,5
- 3. *k*=4

T=0,2

4. k=2,5				
5. $k=4$ $T=0,63$ 6. $k=4$ $T=2,5$ 61. Определите показатели качества переходного процесса системы при подаче входного воздействия $g(t)=1(t)$ 4. 1. 2. 1. 2. 3. 4. 5. 6. 1. время переходного процесса $t_{\rm III}=5,6$ с перерегулирование $\delta=35\%$ установившаяся ошибка $e_{\rm ycr}=0$ 2. время переходного процесса $t_{\rm III}=5,6$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\rm ycr}=0,35$ 3. время переходного процесса $t_{\rm III}=5,6$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\rm ycr}=0,35$ 4. время переходного процесса $t_{\rm III}=5,6$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\rm ycr}=0$ 5. система неустойчива 6. время переходного процесса $t_{\rm III}=2,5$ с перерегулирование $\delta=35\%$ установившаяся ошибка $e_{\rm ycr}=0$ 5. система неустойчива 6. время переходного процесса $t_{\rm III}=2,5$ с перерегулирование $\delta=35\%$ установившаяся ошибка $e_{\rm ycr}=0$ 7. время переходного процесса $t_{\rm III}=2,5$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\rm ycr}=0$ 7. время переходного процесса $t_{\rm III}=2,5$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\rm ycr}=0$ 7. время переходного процесса $t_{\rm III}=2,5$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\rm ycr}=0$ 7. время переходного процесса $t_{\rm III}=2,5$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\rm ycr}=0$ 7. время переходного процесса $t_{\rm III}=2,5$ с перерегулирования $\delta=12\%$ установившаяся ошибка $e_{\rm ycr}=0$ 7. время переходного процесса системы при $\delta=12\%$ установившаяся ошибка $\delta=12\%$ установившаяся ошибк				
T=0,63 $6. k=4$ $T=2,5$ $T=0,63$ $6. k=4$ $T=2,5$ $T=0,63$ $T=$, and the second		
61. Определите показатели качества переходного процесса системы при подаче входного воздействия $g(t)=1(t)$ 4 1,4 1,2 1 0,8 0,6 0,4 0,2 1 1. время переходного процесса $t_{\Pi \Pi}=5,6$ с перерегулирование $\delta=35\%$ установившаяся опшобка $e_{ycr}=0$ 2. время переходного процесса $t_{\Pi \Pi}=5,6$ с перерегулирование $\delta=12\%$ установившаяся опшобка $e_{ycr}=0,35$ 3. время переходного процесса $t_{\Pi \Pi}=2,5$ с перерегулирование $\delta=12\%$ установившаяся опшобка $e_{ycr}=0,35$ 4. время переходного процесса $t_{\Pi \Pi}=5,6$ с перерегулирование $\delta=12\%$ установившаяся опшобка $e_{ycr}=0,35$ 5. система неустойчива 6. время переходного процесса $t_{\Pi \Pi}=2,5$ с перерегулирование $\delta=12\%$ установившаяся опшобка $e_{ycr}=0$ 5. система неустойчива 6. время переходного процесса $t_{\Pi \Pi}=2,5$ с перерегулирование $\delta=35\%$ установившаяся опшобка $e_{ycr}=0$ 7. время переходного процесса $t_{\Pi \Pi}=2,5$ с перерегулирование $\delta=12\%$ установившаяся опшобка $e_{ycr}=0$ 7. время переходного процесса $t_{\Pi \Pi}=2,5$ с перерегулирование $\delta=12\%$ установившаяся опшобка $e_{ycr}=0$ 7. время переходного процесса $t_{\Pi \Pi}=2,5$ с перерегулирование $\delta=12\%$ установившаяся опшобка $e_{ycr}=0$ 7. время переходного процесса $t_{\Pi \Pi}=2,5$ с перерегулирование $\delta=12\%$ установившаяся опшобка $e_{ycr}=0$ 7. время переходного процесса $t_{\Pi \Pi}=2,5$ с перерегулирование $\delta=12\%$ установившаяся опшобка $e_{ycr}=0$ 7. время переходного процесса $t_{\Pi \Pi}=2,5$ с перерегулирование $\delta=12\%$ установившаяся опшобка $e_{ycr}=0$ 7. время переходного процесса $t_{\Pi \Pi}=2,5$ с перерегулирование $\delta=12\%$ установившаяся опшобка $e_{ycr}=0$ 7. время переходного процесса $t_{\Pi \Pi}=2,5$ с перерегулирование $\delta=12\%$ установившаяся опшобка $e_{ycr}=0$ 7. время переходного процесса $t_{\Pi \Pi}=2,5$ с перерегулирование $\delta=12\%$ установившаяся опшобка $e_{ycr}=0$		5. <i>k</i> =4		
61. Определите показатели качества переходного процесса системы при подаче входного воздействия $g(t)=1(t)$ А 1,4 1,2 1,2 1,4 1,2 1,4 1,2 1,4 1,2 1,4 1,2 1,4 1,2 1,4 1,2 1,4 1,2 1,4 1,2 1,4 1,2 1,4 1,4 1,2 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4		T=0,63		
61. Определите показатели качества переходного процесса системы при подаче входного воздействия <i>g(t)</i> =1(<i>t)</i> 1. 4 1.4 1.2 1. время переходного процесса <i>t</i> _{ПП} =5,6 с перерегулирование δ=35% установившаяся ошибка <i>e</i> _{уст} =0,35 3. время переходного процесса <i>t</i> _{ПП} =5,6 с перерегулирование δ=12% установившаяся ошибка <i>e</i> _{уст} =0,35 4. время переходного процесса <i>t</i> _{ПП} =5,6 с перерегулирование δ=12% установившаяся опитова <i>e</i> _{уст} =0,35 4. время переходного процесса <i>t</i> _{ПП} =5,6 с перерегулирование δ=12% установившаяся ошибка <i>e</i> _{уст} =0,35 5. система неуетойчива 6. время переходного процесса <i>t</i> _{ПП} =2,5 с перерегулирование δ=35% установившаяся ошибка <i>e</i> _{уст} =0 7. время переходного процесса <i>t</i> _{ПП} =2,5 с перерегулирование δ=35% установившаяся ошибка <i>e</i> _{уст} =0 7. время переходного процесса <i>t</i> _{ПП} =2,5 с перерегулирование δ=35% установившаяся ошибка <i>e</i> _{уст} =0 7. время переходного процесса <i>t</i> _{ПП} =2,5 с перерегулирование δ=12% установившаяся ошибка <i>e</i> _{уст} =0 7. время переходного процесса <i>t</i> _{ПП} =2,5 с перерегулирование δ=12% установившаяся ошибка <i>e</i> _{уст} =0 7. время переходного процесса <i>t</i> _{ПП} =2,5 с перерегулирование δ=12% установившаяся ошибка <i>e</i> _{уст} =0		6. <i>k</i> =4		
подаче входного воздействия $g(t)=\overline{1}(t)$ А 1,4 1,2 1 0,8 0,6 0,4 0,2 0 1 2 3 4 5 6 1. время переходного процесса $t_{\text{III}}=5,6$ с перерегулирование $\delta=35\%$ установившаяся ошибка $e_{\text{yer}}=0$ 2. время переходного процесса $t_{\text{III}}=5,6$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{yer}}=0,35$ 3. время переходного процесса $t_{\text{III}}=2,5$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{yer}}=0,35$ 4. время переходного процесса $t_{\text{III}}=5,6$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{yer}}=0,35$ 5. система неустойчива 6. время переходного процесса $t_{\text{III}}=2,5$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{yer}}=0$ 7. время переходного процесса $t_{\text{III}}=2,5$ с перерегулирование $\delta=35\%$ установившаяся ошибка $e_{\text{yer}}=0$ 7. время переходного процесса $t_{\text{III}}=2,5$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{yer}}=0$ 7. время переходного процесса $t_{\text{III}}=2,5$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{yer}}=0$		T=2,5		
подаче входного воздействия $g(t)=\overline{1}(t)$ А 1,4 1,2 1 0,8 0,6 0,4 0,2 0 1 2 3 4 5 6 1. время переходного процесса $t_{\text{III}}=5,6$ с перерегулирование $\delta=35\%$ установившаяся ошибка $e_{\text{yer}}=0$ 2. время переходного процесса $t_{\text{III}}=5,6$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{yer}}=0,35$ 3. время переходного процесса $t_{\text{III}}=2,5$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{yer}}=0,35$ 4. время переходного процесса $t_{\text{III}}=5,6$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{yer}}=0,35$ 5. система неустойчива 6. время переходного процесса $t_{\text{III}}=2,5$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{yer}}=0$ 7. время переходного процесса $t_{\text{III}}=2,5$ с перерегулирование $\delta=35\%$ установившаяся ошибка $e_{\text{yer}}=0$ 7. время переходного процесса $t_{\text{III}}=2,5$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{yer}}=0$ 7. время переходного процесса $t_{\text{III}}=2,5$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{yer}}=0$	61.	Определите показатели качества переходного процесса системы при	ПК-5.Д.1	
1. время переходного процесса t_{III} =5,6 с перерегулирование δ =35% установившаяся ошибка e_{ycr} =0. 2. время переходного процесса t_{III} =5,6 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0,35 3. время переходного процесса t_{III} =2,5 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0,35 4. время переходного процесса t_{III} =5,6 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0,35 4. время переходного процесса t_{III} =5,6 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0 5. система неустойчива 6. время переходного процесса t_{III} =2,5 с перерегулирование δ =35% установившаяся ошибка e_{ycr} =0 7. время переходного процесса t_{III} =2,5 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0 7. время переходного процесса t_{III} =2,5 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0 7. время переходного процесса t_{III} =2,5 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0 7. время переходного процесса t_{III} =2,5 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0 7. время переходного процесса t_{III} =2,5 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0 7. время переходного процесса t_{III} =2,5 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0 7. время переходного процесса t_{III} =2,5 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0 7. время переходного процесса t_{III} =2,5 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0 7. время переходного процесса t_{III} =2,5 с перерегулирование δ =12% установившаяся ошибка δ =10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		подаче входного воздействия $g(t)=1(t)$		
1, 4 1, 2 1, 2 1, 3, 4 1, 5, 6 1. время переходного процесса t_{III} =5,6 с перерегулирование δ =35% установившаяся опибка e_{ycr} =0 2. время переходного процесса t_{III} =5,6 с перерегулирование δ =12% установившаяся опибка e_{ycr} =0,35 3. время переходного процесса t_{III} =2,5 с перерегулирование δ =12% установившаяся опибка e_{ycr} =0,35 4. время переходного процесса t_{III} =5,6 с перерегулирование δ =12% установившаяся опибка e_{ycr} =0,35 5. система неустойчива 6. время переходного процесса t_{III} =2,5 с перерегулирование δ =35% установившаяся опибка e_{ycr} =0 7. время переходного процесса t_{III} =2,5 с перерегулирование δ =12% установившаяся опибка e_{ycr} =0 62. Определите показатели качества переходного процесса системы при				
1,2 1,0,8 0,6 0,4 0,2 1. время переходного процесса $t_{\rm HII}$ =5,6 с перерегулирование δ =35% установившаяся опшока $e_{\rm yer}$ =0 2. время переходного процесса $t_{\rm HII}$ =5,6 с перерегулирование δ =12% установившаяся опшока $e_{\rm yer}$ =0,35 3. время переходного процесса $t_{\rm HII}$ =2,5 с перерегулирование δ =12% установившаяся опшока $e_{\rm yer}$ =0,35 4. время переходного процесса $t_{\rm HII}$ =5,6 с перерегулирование δ =12% установившаяся опшока $e_{\rm yer}$ =0 5. система неустойчива 6. время переходного процесса $t_{\rm HII}$ =2,5 с перерегулирование δ =35% установившаяся опшока $e_{\rm yer}$ =0 7. время переходного процесса $t_{\rm HII}$ =2,5 с перерегулирование δ =35% установившаяся опшока $e_{\rm yer}$ =0 0. Определите показатели качества переходного процесса системы при ПК-5,Д.1		T		
1. время переходного процесса $t_{\Pi\Pi}$ =5,6 с перерегулирование δ =35% установившаяся опшобка e_{yer} =0 2. время переходного процесса $t_{\Pi\Pi}$ =5,6 с перерегулирование δ =12% установившаяся опшобка e_{yer} =0,35 3. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =12% установившаяся опшобка e_{yer} =0,35 4. время переходного процесса $t_{\Pi\Pi}$ =5,6 с перерегулирование δ =12% установившаяся опшобка e_{yer} =0,35 4. время переходного процесса $t_{\Pi\Pi}$ =5,6 с перерегулирование δ =12% установившаяся опшобка e_{yer} =0 5. система неустойчива 6. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =35% установившаяся опшобка e_{yer} =0 7. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =12% установившаяся опшобка e_{yer} =0 0. Определите показатели качества переходного процесса системы при ПК-5.Д.1				
1. время переходного процесса t_{IIII} =5,6 с перерегулирование δ =35% установившаяся ошибка $e_{\text{уст}}$ =0 2. время переходного процесса t_{IIII} =5,6 с перерегулирование δ =12% установившаяся ошибка $e_{\text{уст}}$ =0,35 3. время переходного процесса t_{IIII} =2,5 с перерегулирование δ =12% установившаяся ошибка $e_{\text{уст}}$ =0,35 4. время переходного процесса t_{IIII} =5,6 с перерегулирование δ =12% установившаяся ошибка $e_{\text{уст}}$ =0,35 4. время переходного процесса t_{IIII} =5,6 с перерегулирование δ =12% установившаяся ошибка $e_{\text{уст}}$ =0 5. система неустойчива 6. время переходного процесса t_{IIII} =2,5 с перерегулирование δ =35% установившаяся ошибка $e_{\text{уст}}$ =0 7. время переходного процесса t_{IIII} =2,5 с перерегулирование δ =12% установившаяся ошибка $e_{\text{уст}}$ =0 7. определите показатели качества переходного процесса системы при ПК-5,Д.1		1,2		
1. время переходного процесса t_{IIII} =5,6 с перерегулирование δ =35% установившаяся ошибка $e_{\text{уст}}$ =0 2. время переходного процесса t_{IIII} =5,6 с перерегулирование δ =12% установившаяся ошибка $e_{\text{уст}}$ =0,35 3. время переходного процесса t_{IIII} =2,5 с перерегулирование δ =12% установившаяся ошибка $e_{\text{уст}}$ =0,35 4. время переходного процесса t_{IIII} =5,6 с перерегулирование δ =12% установившаяся ошибка $e_{\text{уст}}$ =0,35 4. время переходного процесса t_{IIII} =5,6 с перерегулирование δ =12% установившаяся ошибка $e_{\text{уст}}$ =0 5. система неустойчива 6. время переходного процесса t_{IIII} =2,5 с перерегулирование δ =35% установившаяся ошибка $e_{\text{уст}}$ =0 7. время переходного процесса t_{IIII} =2,5 с перерегулирование δ =12% установившаяся ошибка $e_{\text{уст}}$ =0 7. определите показатели качества переходного процесса системы при ПК-5,Д.1		1		
1. время переходного процесса t_{IIII} =5,6 с перерегулирование δ =35% установившаяся ошибка $e_{\text{уст}}$ =0 2. время переходного процесса t_{IIII} =5,6 с перерегулирование δ =12% установившаяся ошибка $e_{\text{уст}}$ =0,35 3. время переходного процесса t_{IIII} =2,5 с перерегулирование δ =12% установившаяся ошибка $e_{\text{уст}}$ =0,35 4. время переходного процесса t_{IIII} =5,6 с перерегулирование δ =12% установившаяся ошибка $e_{\text{уст}}$ =0,35 4. время переходного процесса t_{IIII} =5,6 с перерегулирование δ =12% установившаяся ошибка $e_{\text{уст}}$ =0 5. система неустойчива 6. время переходного процесса t_{IIII} =2,5 с перерегулирование δ =35% установившаяся ошибка $e_{\text{уст}}$ =0 7. время переходного процесса t_{IIII} =2,5 с перерегулирование δ =12% установившаяся ошибка $e_{\text{уст}}$ =0 7. определите показатели качества переходного процесса системы при ПК-5,Д.1				
1. время переходного процесса t_{IIII} =5,6 с перерегулирование δ =35% установившаяся ошибка $e_{\text{уст}}$ =0 2. время переходного процесса t_{IIII} =5,6 с перерегулирование δ =12% установившаяся ошибка $e_{\text{уст}}$ =0,35 3. время переходного процесса t_{IIII} =2,5 с перерегулирование δ =12% установившаяся ошибка $e_{\text{уст}}$ =0,35 4. время переходного процесса t_{IIII} =5,6 с перерегулирование δ =12% установившаяся ошибка $e_{\text{уст}}$ =0,35 4. время переходного процесса t_{IIII} =5,6 с перерегулирование δ =12% установившаяся ошибка $e_{\text{уст}}$ =0 5. система неустойчива 6. время переходного процесса t_{IIII} =2,5 с перерегулирование δ =35% установившаяся ошибка $e_{\text{уст}}$ =0 7. время переходного процесса t_{IIII} =2,5 с перерегулирование δ =12% установившаяся ошибка $e_{\text{уст}}$ =0		0,8		
1. время переходного процесса $t_{\Pi\Pi}$ =5,6 с перерегулирование δ =35% установившаяся ошибка e_{ycr} =0 2. время переходного процесса $t_{\Pi\Pi}$ =5,6 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0,35 3. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0,35 4. время переходного процесса $t_{\Pi\Pi}$ =5,6 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0 5. система неустойчива 6. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =35% установившаяся ошибка e_{ycr} =0 7. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0 7. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0		0,6		
1. время переходного процесса $t_{\Pi\Pi}$ =5,6 с перерегулирование δ =35% установившаяся ошибка e_{ycr} =0 2. время переходного процесса $t_{\Pi\Pi}$ =5,6 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0,35 3. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0,35 4. время переходного процесса $t_{\Pi\Pi}$ =5,6 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0 5. система неустойчива 6. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =35% установившаяся ошибка e_{ycr} =0 7. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0 7. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0				
1. время переходного процесса $t_{\Pi\Pi}$ =5,6 с перерегулирование δ =35% установившаяся ошибка e_{ycr} =0 2. время переходного процесса $t_{\Pi\Pi}$ =5,6 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0,35 3. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0,35 4. время переходного процесса $t_{\Pi\Pi}$ =5,6 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0 5. система неустойчива 6. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =35% установившаяся ошибка e_{ycr} =0 7. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0 7. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0				
1 2 3 4 5 6 1. время переходного процесса $t_{\Pi\Pi}$ =5,6 с перерегулирование δ =35% установившаяся ошибка e_{ycr} =0 2. время переходного процесса $t_{\Pi\Pi}$ =5,6 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0,35 3. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0,35 4. время переходного процесса $t_{\Pi\Pi}$ =5,6 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0 5. система неустойчива 6. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =35% установившаяся ошибка e_{ycr} =0 7. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0 62. Определите показатели качества переходного процесса системы при		0,2		
1 2 3 4 5 6 1. время переходного процесса $t_{\Pi\Pi}$ =5,6 с перерегулирование δ =35% установившаяся ошибка e_{ycr} =0 2. время переходного процесса $t_{\Pi\Pi}$ =5,6 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0,35 3. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0,35 4. время переходного процесса $t_{\Pi\Pi}$ =5,6 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0 5. система неустойчива 6. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =35% установившаяся ошибка e_{ycr} =0 7. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0 62. Определите показатели качества переходного процесса системы при		0 / 1 1 1 1 1, c		
перерегулирование $\delta=35\%$ установившаяся ошибка $e_{\text{уст}}=0$ 2. время переходного процесса $t_{\text{III}}=5,6$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{уст}}=0,35$ 3. время переходного процесса $t_{\text{III}}=2,5$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{уст}}=0,35$ 4. время переходного процесса $t_{\text{III}}=5,6$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{уст}}=0$ 5. система неустойчива 6. время переходного процесса $t_{\text{III}}=2,5$ с перерегулирование $\delta=35\%$ установившаяся ошибка $e_{\text{уст}}=0$ 7. время переходного процесса $t_{\text{III}}=2,5$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{уст}}=0$ 62. Определите показатели качества переходного процесса системы при ПК-5.Д.1		1 2 3 4 5 6		
перерегулирование $\delta=35\%$ установившаяся ошибка $e_{\text{уст}}=0$ 2. время переходного процесса $t_{\text{III}}=5,6$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{уст}}=0,35$ 3. время переходного процесса $t_{\text{III}}=2,5$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{уст}}=0,35$ 4. время переходного процесса $t_{\text{III}}=5,6$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{уст}}=0$ 5. система неустойчива 6. время переходного процесса $t_{\text{III}}=2,5$ с перерегулирование $\delta=35\%$ установившаяся ошибка $e_{\text{уст}}=0$ 7. время переходного процесса $t_{\text{III}}=2,5$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{уст}}=0$ 62. Определите показатели качества переходного процесса системы при ПК-5.Д.1		1. время переходного процесса <i>t</i> пп=5.6 с		
установившаяся ошибка $e_{\text{уст}}=0$ 2. время переходного процесса $t_{\text{IIII}}=5,6$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{уст}}=0,35$ 3. время переходного процесса $t_{\text{IIII}}=2,5$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{уст}}=0,35$ 4. время переходного процесса $t_{\text{IIII}}=5,6$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{уст}}=0$ 5. система неустойчива 6. время переходного процесса $t_{\text{IIII}}=2,5$ с перерегулирование $\delta=35\%$ установившаяся ошибка $e_{\text{уст}}=0$ 7. время переходного процесса $t_{\text{IIII}}=2,5$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{уст}}=0$ 62. Определите показатели качества переходного процесса системы при ПК-5.Д.1				
2. время переходного процесса $t_{\Pi\Pi}$ =5,6 с перерегулирование δ =12% установившаяся ошибка $e_{y_{CT}}$ =0,35 3. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =12% установившаяся ошибка $e_{y_{CT}}$ =0,35 4. время переходного процесса $t_{\Pi\Pi}$ =5,6 с перерегулирование δ =12% установившаяся ошибка $e_{y_{CT}}$ =0 5. система неустойчива 6. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =35% установившаяся ошибка $e_{y_{CT}}$ =0 7. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =12% установившаяся ошибка $e_{y_{CT}}$ =0 62. Определите показатели качества переходного процесса системы при				
перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{уст}}=0,35$ 3. время переходного процесса $t_{\text{ПП}}=2,5$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{уст}}=0,35$ 4. время переходного процесса $t_{\text{ПП}}=5,6$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{уст}}=0$ 5. система неустойчива 6. время переходного процесса $t_{\text{ПП}}=2,5$ с перерегулирование $\delta=35\%$ установившаяся ошибка $e_{\text{уст}}=0$ 7. время переходного процесса $t_{\text{ПП}}=2,5$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{уст}}=0$ 62. Определите показатели качества переходного процесса системы при		· ·		
установившаяся ошибка $e_{\text{уст}}=0,35$ 3. время переходного процесса $t_{\text{ПП}}=2,5$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{уст}}=0,35$ 4. время переходного процесса $t_{\text{ПП}}=5,6$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{уст}}=0$ 5. система неустойчива 6. время переходного процесса $t_{\text{ПП}}=2,5$ с перерегулирование $\delta=35\%$ установившаяся ошибка $e_{\text{уст}}=0$ 7. время переходного процесса $t_{\text{ПП}}=2,5$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{уст}}=0$ 62. Определите показатели качества переходного процесса системы при				
3. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =12% установившаяся ошибка $e_{yc\tau}$ =0,35 4. время переходного процесса $t_{\Pi\Pi}$ =5,6 с перерегулирование δ =12% установившаяся ошибка $e_{yc\tau}$ =0 5. система неустойчива 6. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =35% установившаяся ошибка $e_{yc\tau}$ =0 7. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =12% установившаяся ошибка $e_{yc\tau}$ =0 62. Определите показатели качества переходного процесса системы при				
перерегулирование δ =12% установившаяся ошибка $e_{\text{уст}}$ =0,35 4. время переходного процесса $t_{\text{ПП}}$ =5,6 с перерегулирование δ =12% установившаяся ошибка $e_{\text{уст}}$ =0 5. система неустойчива 6. время переходного процесса $t_{\text{ПП}}$ =2,5 с перерегулирование δ =35% установившаяся ошибка $e_{\text{уст}}$ =0 7. время переходного процесса $t_{\text{ПП}}$ =2,5 с перерегулирование δ =12% установившаяся ошибка $e_{\text{уст}}$ =0				
установившаяся ошибка $e_{\text{уст}}$ =0,35 4. время переходного процесса $t_{\text{ПІП}}$ =5,6 с перерегулирование δ =12% установившаяся ошибка $e_{\text{уст}}$ =0 5. система неустойчива 6. время переходного процесса $t_{\text{ПІП}}$ =2,5 с перерегулирование δ =35% установившаяся ошибка $e_{\text{уст}}$ =0 7. время переходного процесса $t_{\text{ПІП}}$ =2,5 с перерегулирование δ =12% установившаяся ошибка $e_{\text{уст}}$ =0 62. Определите показатели качества переходного процесса системы при ПК-5.Д.1				
4. время переходного процесса $t_{\Pi\Pi}$ =5,6 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0 5. система неустойчива 6. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =35% установившаяся ошибка e_{ycr} =0 7. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0				
перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{уст}}=0$ 5. система неустойчива 6. время переходного процесса $t_{\Pi\Pi}=2,5$ с перерегулирование $\delta=35\%$ установившаяся ошибка $e_{\text{уст}}=0$ 7. время переходного процесса $t_{\Pi\Pi}=2,5$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{\text{уст}}=0$ 62. Определите показатели качества переходного процесса системы при Π K-5.Д.1				
установившаяся ошибка $e_{ycr}=0$ 5. система неустойчива 6. время переходного процесса $t_{\Pi\Pi}=2,5$ с перерегулирование $\delta=35\%$ установившаяся ошибка $e_{ycr}=0$ 7. время переходного процесса $t_{\Pi\Pi}=2,5$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{ycr}=0$ 62. Определите показатели качества переходного процесса системы при				
5. система неустойчива 6. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =35% установившаяся ошибка e_{ycr} =0 7. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0 62. Определите показатели качества переходного процесса системы при ПК-5.Д.1		1 1 0 1		
6. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =35% установившаяся ошибка e_{ycr} =0 7. время переходного процесса $t_{\Pi\Pi}$ =2,5 с перерегулирование δ =12% установившаяся ошибка e_{ycr} =0 62. Определите показатели качества переходного процесса системы при				
перерегулирование $\delta=35\%$ установившаяся ошибка $e_{ycr}=0$ 7. время переходного процесса $t_{\Pi\Pi}=2,5$ с перерегулирование $\delta=12\%$ установившаяся ошибка $e_{ycr}=0$ 62. Определите показатели качества переходного процесса системы при ПК-5.Д.1				
установившаяся ошибка $e_{\text{уст}}$ =0 7. время переходного процесса $t_{\text{ПП}}$ =2,5 с перерегулирование δ =12% установившаяся ошибка $e_{\text{уст}}$ =0 62. Определите показатели качества переходного процесса системы при ПК-5.Д.1				
 7. время переходного процесса t_{ПП}=2,5 с перерегулирование δ=12% установившаяся ошибка e_{уст}=0 62. Определите показатели качества переходного процесса системы при ПК-5.Д.1 				
перерегулирование δ =12% установившаяся ошибка e_{ycr} =0 62. Определите показатели качества переходного процесса системы при ПК-5.Д.1		· ·		
установившаяся ошибка e_{ycr} =0 62. Определите показатели качества переходного процесса системы при ПК-5.Д.1				
62. Определите показатели качества переходного процесса системы при ПК-5.Д.1				
	62		пи 5 п 1	
подаче входного воздействия $g(t)$ -1(t)	02.		11К-Э.Д.1	
		подаче входного воздействия $g(t)=1(t)$		

	7 0			
	установившаяся ошибка $e_{ycr}=0$			
	4. время переходного процесса $t_{\Pi\Pi}$ =15 с			
	перерегулирование δ=250%			
	установившаяся ошибка $e_{\text{уст}}=0$			
	5. система неустойчива			
	6. рассматриваемого времени моделирования недостаточно для			
	определения показателей качества системы			
64.		пи 5 п 1		
04.	Принцип суперпозиции для линейной системы описывается	ПК-5.Д.1		
	формулой:			
	$1. f\left(\prod_{i=1}^{n} x_i\right) = \sum_{i=1}^{n} f\left(x_i\right)$			
	$2. f\left(\prod_{i=1}^{n} x_i\right) = \prod_{i=1}^{n} f\left(x_i\right)$			
	$3. f\left(\sum_{i=1}^{n} x_i\right) = \prod_{i=1}^{n} f\left(x_i\right)$			
	$4. \ f\left(\sum_{i=1}^{n} x_i\right) = \sum_{i=1}^{n} f\left(x_i\right)$			
65.	Укажите формулу преобразования схемы к эквивалентному звену	ПК-5.Д.1		
	$W_1 \longrightarrow W_2 \longrightarrow W_n$			
	1. $W = \frac{W_1}{1 \mp W_1 W_n}$			
	$1 \mp W_1 W_n$ $2. W = W_1 W_2 \dots W_n$			
	$3. W = \frac{1}{W_1} \cdot \frac{1}{W_2} \times \dots \times \frac{1}{W_n}$			
	4. $W = \frac{1}{W_1} + \frac{1}{W_2} + \ldots + \frac{1}{W_n}$			
	5. $W = W_1 + W_2 + + W_n$			
66.	Укажите формулу преобразования схемы к эквивалентному звену	ПК-5.Д.1		
	$X \longrightarrow W_1 \longrightarrow V_2 \longrightarrow V_1 \longrightarrow W_2 \longrightarrow W_1 \longrightarrow W_2 \longrightarrow V_2 \longrightarrow V_2 \longrightarrow V_2 \longrightarrow V_2 \longrightarrow V_3 \longrightarrow V_4 \longrightarrow V_4 \longrightarrow V_4 \longrightarrow V_5 \longrightarrow V_5 \longrightarrow V_6 \longrightarrow V_6 \longrightarrow V_7 \longrightarrow V_7 \longrightarrow V_8 \longrightarrow $, in 5, j, i		
	1. $W = \frac{W_1}{1 \mp W_1 W_n}$			
	$2. W = W_1 W_2 \dots W_n$			
	$3. W = \frac{1}{W_1} \cdot \frac{1}{W_2} \times \dots \times \frac{1}{W_n}$			
	4. $W = \frac{1}{W_1} + \frac{1}{W_2} + \ldots + \frac{1}{W_n}$			
	5. $W = W_1 + W_2 + \ldots + W_n$			
67.	Укажите формулу преобразования схемы к эквивалентному звену	ПК-5.Д.1		
	1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- r 1 ⁻		

1.
$$W = \frac{W_1}{1 \mp W_1 W_2}$$

2. $W = W_1 W_2$
3. $W = \frac{W_1}{1 \pm W_1 W_2}$
4. $W = W_1 + W_2$
5. $W = W_1 - W_2$

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	Перечень контрольных работ
	Не предусмотрено

- 10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.
 - 11. Методические указания для обучающихся по освоению дисциплины
- 11.1. Методические указания для обучающихся по освоению лекционного материала.

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
 - появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

- Методы и средства ТАУ, связь с задачами реального мира;
- Разделы ТАУ, классификация решаемых задач и соответствующих им моделей;
- Классическая ТАУ, использование аппарата передаточных функций;
- Современная ТАУ, методы линейной алгебры;

11.2. Методические указания для обучающихся по прохождению практических занятий

Практическое занятие является одной из основных форм организации учебного процесса, заключающаяся в выполнении обучающимися под руководством преподавателя комплекса учебных заданий с целью усвоения научно-теоретических основ учебной дисциплины, приобретения умений и навыков, опыта творческой деятельности.

Целью практического занятия для обучающегося является привитие обучающимся умений и навыков практической деятельности по изучаемой дисциплине.

Планируемые результаты при освоении обучающимся практических занятий:

- закрепление, углубление, расширение и детализация знаний при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

Требования к проведению практических занятий

Методические указания и требования к проведению практических занятий приведены в следующем источнике:

- 1. Теория автоматического управления : практикум. ч. 1 / М. В. Бураков ; С.-Петерб. гос. ун-т аэрокосм. приборостроения. Электрон. текстовые дан. СПб. : Изд-во ГУАП, 2016. 76 с.
- 11.3. Методические указания для обучающихся по выполнению лабораторных работ
- В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;

приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задания и требования к проведению лабораторных работ приведены в следующих источниках:

- 1. Теория автоматического управления: методические указания к выполнению лабораторных работ № 1-9 / С.-Петерб. гос. ун-т аэрокосм. приборостроения; сост.: М. В. Бураков, Т. Г. Полякова, А. В. Подзорова. СПб.: Изд-во ГУАП, 2006. 62 с.
- 2. Теория автоматического управления : методические указания по выполнению лабораторных работ № 1 4 / С.-Петерб. гос. ун-т аэрокосм. приборостроения ; сост. М. В. Бураков. Электрон. текстовые дан. СПб. : Изд-во ГУАП, 2016. 26 с.

Структура и форма отчета о лабораторной работе

Отчет о лабораторной работе имеет форму гипертекстового документа, содержащего задание на лабораторную работу, краткие теоретические сведения по теме работы, описание схем и алгоритмов, использованных при выполнении работы, результаты вычислительных экспериментов в виде графиков (диаграмм), а также выводы по итогам проделанной работы.

Требования к оформлению отчета о лабораторной работе

Отчет должен содержать титульный лист, а его содержание должно быть оформлено согласно ГОСТ 7.32 - 2017.

Нормативная документация, необходимая для оформления, приведена на электронном ресурсе ГУАП: https://guap.ru/standart/doc

11.4. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Для обучающихся по заочной форме обучения, самостоятельная работа может включать в себя контрольную работу.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 11.5. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

Текущий контроль успеваемости предусматривает контроль качества знаний обучающихся, осуществляемого в течение семестра с целью оценивания хода освоения дисциплины.

Своевременная сдача отчетов по лабораторным и практическим заданиям и положительный результат на защите этих работ может учитываться при проведении промежуточной аттестации.

11.6. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

– экзамен – форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Промежуточная аттестация проводится по ФОС, приведенному в п.10.3 данной рабочей программы дисциплины.

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой