МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский государственный университет аэрокосмического приборостроения»

Факультет среднего профессионального образования

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Электронная техника

образовательной программы

12.02.01 «Авиационные приборы и комплексы»

Объем дисциплины, часов	177
Учебные занятия, часов	129
в т.ч. лабораторно-практические занятия, часов	50
Самостоятельная работа, часов	28

Рабочая программа дисциплины разработана на основе ФГОС по специальности среднего профессионального образования

12.02.01 Авиационные приборы и комплексы

РАССМОТРЕНА И ОДОБРЕНА

Цикловой комиссией

общепрофессиональных дисциплин

Протокол № 12 от 16.06.2025 г.

Председатель: _____/ Вещагина Т.Н./

РЕКОМЕНДОВАНА

Методическим

советом факультета СПО

Протокол № 8 от 23.06.2025 г.

Председатель: /Шелешнева С.М./

Разработчики:

Макарова Л.М., преподаватель высшей квалификационной категории

СОДЕРЖАНИЕ

1. ОБЩАЯ ХАРАКТЕРИСТИКА РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ	4
2. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	5
3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ ДИСЦИПЛИНЫ	12
4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ	13

1. ОБЩАЯ ХАРАКТЕРИСТИКА РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ ЭЛЕКТРОННАЯ ТЕХНИКА

1.1. Область применения рабочей программы

Рабочая программа дисциплины является составной частью программнометодического сопровождения образовательной программы (ОП) среднего профессионального образования (СПО) по специальности 12.02.01 «Авиационные приборы и комплексы».

1.2. Место дисциплины в структуре ОП СПО

Дисциплина «Электронная техника» является дисциплиной общепрофессионального цикла.

1.3. Планируемые результаты освоения дисциплины

Код ПК, ОК	Умения	Знания
OK 01, OK 02, OK 04, OK 05, OK 06, OK 08, ПК 3.1, ПК 3.3	 производить электрический расчет аналоговых электронных устройств; исследовать свойства электронных приборов и устройств с помощью измерительной аппаратуры. 	 физические основы электронной техники; диоды, транзисторы, тиристоры, оптроны; фотоэлектронные приборы, устройства отображения информации; основы импульсной техники; основы микроэлектроники, цифровые электронные схемы; аналоговую схемотехнику: вторичные источники питания, усилители, генераторы.

2. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

2.1. Объем дисциплины и виды учебной работы

Вид учебной работы	Объем часов
Объем дисциплины	177
Объем учебных занятий	129
в том числе:	
теоретическое обучение	79
лабораторные и практические занятия	50
Самостоятельная учебная работа	28
Консультации	6
Промежуточная аттестация в форме экзамена в 4 и 5 семестрах	14

Практическая подготовка при реализации дисциплины организуется путем проведения практических занятий и (или) лабораторных работ и иных аналогичных видов учебной деятельности, предусматривающих участие обучающихся в выполнении отдельных элементов работ, связанных с будущей профессиональной деятельностью.

2.2. Тематический план и содержание дисциплины ЭЛЕКТРОННАЯ ТЕХНИКА

Наименование разделов и тем	Содержание учебного материала и формы организации деятельности обучающихся	Объем часов / в т.ч. в форме практической подготовки	Коды компетенций, формированию которых способствует элемент программы
1	2	3	4
Введение	Значение и содержание дисциплины "Электронная техника", ее связь с другими дисциплинами общепрофессионального и профессионального циклов дисциплин. Области применения электронной техники. Краткие сведения из истории развития электроники и микроэлектроники. Новейшие достижения электроники, перспективы ее развития	2/0	OK1
Раздел 1	Электронные приборы	50/16	
Тема 1.1	Физические основы электронной техники. Виды и характеристики электровакуумных приборов.		
Физические основы электронных приборов	Области применения. Структура кристаллической решетки полупроводников. Собственная проводимость и способы образования примесных (электронной и дырочной) проводимостей полупроводников. Физические основы образования и вентильные свойства электронно-дырочного перехода. Прямое и обратное включение p-n перехода. Вольтамперная характеристика p-n перехода.	8	OK4 OK5
Тема 1.2 Полупроводниковые диоды	Классификация полупроводниковых диодов. Условные графические обозначения. Маркировка полупроводниковых диодов. Точечные и плоскостные диоды. Выпрямительные диоды, параметры диодов. Стабилитроны, туннельные диоды, варикапы. Фотоэлектронные (фотодиоды), излучающие (светодиоды). Особенности конструкции, принцип действия. Основные характеристики и параметры, области применения.	6	OK4 OK6
	Лабораторные работы: №1. Исследование выпрямительного полупроводникового диода и кремниевого стабилитрона.	2	ПК 3.1
	№2. Исследование туннельного диода	2	ПК 3.3
	Практическое занятие №1 Расчет параметров полупроводниковых диодов	2	
	Самостоятельная работа обучающихся: «Полупроводниковые резисторы»: устройство, принцип действия, характеристики, параметры, применение. Работа с учебником, составление конспекта. «Параметры полупроводниковых диодов», работа со справочной литературой.	1	
Тема 1.3 Транзисторы	Биполярные транзисторы. Устройство и принцип действия. Режимы работы транзистора (активный, отсечки, насыщения, инверсный). Схемы включения биполярных транзисторов: ОБ, ОЭ, ОК. Особенности схем включения, сравнение схем.	10	ОК4 ОК6 ПК3.1 ПК3.3

	D		1
	Входные и выходные статические характеристики. Динамический режим и усилительные свойства		
	транзистора, нагрузочная прямая. Транзистор, как активный четырехполюсник, h-параметры.		
	Полевые транзисторы с управляющим р-п переходом. Структура и принцип действия. Схемы		
	включения. Статические характеристики, параметры.		
	Полевые транзисторы с изолированным затвором (МДП- транзисторы). Типы каналов (встроенный и		
	индуцированный). Структура МДП- транзисторов со встроенным и индуцированным каналом,		
	принцип действия; статические характеристики и параметры.		
	Сравнительная оценка биполярных и полевых транзисторов. Применение транзисторов. УГО.		
	Маркировка транзисторов.		
	Лабораторные работы:		
	№3. Исследование биполярного транзистора, включенного по схеме с ОЭ.	6	
	№4. Исследование полевого транзистора.	U	
	№5. Исследование схем включения транзисторов.		
	Самостоятельная работа обучающихся:		
	Составление конспекта по теме «Принцип действия p-n-p транзистора».	1	
	«Однопереходной транзистор. Фототранзистор», работа с учебником, составление конспекта.		
Тема 1.4 Тиристоры	Полупроводниковые приборы с тремя и более р-п переходами. Устройство, принцип действия		
	диодного и триодного тиристоров. Вольтамперные характеристики, параметры. Условные	2	ОК4
	графические обозначения, маркировка тиристоров. Применение тиристоров.		OK4 OK6
	Лабораторные работы:	2	ПКЗ.1
	№6. Исследование тиристора	2	ПКЗ.1
	Самостоятельная работа обучающихся:	2	11K3.5
	«Симметричные диодные и триодные тиристоры» работа с учебником, составление конспекта.	2	
Тема 1.5 Интегральные	Основы микроэлектроники. Интегральные микросхемы. Классификация ИМС по технологии		
микросхемы	изготовления, по функциональному назначению, по степени интеграции. Основные параметры		ОК2
-	ИМС, система обозначений.	4	ОК4
	Гибридные ИМС. Пассивные и активные элементы гибридных ИМС. Полупроводниковые ИМС.	4	OK5
	Компоненты полупроводниковых ИМС. Совмещенные интегральные микросхемы. Большие		ОК8
	интегральные микросхемы (БИС).		
	Самостоятельная работа обучающихся:		-
	«Современные полупроводниковые ИМС и их параметры», работа со справочной литературой,	2	
	составление конспекта.		
Гема 1.6 Оптоэлектронные	Оптроны, составляющие их элементы, классификация, УГО, области применения.		
приборы и устройства	Классификация и общие характеристики устройств отображения информации. Устройство, принцип	2	
отображения информации	действия газоразрядных, полупроводниковых, жидкокристаллических индикаторов, индикаторов на	3	
. 10 op m.m. 1111 y op m. 1111	органических светодиодах.		ОК4
	Контрольная работа№1: Полупроводниковые приборы	1	ОК6
	Лабораторные работы:		ПКЗ.1
	№7. Исследование оптрона	2	ПКЗ.3
	Самостоятельная работа обучающихся:		1
	«Устройства отображения информации на ЭЛТ», работа с учебником, составление конспекта.	2	

Раздел 2	Источники питания	16/6	
Тема 2.1 Неуправляемые	Классификация выпрямителей. Принцип действия однофазных выпрямителей, временные		
выпрямители	прямители диаграммы токов и напряжений. Мостовая схема выпрямления. Внешняя характеристика		ОК2
	выпрямителя.		ОК4
	Самостоятельная работа обучающихся:		OK5
	«Трехфазные выпрямители, принцип действия, временные диаграммы». Работа с учебником,	2	OK8
	составление конспекта.		
Тема 2.2 Сглаживающие	Сглаживающие фильтры, их назначение. Параметры фильтров. Виды фильтров: емкостные,	2	OK4
фильтры	индуктивные, Г-образные, П-образные, электронные.	2	ОК6
	Лабораторные работы:	2	ПКЗ.1
	№8. Исследование мостовой схемы выпрямления со сглаживающим фильтром	2	ПК3.3
Тема 2.3 Управляемые	Классификация, принцип действия управляемых выпрямителей на примере однофазной схемы на	2	
выпрямители	тиристоре. Временные диаграммы. Особенности трехфазных управляемых выпрямителей.	2	ОК4
•	Лабораторные работы:	2	ОК6
	№9. Исследование тиристорных управляемых выпрямителей.	2	ПКЗ.1
	Самостоятельная работа обучающихся:	2	ПК3.3
	«Мостовая схема выпрямления на тиристорах», работа с учебником, составление конспекта.	2	
Тема 2.4 Стабилизаторы	Классификация стабилизаторов. Принцип действия параметрических стабилизаторов.		
напряжения и тока	Компенсационные стабилизаторы напряжения и тока. Импульсные стабилизаторы. Принцип	2	OK4
1	действия. Параметры.		
	Лабораторные работы:	2	OK6
	№10. Исследование транзисторного стабилизатора напряжения	2	ПКЗ.1
	Самостоятельная работа обучающихся:	•	ПК3.3
	«Промышленные стабилизаторы на ИМС», работа со справочной литературой.	1	
Тема 2.5 Инверторы.	Назначение инверторов, их классификация. Инверторы, ведомые сетью, автономные инверторы.		O.T.
Преобразователи	Классификация и применение импульсных преобразователей. Преобразователи частоты, управление	2	OK2
• •	ими. Использование частотного регулирования.		OK4
	Самостоятельная работа обучающихся:	7	OK5
	«Автономные инверторы», работа с учебником, составление конспекта.	1	ОК8
Раздел 3	Аналоговая схемотехника. Усилители и генераторы.	38/14	
Тема 3.1 Общие сведения об	Назначение, классификация усилителей. АЧХ усилителей. Усилители аналоговых и цифровых		
усилителях	сигналов. Применение усилителей в авиационной аппаратуре.		
<i>y</i>	Основные технические показатели работы усилителей: коэффициент усиления, полоса пропускания,	4	OI/2
	входное и выходное сопротивления, выходная мощность, коэффициент полезного действия.		OK2
	Искажения в усилителях, помехи. Амплитудная характеристика. Динамический диапазон		OK4
	Обратная связь в усилителях, виды обратной связи. Влияние		OK5
	отрицательной обратной связи на технические показатели и характеристики усилителей.	4	ОК8
	Режимы работы усилительного элемента (А, В, АВ, С). Особенности режимов, их сравнительная		
	оценка. Выбор рабочей точки.		

Тема 3.2 Усилители низкой	Усилители низкой частоты (УНЧ). Особенности предварительных и выходных каскадов УНЧ.		
частоты	Предварительные резистивные каскады на биполярных транзисторах по схеме с ОЭ,ОБ, ОК.		
	Усилители на полевых транзисторах.	4	
	Усилители мощности. Выходные однотактные и двухтактные трансформаторные каскады.		ОК4
	Бестрансформаторный выходной каскад. Принцип действия и особенности схем.		OK4 OK6
	Лабораторные работы:		ПКЗ.1
	№11. Исследование предварительного каскада УНЧ на транзисторе.	6	ПКЗ.3
	№12. Исследование усилителя мощности.	Ü	1113.3
	№13. Исследование УНЧ на ОУ.		
	Самостоятельная работа обучающихся:	2	
	«Температурная стабилизация усилительного каскада», работа с учебником, составление конспекта.	2	
Тема 3.3 Усилители	Усилители постоянного тока. Особенности. УПТ с гальванической (непосредственной) связью		
постоянного тока	между каскадами. Дрейф нуля.		
	Балансные схемы УПТ. Дифференциальные усилители.	4	
	Операционные усилители. Усилители в интегральном исполнении. Особенности электрического		ОК4
	расчета аналоговых электронных усилителей.		ОК6
	Лабораторные работы:	2	ПКЗ.1
	№14. Исследование дифференциального усилителя (ДУ).	2	ПКЗ.3
	Самостоятельная работа обучающихся:		1
	«Параметры операционных усилителей», работа со справочной литературой, конспектирование	2	
	материала.		
Тема3.4 Широкополосные и	Назначение и особенности широкополосных усилителей. Искажения, схемы НЧ и ВЧ коррекции.		
избирательные усилители	ШПУ на основе ИМС.	2	
1	Назначение и особенности избирательных усилителей. Избирательные усилители с	3	
	частотоизбирательными LC и RC цепями. Избирательные усилители на ИМС.		0.774
	Лабораторные работы:		OK4
	№15. Исследование избирательного усилителя с 2T-мостом	2	OK6
	Практическое занятие №2 Выбор ИМС для усилителя	2	ПКЗ.1
	Контрольная работа№2: «Электронные усилители»	<u>-</u> 1	ПК3.3
	Самостоятельная работа обучающихся:	-	-
	«Схемы коррекции с помощью колебательных контуров», работа с учебником, составление	2	
	конспекта.	2	
Тема 3.5 Генераторы	Назначение и классификация генераторов гармонических (синусоидальных) колебаний. Структурная		
гармонических колебаний	схема автогенератора. Условия самовозбуждения. Режимы работы генераторов.		
гарлони южил колооании	LC-автогенераторы. Получение незатухающих колебаний в колебательном контуре. Автогенераторы		
	с индуктивной и с емкостной трехточечной схемой.	4	OK4
	RC-автогенераторы. Частотно-избирательные RC-цепи, используемые в автогенераторах. RC-	7	ОК6
	генератор с мостом Вина.		ПКЗ.1
	Способы стабилизации частоты автогенераторов. Кварцевая стабилизация.		ПК3.3
	Спосооы стаоилизации частоты автогенераторов. Кварцевая стаоилизация. Лабораторные работы:		-
	Лаоораторные раооты: №16. Исследование автогенератора.	2	
	лето. последование автогенератора.		

	Самостоятельная работа обучающихся:		
	«RC-генератор с 2Т-мостом», работа с учебной литературой, конспектирование материала. «Генераторы гармонических колебаний на ОУ», работа с учебной литературой, конспектирование	2	
	материала.		
Раздел 4	Импульсные устройства	23/14	
Тема 4.1 Электронные ключи	Особенности цифровой схемотехники. Общие сведения об импульсных сигналах. Параметры		
и формирование импульсов	импульсов. Амплитудный спектр.		
	Дифференцирующая RC-цепь. Схема, принцип действия. Временные диаграммы выходного		
	напряжения цепи, зависимость выходного сигнала от постоянной времени цепи.	4	
	Интегрирующая RC-цепь. Схема, принцип действия. Временные диаграммы выходного напряжения	7	ОК4
	цепи, зависимость от постоянной времени цепи.		OK4 OK6
	Ограничители амплитуды. Схемы, принцип действия последовательных и параллельных диодных		ПКЗ.1
	ограничителей. Транзисторные ключи. Ключ на основе биполярного транзистора.		ПКЗ.1
	Лабораторные работы:		11183.3
	№17. Исследование ограничителей амплитуды	4	
	№18. Исследование дифференцирующих и интегрирующих RC-цепей.		
	Самостоятельная работа обучающихся:	2	
	«Ключи на основе МДП - транзисторов», работа с учебником, конспектирование.	2	
Гема 4.2 Импульсные	Классификация импульсных генераторов. Мультивибраторы. Назначение, классификация.		
генераторы	Мультивибратор на транзисторах и на ОУ. Схемы, принцип действия.	2	
1 1	Генераторы линейно-изменяющегося напряжения (ГЛИН). Параметры ГЛИН. Схема ГЛИН на	2	
	биполярном транзисторе. ГЛИН с использованием ОУ.		ОК4
	Лабораторные работы:		ОК6
	№19. Исследование мультивибратора.	4	ПКЗ.1
	№20. Исследование ГЛИН		ПКЗ.3
	Самостоятельная работа обучающихся:		
	«Мультивибраторы на логических элементах», работа с учебником, составление конспекта.	2	
	«Блокинг-генераторы», работа с учебником, составление конспекта.		
Тема 4.3 Цифровые	Логические элементы И, ИЛИ, НЕ. Основные характеристики и параметры логических ИМС.		
электронные схемы	Транзисторно-транзисторная логика (ТТЛ). Базовый логический элемент ТТЛ - типа. Принцип		
1	действия. Реализуемые операции. Основные промышленные серии ТТЛ.		
	Эмиттерно-связанная логика (ЭСЛ). Базовый логический элемент ЭСЛ - типа. Принцип действия.	3	
	Реализуемые операции. Основные промышленные серии элементов ЭСЛ.	-	
	Сравнительный анализ логических элементов. Перспективные направления развития цифровой		OK4
	микросхемотехники.		ОК6
	Лабораторные работы:		ПКЗ.1
	№21. Исследование ИМС типа ТТЛ.		ПК3.3
	№22. Исследование ИМС типа ЭСЛ	6	
	№23. Исследование триггера		
	Самостоятельная работа обучающихся:		
	«Логические элементы на МДП - транзисторах», работа со справочной литературой.	2	

Консультация	6	=
Экзамен	14	=
Всего	177	-

3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ ДИСЦИПЛИНЫ

3.1. Материально-техническое обеспечение

Для реализации программы дисциплины предусмотрены следующие специальные помещения: лаборатория электронной техники.

Оснащение учебных кабинетов и лабораторий установлено в соответствии с протоколом Методического совета факультета: Протокол № 8 от 23.06.2025 г.

3.2. Информационное обеспечение реализации программы

Перечень используемых учебных изданий, Интернет-ресурсов, дополнительной литературы

Основные источники

- 1 Гальперин, М. В. Электронная техника: учебник / М.В. Гальперин. 2-е изд., испр. и доп. Москва: ИНФРА-М, 2024. 352 с. (Среднее профессиональное образование). ISBN 978-5-16-015415-2. Текст: электронный. URL: https://znanium.ru/catalog/product/2136807
- 2 Иванов, И. И. Электротехника и основы электроники : учебник для вузов / И. И. Иванов, Г. И. Соловьев, В. Я. Фролов. 14-е изд., стер. Санкт-Петербург : Лань, 2025. 736 с. ISBN 978-5-507-52843-1. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/460727

Дополнительные источники

1 Основы электроники и электрические измерения: учебник и практикум для среднего профессионального образования / Э. В. Кузнецов, Е. А. Куликова, П. С. Культиасов, В. П. Лунин; под общей редакцией В. П. Лунина. — 2-е изд., перераб. и доп. — Москва: Издательство Юрайт, 2025. — 275 с. — (Профессиональное образование). — ISBN 978-5-534-17860-9. — Текст: электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/563369

Электронные ресурсы

1 Техэксперт: электронный фонд нормативно-технической и нормативно-правовой информации [Электронный ресурс]. — Режим доступа: https://cntd.ru/

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Результаты обучения	Критерии оценки	Формы и методы оценки
Знания:		Знания:
	«Отлично» - теоретическое содержание курса освоено полностью, без пробелов, умения сформированы, все предусмотренные программой учебные задания выполнены, качество их выполнения оценено высоко. «Хорошо» - теоретическое содержание курса освоено полностью, без пробелов, некоторые умения сформированы недостаточно, все предусмотренные программой учебные задания выполнены, некоторые виды заданий выполнены с ошибками. «Удовлетворительно» - теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые умения работы с освоенным материалом в основном сформированы, большинство предусмотренных программой	
	освоено частично, но пробелы не носят существенного характера, необходимые умения работы с освоенным материалом в основном	
	«Неудовлетворительно» - теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки.	