МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский государственный университет аэрокосмического приборостроения»

Факультет среднего профессионального образования

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Основы электроники

образовательной программы

15.02.10 «Мехатроника и робототехника (по отраслям)»

Объем дисциплины, часов	89
Учебные занятия, часов	64
в т.ч. лабораторно-практические занятия, часов	26
Самостоятельная работа, часов	13

Рабочая программа дисциплины разработана на основе ФГОС по специальности среднего профессионального образования

15.02.10

Мехатроника и робототехника (по отраслям)

код

наименование специальности

РАССМОТРЕНА И ОДОБРЕНА

Цикловой комиссией

общепрофессиональных дисциплин

Протокол № 12 от 16.06.2025 г.

Председатель: ____/ Вещаги

РЕКОМЕНДОВАНА

Методическим

советом факультета СПО

Протокол № 8 от 23.06.2025 г.

/ Вещагина Т.Н./ Председатель: _

/Шелешнева С.М./

Разработчики:

Макарова Л.М., преподаватель высшей квалификационной категории

СОДЕРЖАНИЕ

1. ОБЩАЯ ХАРАКТЕРИСТИКА РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ	4
2. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	5
3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ ДИСЦИПЛИНЫ	12
4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ	13

1. ОБЩАЯ ХАРАКТЕРИСТИКА РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ ОСНОВЫ ЭЛЕКТРОНИКИ

1.1. Область применения рабочей программы

Рабочая программа дисциплины является составной частью программно-методического сопровождения образовательной программы (ОП) среднего профессионального образования (СПО) по специальности 15.02.10 «Мехатроника и робототехника (по отраслям)».

1.2. Место дисциплины в структуре ОП СПО

Дисциплина «Основы электроники» является дисциплиной общепрофессионального цикла.

1.3. Планируемые результаты освоения дисциплины

Код ПК, ОК	Умения	Знания
ОК 1, ОК 2, ОК 4 - ОК 6 ПК 3.1, ПК 3.3	 производить электрический расчет аналоговых электронных устройств; исследовать свойства электронных приборов и устройств с помощью измерительной аппаратуры. 	 физические основы электронной техники; диоды, транзисторы, тиристоры, оптроны; фотоэлектронные приборы, устройства отображения информации; основы импульсной техники; основы микроэлектроники, цифровые электронные схемы; аналоговую схемотехнику: вторичные источники питания, усилители, генераторы.

2. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

2.1. Объем дисциплины и виды учебной работы

Вид учебной работы	Объем часов
Объем дисциплины	89
Объем учебных занятий	64
в том числе:	
теоретическое обучение	38
лабораторные и практические занятия	26
Самостоятельная учебная работа	13
Консультации	4
Промежуточная аттестация в форме экзамена в 3 семестре	8

Практическая подготовка при реализации дисциплины организуется путем проведения практических занятий и (или) лабораторных работ и иных аналогичных видов учебной деятельности, предусматривающих участие обучающихся в выполнении отдельных элементов работ, связанных с будущей профессиональной деятельностью.

2.2. Тематический план и содержание дисциплины ОСНОВЫ ЭЛЕКТРОНИКИ

Наименование разделов и тем	Содержание учебного материала, лабораторные работы и практические занятия, самостоятельная работа обучающихся	Объем часов, в т.ч. практич. подготоки	Коды компетенций, формированию которых способствует элемент программы
1	2	3	4
Введение	Значение и содержание дисциплины, ее связь с другими дисциплинами общепрофессионального и профессионального циклов дисциплин. Области применения электронной техники. Краткие сведения из истории развития электроники и микроэлектроники. Новейшие достижения электроники, перспективы ее развития	1/0	OK1
Раздел 1	Электронные приборы	20/7	
Тема 1.1 Физические основы электронных приборов	Физические основы электронной техники. Виды и характеристики электровакуумных приборов. Области применения. Структура кристаллической решетки полупроводников. Собственная проводимость и способы образования примесных (электронной и дырочной) проводимостей полупроводников. Физические основы образования и вентильные свойства электронно-дырочного перехода. Прямое и обратное включение p-n перехода. Вольтамперная характеристика p-n перехода.	3	OK4 OK5
Тема 1.2 Полупроводниковые диоды	Классификация полупроводниковых диодов. Условные графические обозначения. Маркировка полупроводниковых диодов. Точечные и плоскостные диоды. Выпрямительные диоды, параметры диодов. Стабилитроны, туннельные диоды, варикапы. Фотоэлектронные (фотодиоды), излучающие (светодиоды). Особенности конструкции, принцип действия. Основные характеристики и параметры, области применения. Расчет параметров полупроводниковых диодов	2	ОК4 ОК6 ПК 3.1 ПК 3.3
	Лабораторные работы: №1. Исследование выпрямительного полупроводникового диода и кремниевого стабилитрона.	1	
	№2. Исследование туннельного диода	1	
	Самостоятельная работа обучающихся: «Полупроводниковые резисторы»: устройство, принцип действия, характеристики, параметры, применение. Работа с учебником, составление конспекта. «Параметры полупроводниковых диодов», работа со справочной литературой.	1	
Тема 1.3 Транзисторы	Биполярные транзисторы. Устройство и принцип действия. Режимы работы транзистора (активный, отсечки, насыщения, инверсный). Схемы включения биполярных транзисторов: ОБ, ОЭ, ОК. Особенности схем включения,	4	ОК4 ОК6 ПК3.1

	сравнение схем.		ПКЗ.3
	Входные и выходные статические характеристики. Динамический режим и усилительные		111(3.3
	свойства транзистора, нагрузочная прямая. Транзистор, как активный четырехполюсник,		
	h-параметры.		
	Полевые транзисторы с управляющим р-п переходом. Структура и принцип действия.		
	Схемы включения. Статические характеристики, параметры.		
	Полевые транзисторы с изолированным затвором (МДП- транзисторы). Типы каналов		
	(встроенный и индуцированный). Структура МДП- транзисторов со встроенным и		
	индуцированным каналом, принцип действия; статические характеристики и параметры.		
	Сравнительная оценка биполярных и полевых транзисторов. Применение транзисторов.		
	УГО. Маркировка транзисторов.		
	Лабораторные работы:		-
	№3. Исследование биполярного транзистора, включенного по схеме с ОЭ.		
	№4. Исследование полевого транзистора.	3	
	№5. Исследование схем включения транзисторов.		
	Самостоятельная работа обучающихся:		-
	Составление конспекта по теме «Принцип действия p-n-p транзистора».		
	«Однопереходной транзистор. Фототранзистор», работа с учебником, составление	1	
	конспекта.		
Гема 1.4 Тиристоры	Полупроводниковые приборы с тремя и более р-п переходами. Устройство, принцип		
1 c 101 1pe1.ep.	действия диодного и триодного тиристоров. Вольтамперные характеристики, параметры.	1	
	Условные графические обозначения, маркировка тиристоров. Применение тиристоров.	•	ОК4
	Лабораторные работы:		ОК6
	№6. Исследование тиристора	1	ПКЗ.1
	Самостоятельная работа обучающихся:		ПКЗ.3
	«Симметричные диодные и триодные тиристоры» работа с учебником, составление	1	
	конспекта.	-	
Гема 1.5 Интегральные	Основы микроэлектроники. Интегральные микросхемы. Классификация ИМС по		
микросхемы	технологии изготовления, по функциональному назначению, по степени интеграции.		ОК2
1	Основные параметры ИМС, система обозначений.		ОК4
	Гибридные ИМС. Пассивные и активные элементы гибридных ИМС.	1	OK5
	Полупроводниковые ИМС. Компоненты полупроводниковых ИМС. Совмещенные		
	интегральные микросхемы. Большие интегральные микросхемы (БИС).		
	Самостоятельная работа обучающихся:		1
	«Современные полупроводниковые ИМС и их параметры», работа со справочной	1	
	литературой, составление конспекта.		
Гема 1.6 Оптоэлектронные	Оптроны, составляющие их элементы, классификация, УГО, области применения.		
приборы и устройства	Классификация и общие характеристики устройств отображения информации.	2	
отображения информации	Устройство, принцип действия газоразрядных, полупроводниковых,	2	
1 1 1	жидкокристаллических индикаторов, индикаторов на органических светодиодах.		ОК4
	Лабораторные работы:	1	ОК6

	№7. Исследование оптрона		ПКЗ.1
	Самостоятельная работа обучающихся: «Устройства отображения информации на ЭЛТ», работа с учебником, составление конспекта.	1	ПК3.3
Раздел 2	Источники питания	8/3	
Тема 2.1 Неуправляемые выпрямители	Классификация выпрямителей. Принцип действия однофазных выпрямителей, временные диаграммы токов и напряжений. Мостовая схема выпрямления. Внешняя характеристика выпрямителя.	1	OK2 OK4
	Самостоятельная работа обучающихся: «Трехфазные выпрямители, принцип действия, временные диаграммы». Работа с учебником, составление конспекта.	1	OK5
Тема 2.2 Сглаживающие фильтры	Сглаживающие фильтры, их назначение. Параметры фильтров. Виды фильтров: емкостные, индуктивные, Г-образные, П-образные, электронные.	1	OK4 OK6
	Лабораторные работы: №8. Исследование мостовой схемы выпрямления со сглаживающим фильтром	1	ПК3.1 ПК3.3
Тема 2.3 Управляемые выпрямители	Классификация, принцип действия управляемых выпрямителей на примере однофазной схемы на тиристоре. Временные диаграммы. Особенности трехфазных управляемых выпрямителей.	1	OK4
	Лабораторные работы: №9. Исследование тиристорных управляемых выпрямителей.	1	ОК6 ПК3.1
	Самостоятельная работа обучающихся: «Мостовая схема выпрямления на тиристорах», работа с учебником, составление конспекта.	1	ПК3.3
Тема 2.4 Стабилизаторы напряжения и тока	Классификация стабилизаторов. Принцип действия параметрических стабилизаторов. Компенсационные стабилизаторы напряжения и тока. Импульсные стабилизаторы. Принцип действия. Параметры.	1	OK4
	Лабораторные работы: №10. Исследование транзисторного стабилизатора напряжения	1	ОК6 ПК3.1 ПК3.3
	Самостоятельная работа обучающихся: «Промышленные стабилизаторы на ИМС», работа со справочной литературой.	1	- IIK3.3
Тема 2.5 Инверторы. Преобразователи	Назначение инверторов, их классификация. Инверторы, ведомые сетью, автономные инверторы. Классификация и применение импульсных преобразователей. Преобразователи частоты, управление ими. Использование частотного регулирования.	1	OK2 OK4 OK5
	Самостоятельная работа обучающихся: «Автономные инверторы», работа с учебником, составление конспекта.	1	OK8
Раздел 3	Аналоговая схемотехника. Усилители и генераторы.	18/6	
Тема 3.1 Общие сведения об усилителях	Назначение, классификация усилителей. АЧХ усилителей. Усилители аналоговых и цифровых сигналов. Основные технические показатели работы усилителей: коэффициент усиления, полоса пропускания, входное и выходное сопротивления, выходная мощность, коэффициент полезного действия.	2	OK2 OK4 OK5

	Искажения в усилителях, помехи. Амплитудная характеристика. Динамический диапазон. Обратная связь в усилителях, виды обратной связи. Влияние отрицательной обратной связи на технические показатели и характеристики усилителей. Режимы работы усилительного элемента (A, B, AB, C). Особенности режимов, их сравнительная оценка. Выбор рабочей точки.	2	
Тема 3.2 Усилители низкой частоты	Усилители низкой частоты (УНЧ). Особенности предварительных и выходных каскадов УНЧ. Предварительные резистивные каскады на биполярных транзисторах по схеме с ОЭ,ОБ, ОК. Усилители на полевых транзисторах. Усилители мощности. Выходные однотактные и двухтактные трансформаторные каскады. Бестрансформаторный выходной каскад. Принцип действия и особенности схем.	2	OK4 - OK6
	Лабораторные работы: №11. Исследование предварительного каскада УНЧ на транзисторе. №12. Исследование усилителя мощности. №13. Исследование УНЧ на ОУ.	3	ПКЗ.1 ПКЗ.3
	Самостоятельная работа обучающихся: «Температурная стабилизация усилительного каскада», работа с учебником, составление конспекта.	1	
Тема 3.3 Усилители постоянного тока	Усилители постоянного тока. Особенности. УПТ с гальванической (непосредственной) связью между каскадами. Дрейф нуля. Балансные схемы УПТ. Дифференциальные усилители. Операционные усилители. Усилители в интегральном исполнении. Особенности электрического расчета аналоговых электронных усилителей.	2	ОК4 ОК6 ПК3.1 ПК3.3
	Лабораторные работы: №14. Исследование дифференциального усилителя (ДУ).	1	11K3.3
Тема3.4 Широкополосные и избирательные усилители	Назначение и особенности широкополосных усилителей. Искажения, схемы НЧ и ВЧ коррекции. ШПУ на основе ИМС. Назначение и особенности избирательных усилителей. Избирательные усилители с частотоизбирательными LC и RC цепями. Избирательные усилители на ИМС. Выбор ИМС для усилителя	2	ОК4 ОК6 ПК3.1
	Лабораторные работы: №15. Исследование избирательного усилителя с 2Т-мостом	1	ПКЗ.1
	Самостоятельная работа обучающихся: «Схемы коррекции с помощью колебательных контуров», работа с учебником, составление конспекта.	1	

Тема 3.5 Генераторы гармонических колебаний	Назначение и классификация генераторов гармонических (синусоидальных) колебаний. Структурная схема автогенератора. Условия самовозбуждения. Режимы работы генераторов. LC-автогенераторы. Получение незатухающих колебаний в колебательном контуре. Автогенераторы с индуктивной и с емкостной трехточечной схемой. RC-автогенераторы. Частотно-избирательные RC-цепи, используемые в автогенераторах. RC-генератор с мостом Вина. Способы стабилизации частоты автогенераторов. Кварцевая стабилизация.	2	OK4 OK6
	Лабораторные работы:	1	ПК3.1 ПК3.3
	№16. Исследование автогенератора. Самостоятельная работа обучающихся:		_
	«RC-генератор с 2Т-мостом», работа с учебной литературой, конспектирование материала. «Генераторы гармонических колебаний на ОУ», работа с учебной литературой, конспектирование материала.	1	
Раздел 4	Импульсные устройства	17/10	
Тема 4.1 Электронные ключи и формирование импульсов	Особенности цифровой схемотехники. Общие сведения об импульсных сигналах. Параметры импульсов. Амплитудный спектр. Дифференцирующая RC-цепь. Схема, принцип действия. Временные диаграммы выходного напряжения цепи, зависимость выходного сигнала от постоянной времени цепи. Интегрирующая RC-цепь. Схема, принцип действия. Временные диаграммы выходного напряжения цепи, зависимость от постоянной времени цепи. Ограничители амплитуды. Схемы, принцип действия последовательных и параллельных диодных ограничителей. Транзисторные ключи. Ключ на основе биполярного транзистора. Лабораторные работы: №17. Исследование ограничителей амплитуды №18. Исследование дифференцирующих и интегрирующих RC-цепей.	2	ОК4 ОК6 ПК3.1 ПК3.3
Тема 4.2 Импульсные генераторы	Классификация импульсных генераторов. Мультивибраторы. Назначение, классификация. Мультивибратор на транзисторах и на ОУ. Схемы, принцип действия. Генераторы линейно-изменяющегося напряжения (ГЛИН). Параметры ГЛИН. Схема ГЛИН на биполярном транзисторе. ГЛИН с использованием ОУ.	2	OV.4
	Лабораторные работы: №19. Исследование мультивибратора. №20. Исследование ГЛИН	2	ОК4 ОК6 ПК3.1 ПК3.3
	Самостоятельная работа обучающихся: «Мультивибраторы на логических элементах», работа с учебником, составление конспекта. «Блокинг-генераторы», работа с учебником, составление конспекта.	1	11K3.3

Тема 4.3 Цифровые электронные схемы	Логические элементы И, ИЛИ, НЕ. Основные характеристики и параметры логических ИМС. Транзисторно-транзисторная логика (ТТЛ). Базовый логический элемент ТТЛ - типа. Принцип действия. Реализуемые операции. Основные промышленные серии ТТЛ. Эмиттерно-связанная логика (ЭСЛ). Базовый логический элемент ЭСЛ - типа. Принцип действия. Реализуемые операции. Основные промышленные серии элементов ЭСЛ. Сравнительный анализ логических элементов. Перспективные направления развития цифровой микросхемотехники.	3	ОК4 ОК6 ПК3.1 ПК3.3
	Лабораторные работы: №21. Исследование ИМС типа ТТЛ. №22. Исследование ИМС типа ЭСЛ №23. Исследование триггера	6	THO.5
Консультация		4	-
Экзамен		8	-
Всего		89	-

3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ ДИСЦИПЛИНЫ

3.1. Материально-техническое обеспечение

Для реализации программы дисциплины предусмотрены следующие специальные помещения: кабинет электронной техники.

Оснащение учебных кабинетов и лабораторий установлено в соответствии с протоколом Методического совета факультета: Протокол № 8 от 23.06.2025 г.

3.2. Информационное обеспечение реализации программы

Перечень используемых учебных изданий, Интернет-ресурсов, дополнительной литературы

Основные источники

- 1 Гальперин, М. В. Электронная техника: учебник / М.В. Гальперин. 2-е изд., испр. и доп. Москва: ИНФРА-М, 2024. 352 с. (Среднее профессиональное образование). ISBN 978-5-16-015415-2. Текст: электронный. URL: https://znanium.ru/catalog/product/2136807
- 2 Иванов, И. И. Электротехника и основы электроники : учебник для вузов / И. И. Иванов, Г. И. Соловьев, В. Я. Фролов. 14-е изд., стер. Санкт-Петербург : Лань, 2025. 736 с. ISBN 978-5-507-52843-1. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/460727

Дополнительные источники

1 Основы электроники и электрические измерения: учебник и практикум для среднего профессионального образования / Э. В. Кузнецов, Е. А. Куликова, П. С. Культиасов, В. П. Лунин; под общей редакцией В. П. Лунина. — 2-е изд., перераб. и доп. — Москва: Издательство Юрайт, 2025. — 275 с. — (Профессиональное образование). — ISBN 978-5-534-17860-9. — Текст: электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/563369

Электронные ресурсы

1 Техэксперт: электронный фонд нормативно-технической и нормативно-правовой информации [Электронный ресурс]. — Режим доступа: https://cntd.ru/

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Результаты обучения	Критерии оценки	Формы и методы оценки
Знания:		Знания:
·	«Отлично» - теоретическое содержание курса освоено полностью, без пробелов, умения сформированы, все предусмотренные программой учебные задания выполнены, качество их выполнения оценено высоко. «Хорошо» - теоретическое содержание курса освоено полностью, без пробелов,	Знания: — устные опросы — тестирование — оценка результатов исследования электронных приборов и электронных схем при проведении лабораторных работ; — экзамен. Умения: — оценка результатов выполнения электрических расчетов электронных схем в ходе лабораторных работ; — оценка выполнения
Умения: производить электрический расчет аналоговых электронных устройств; исследовать свойства электронных приборов и устройств с помощью измерительной аппаратуры.	некоторые умения сформированы недостаточно, все предусмотренные программой учебные задания выполнены, некоторые виды заданий выполнены с ошибками. «Удовлетворительно» - теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые умения работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий содержат ошибки. «Неудовлетворительно» - теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки.	практических работ; — экзамен.