МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

"САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

Кафедра № 6

УТВЕРЖДАЮ

Руководитель направления

доц.,к.т.н.,доц.

(должность, уч. степень, звание)

С.В. Солёный

(инициалы, фамилия)

(подпись)

«08» апреля 2024 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Цифровая метрология» (Наименование дисциплины)

Код направления подготовки/ специальности	15.03.06
Наименование направления подготовки/ специальности	Мехатроника и робототехника
Наименование направленности	Цифровой инжиниринг робототехнических комплексов
Форма обучения	очная

Программу составил (а)

доц.,к.т.н. (должность, уч. степень, звание) Программа одобрена на засе «27» марта 2024 г, протоко	• •	_ 27.03.2024	К.В.Епифанцев (инициалы, фамилия)
Заведующий кафедрой № 6 д.э.н.,проф. (уч. степень, звание)	(подпись, дата)	27.03.2024	В.В. Окрепилов (инициалы, фамилия)
Ответственный за ОП ВО 15 доц., к.т.н., доц. (должность, уч. степень, звание)	5.03.06(02) ————————————————————————————————————	_ 08.04.2024	О.Я. Солёная (инициалы, фамилия)
Заместитель директора инст Ст.препод. (должность, уч. степень, звание)	титута №3 по методичес (подпись, дата)	•	Н.В. Решетникова (инициалы, фамилия)

Аннотация

Дисциплина «Цифровая метрология» входит в образовательную программу высшего образования — программу бакалавриата по направлению подготовки/ специальности 15.03.06 «Мехатроника и робототехника» направленности «Цифровой инжиниринг робототехнических комплексов». Дисциплина реализуется кафедрой «№6».

Дисциплина нацелена на формирование у выпускника следующих компетенций:

ОПК-4 «Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности»

ОПК-13 «Способен применять методы контроля качества изделий и объектов в сфере профессиональной деятельности».

Содержание дисциплины охватывает круг вопросов, связанных с нормативными и организационно-техническими основами проведения чемпионатов Агентства развития навыков и профессий «Профессионалы», корпоративного чемпионата Роскосмоса в компетенции «Цифровая метрология», а также демонстрацию лучших практик в области работы на оборудовании, предусмотренном в инфраструктурном листе чемпионатов по координатным измерениям. В процессе изучения дисциплины рассматриваются организация и проведение автоматического контроля качества продукции, который позволяет снизить стоимость контроля, уменьшить число ошибок и длительность контроля, типы, номенклатура, конструктивные и метрологические характеристики средств измерений и измерительных программ для контроля параметров детали сложной формы по требованиям рабочего чертежа, изучается порядок подготовки и проведения измерений с использованием различных контрольно-измерительных средств / измерительных машин.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, самостоятельная работа обучающегося.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единиц, 108 часов.

Язык обучения по дисциплине «русский»

1. Перечень планируемых результатов обучения по дисциплине

1.1. Цели преподавания дисциплины

Целью дисциплины является формирование у студентов знаний в области контроля готовой продукции с целью недопущения выпуска брака, контроля параметров конкретной детали сложной формы по требованиям рабочего чертежа, порядок подготовки и проведения измерений с использованием различных контрольно-измерительных средств / измерительных машин, достоверности результатов измерений для оценки соответствия продукции в процессе производства, осуществлением калибровки средств измерений ручного и автоматического измерительного инструмента — координатно-измерительных, видеоизмерительных машин, профилометров, а также получение практических навыков в вопросах измерения геометрических параметров деталей сложной формы

- 1.2. Дисциплина входит в состав обязательной части образовательной программы высшего образования (далее ОП BO).
- 1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП ВО.

В результате изучения дисциплины обучающийся должен обладать следующими компетенциями или их частями. Компетенции и индикаторы их достижения приведены в таблице 1.

Таблица 1 – Перечень компетенций и индикаторов их достижения

Категория (группа) компетенции	Код и наименование компетенции	Код и наименование индикатора достижения компетенции
Общепрофессиональные компетенции	ОПК-4 Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности	ОПК-4.3.1 знает принципы работы с современными цифровыми и программными средствами, в том числе отечественного производства ОПК-4.У.1 умеет применять современные цифровые и программные средства, в том числе отечественного производства, при решении задач профессиональной деятельности
Общепрофессиональные компетенции	ОПК-13 Способен применять методы контроля качества изделий и объектов в сфере профессиональной деятельности	ОПК-13.3.1 знает методику проведения анализа нарушений технологических процессов в машиностроении ОПК-13.В.1 владеет навыками обработки экспериментальных данных и оценки точности измерений, испытаний и достоверности контроля

2. Место дисциплины в структуре ОП

Дисциплина может базироваться на знаниях, ранее приобретенных обучающимися при изучении следующих дисциплин:

- «Иностранный язык»,
- «Основы проектной деятельности»,
- «Математика. Математический анализ»,
- «Электротехника»,
- «Инженерная и компьютерная графика».

Знания, полученные при изучении материала данной дисциплины, имеют как самостоятельное значение, так и могут использоваться при изучении других дисциплин:

- «Надежность робототехнических систем»,
- «Основы научных исследований»,
- «Исполнительные устройства систем управления»,
- «Теория автоматического управления».

3. Объем и трудоемкость дисциплины

Данные об общем объеме дисциплины, трудоемкости отдельных видов учебной работы по дисциплине (и распределение этой трудоемкости по семестрам) представлены в таблице 2.

Таблица 2 – Объем и трудоемкость дисциплины

Вид учебной работы	Всего	Трудоемкость по семестрам №4	
1	2	3	
Общая трудоемкость дисциплины, 3E/ (час)	3/ 108	3/ 108	
Из них часов практической подготовки			
Аудиторные занятия, всего час.	34	34	
в том числе:			
лекции (Л), (час)	17	17	
практические/семинарские занятия (ПЗ), (час)			
лабораторные работы (ЛР), (час)	17	17	
курсовой проект (работа) (КП, КР), (час)			
экзамен, (час)	36	36	
Самостоятельная работа, всего (час)	38	38	
Вид промежуточной аттестации: зачет, дифф. зачет, экзамен (Зачет, Дифф. зач, Экз.**)	Экз.	Экз.	

Примечание: ** кандидатский экзамен

4. Содержание дисциплины

4.1. Распределение трудоемкости дисциплины по разделам и видам занятий. Разделы, темы дисциплины и их трудоемкость приведены в таблице 3.

Таблица 3 – Разделы, темы дисциплины, их трудоемкость

n	Лекции	П3 (С3)	ЛР	КΠ	CPC
Разделы, темы дисциплины	(час)	(час)	(час)	(час)	(час)
Сем	естр 4				
Раздел 1.					
Движение АРНП и компетенция «Цифровая					
метрология».					
Понятие цифровой метрологии.					
Разбор конкурсного задания компетенции Т64					
«Цифровая метрология».	4		4		5
Цифровая метрология как важнейший элемент					
цифровой трансформации в научно-					
производственной сфере.					
Цели, задачи и элементы цифровой					
метрологии.					

Техническое задание по компетенции. Правила судейства.					
Объективные и субъективные критерии оценки					
Раздел 2.					
Нормирование точности типовых элементов деталей и узлов					
Система допусков и посадок ИСО.					
Требования отечественных и международных					
стандартов по нормированию точности.	4		4		5
Изучение отечественных и международных					
стандартов по нормированию точности.					
Обзор основ взаимозаменяемости типовых					
элементов деталей и узлов: гладкие					
цилиндрические соединения, углы и конусы					
Раздел 3.					
Измерения современными измерительными					
приборами и системами					
Ручной измерительный инструмент.	3		3		8
Контурограф.					
Кругломер.					
Видеоизмерительная машина.					
Раздел 4.					
Трехкоординатные измерения на координатно-					
измерительных машинах.					
Классификация координатно-измерительных	3		3		10
машин.					
Методика проведения измерений и					
калибровки.					
Раздел 5					
Дефекты формы.					
Шереховатость.	3		3		10
Работа с профилометрами и индикаторами	3		3		10
частоты.					
Выводы по курсу					
Итого в семестре:	17		17		38
Итого	17	0	17	0	38

Практическая подготовка заключается в непосредственном выполнении обучающимися определенных трудовых функций, связанных с будущей профессиональной деятельностью.

4.2. Содержание разделов и тем лекционных занятий. Содержание разделов и тем лекционных занятий приведено в таблице 4.

Таблица 4 – Содержание разделов и тем лекционного цикла

Номер раздела	Название и содержание разделов и тем лекционных занятий
Раздел 1. Компетенция	Тема 1.1. Разбор конкурсного задания компетенции Т64
Т64 «Цифровая	«Цифровая метрология». Обзор правил работы на оборудовании
метрология».	и общих ошибок конкурсантов. Цифровая метрология как
	важнейший элемент цифровой трансформации в научно-

производственной сфере. Цели, задачи и элементы цифровой метрологии. Техническое задание по компетенции. Правила судейства. Объективные и субъективные критерии оценки. Специфика конкурсных заданий АРНП. Основные особенности компетенции «Цифровая метрология». 1.2. Ознакомление с каталогом оборудования применением радиоканальной технологией передачи данных с измерительного прибора на ПК. Тема 1.3. Работа с конкурсной документацией компетенции «Цифровая метрология». Тема 1.4 Организация вузовских чемпионатов Содержание конкурсной документации компетенции «Цифровая метрология». Раздел Тема 2.1. Система допусков и посадок ИСО. Система отверстия и система вала. Классы допуска, типовые Нормирование посадки с зазором, натягом и переходные. точности типовых Тема 2.2. Изучение отечественных и международных стандартов элементов деталей и узлов по нормированию точности. Обзор основ взаимозаменяемости типовых элементов деталей и узлов: гладкие цилиндрические соединения, углы и конусы, подшипники качения, резьбовые соединения, зубчатые колеса и передачи, шлицевые и шпоночные соединения. Измерения Тема 3.1. Работа с ручным измерительным инструментом. Раздел 3. современными Классификация измерительного инструмента. Аналоговый и цифровой измерительный инструмент. измерительными приборами Тема 3.2. Работа на видеоизмерительной машине. системами Классификация видеоизмерительных систем. Назначение и метрологические характеристики видеоизмерительных систем. Методика работы с оборудованием. Тема 3.3. Работа на контурографе. Классификация контурографов. Назначение и метрологические характеристики контурографов. Методика работы оборудованием. Тема 3.4. Работа с кругломером. Классификация кругломеров. Назначение и метрологические характеристики кругломеров. Методика работы оборудованием. Тема 3.5 Дефекты формы. Шероховатость и волнистость поверхности. дефектов поверхности. Классификация параметров шероховатости и волнистости поверхности. Тема 3.6 Работа с профилометрами и индикаторами чистоты поверхности Классификация профилометров. Назначение и метрологические профилометров, характеристики методика работы оборудованием. Индикаторы чистоты поверхности. Тема 3.7 Виды ВИМ. Принцип работы и калибровки

Раздел	4.	Тема 4.1. Классификация и технические возможности			
Трехкоординатные		координатно-измерительных машин.			
измерения	на	Основы работы КИМ, принцип работы воздушных			
координатно-		подшипников, механизма поворота щупа и регулировки			
измерительных		движения осей ХҮХ.			
машинах.		Тема 4.2. Методика проведения измерений на координатно-			
		измерительных машинах.			
		Анализ и выбор баз. Разработка стратегии измерений. Основные			
		операции при работе с КИМ.			
Раздел 5		Тема 5.1 Вид профилометров. Стандарты по шереховатости.			
Дефекты формы.		Тема 5.2 Состав приборов для измерения шероховатости, их			
Шереховатость.		калибровка			

4.3. Практические (семинарские) занятия

Темы практических занятий и их трудоемкость приведены в таблице 5.

Таблица 5 – Практические занятия и их трудоемкость

				Из них	$N_{\underline{0}}$
$N_{\underline{0}}$	Темы практических	Формы практических	Трудоемкость,	практической	раздела
Π/Π	занятий	занятий	(час)	подготовки,	дисцип
				(час)	лины
		Учебным планом не про	едусмотрено		
	Bcer	0			

4.4. Лабораторные занятия

Темы лабораторных занятий и их трудоемкость приведены в таблице 6.

Таблица 6 – Лабораторные занятия и их трудоемкость

			Из них	$N_{\underline{0}}$
$N_{\underline{0}}$	Наименование лабораторных работ	Трудоемкость,	практической	раздела
Π/Π	паименование лаоораторных раоот	(час)	подготовки,	дисцип
			(час)	лины
	Семестр	4		
1	Исследование возможностей процедуры	3	1	3,5
	калибровки контурографа и измерение			
	контура. Проведение калибровки и			
	измерение детали на профилометре.			
2	Калибровка ВИМ. Контроль качества	4	1	3
	партии готовой продукции на ВИМ			
3	Проведение калибровки и измерение	3	1	3
	детали на ручном измерительном			
	инструменте. Составление программы			
	измерений в программной среде			
	MeasureLink.			
4	Проведение калибровки и измерение	3	1	3
	детали на кругломере			
5	Проведение калибровки и измерение	4	1	4
	детали на координатно-измерительной			
	машине			
	Всего	17	5	

4.5. Курсовое проектирование/ выполнение курсовой работы Учебным планом не предусмотрено

4.6. Самостоятельная работа обучающихся Виды самостоятельной работы и ее трудоемкость приведены в таблице 7.

Таблица 7 – Виды самостоятельной работы и ее трудоемкость

таолица / Виды самостоятельной расоты и се трудосмкость				
Вид самостоятельной работы	Всего,	Семестр 5,		
Вид самостоятельной расоты	час	час		
1	2	3		
Изучение теоретического материала	12	12		
дисциплины (ТО)	12	12		
Курсовое проектирование (КП, КР)				
Расчетно-графические задания (РГЗ)				
Выполнение реферата (Р)				
Подготовка к текущему контролю	18	18		
успеваемости (ТКУ)	10	10		
Домашнее задание (ДЗ)				
Контрольные работы заочников (КРЗ)				
Подготовка к промежуточной	8	8		
аттестации (ПА)	0	0		
Всего:	38	38		

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) Учебно-методические материалы для самостоятельной работы обучающихся указаны в п.п. 7-11.

6. Перечень печатных и электронных учебных изданий Перечень печатных и электронных учебных изданий приведен в таблице 8.

Таблица 8- Перечень печатных и электронных учебных изданий

Шифр/ URL адрес	Библиографическая ссылка	Количество экземпляров в библиотеке (кроме электронных экземпляров)
https://znaniu m.com/catalog /document?id= 348737	Завистовский, В. Э. Допуски, посадки и технические измерения: учебное пособие / В.Э. Завистовский, С.Э. Завистовский. — Москва: ИНФРА-М, 2020. — 278 с. — (Среднее профессиональное образование) ISBN 978-5-16-015152-6 Текст: электронный.	
	Антохина Ю.А., Окрепилов В.В., Фролова Е.А., Ефремов Н.Ю., Степашкина А.С. Цифровая метроогия. Учебное пособие. РИЦ ГУАП, Санкт-Петербург, 2021.181 с.	10

https://znaniu	Оптические измерения: учебное пособие / А. Н.	
m.com/catalog	Андреев, Е. В. Гаврилов, Г. Г. Ишанин [и др.]	
/document?id=	Москва: Университетская книга; Логос, 2020 416	
<u>367486</u>	с ISBN 978-5-98704-173-2 Текст : электронный.	
https://znaniu	Метрология : учебник / О.Б. Бавыкин, О.Ф.	
m.com/catalog	Вячеславова, Д.Д. Грибанов [и др.]; под общ. ред.	
/product/1541	С.А. Зайцева. — 3-е изд., перераб. и доп. — Москва:	
964	ФОРУМ : ИНФРА-М, 2021. — 522 с.	
	Гущина Е.А. Ефремов Н.Ю., Епифанцев К.В,	10
	Цифровая метрология. (учебно-методическое	
	пособие) Санкт-Петербург: ГУАП, 2022 – 104с.	
	Мишура Т.П., К.В.Епифанцев . Метрологическое	10
	обеспечение измерений при контроле шероховатости	
	(учебно-методическое пособие)Санкт-Петербург:	
	ГУАП, 2022 - 42с.	

7. Перечень электронных образовательных ресурсов информационно-телекоммуникационной сети «Интернет»

Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины приведен в таблице 9.

Таблица 9 — Перечень электронных образовательных ресурсов информационнотелекоммуникационной сети «Интернет»

URL адрес	Наименование
https://worldskills.ru/	Сайт АРПН «Профессионалы»
https://www.youtube.com/ch	Канал «Конструктор Стрим»
annel/UCpump66lw7nBVrO	
ZaoV0x4g	
https://www.youtube.com/us	Канал «Мастерская Виктора Леонтьева»
<u>er/Eksmast</u>	
https://www.vniiftri.ru/	Эталоны Всероссийского НИИ физико-технических
	радиоизмерений
https://docs.cntd.ru/document	Электронный фонд нормативной информации «Техэксперт»
<u>/1200166732</u>	
https://www.mitutoyo.com/	Сайт производителя оборудования

8. Перечень информационных технологий

8.1. Перечень программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине.

Перечень используемого программного обеспечения представлен в таблице 10.

Таблица 10- Перечень программного обеспечения

№ п/п	Наименование
	Не предусмотрено

8.2. Перечень информационно-справочных систем, используемых при осуществлении образовательного процесса по дисциплине

Перечень используемых информационно-справочных систем представлен в таблице 11.

Таблица 11- Перечень информационно-справочных систем

№ п/п	Наименование
	Не предусмотрено

9. Материально-техническая база

Состав материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, представлен в таблице12.

Таблица 12 – Состав материально-технической базы

№ п/п	Наименование составной части материально-технической базы	Номер аудитории (при необходимости)
1	Лаборатория «Цифровой метрологии»	52-50

- 10. Оценочные средства для проведения промежуточной аттестации
- 10.1. Состав оценочных средствдля проведения промежуточной аттестации обучающихся по дисциплине приведен в таблице 13.

Таблица 13 – Состав оценочных средств для проведения промежуточной аттестации

Вид промежуточной аттестации	Перечень оценочных средств
Экзамен	Список вопросов к экзамену;
	Экзаменационные билеты;
	Задачи;
	Тесты.

10.2. В качестве критериев оценки уровня сформированности (освоения) компетенций обучающимися применяется 5-балльная шкала оценки сформированности компетенций, которая приведена в таблице 14. В течение семестра может использоваться 100-балльная шкала модульно-рейтинговой системы Университета, правила использования которой, установлены соответствующим локальным нормативным актом ГУАП.

Таблица 14 – Критерии оценки уровня сформированности компетенций

Оценка компетенции	Характеристика сформированных компетенций	
5-балльная шкала		
«отлично» «зачтено»	 обучающийся глубоко и всесторонне усвоил программный материал; уверенно, логично, последовательно и грамотно его излагает; опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью направления; умело обосновывает и аргументирует выдвигаемые им идеи; делает выводы и обобщения; свободно владеет системой специализированных понятий. 	
«хорошо» «зачтено»	 обучающийся твердо усвоил программный материал, грамотно и по существу излагает его, опираясь на знания основной литературы; не допускает существенных неточностей; увязывает усвоенные знания с практической деятельностью направления; аргументирует научные положения; делает выводы и обобщения; владеет системой специализированных понятий. 	

Оценка компетенции	Характеристика сформированных компетенций	
5-балльная шкала		
«удовлетворительно» «зачтено»	 обучающийся усвоил только основной программный материал, по существу излагает его, опираясь на знания только основной литературы; допускает несущественные ошибки и неточности; испытывает затруднения в практическом применении знаний направления; слабо аргументирует научные положения; затрудняется в формулировании выводов и обобщений; частично владеет системой специализированных понятий. 	
«неудовлетворительно» «не зачтено»	 – обучающийся не усвоил значительной части программного материала; – допускает существенные ошибки и неточности при рассмотрении проблем в конкретном направлении; – испытывает трудности в практическом применении знаний; – не может аргументировать научные положения; – не формулирует выводов и обобщений. 	

10.3. Типовые контрольные задания или иные материалы. Вопросы (задачи) для экзамена представлены в таблице 15.

Таблица 15 – Вопросы (задачи) для экзамена

№ п/п	№ п/п Перечень вопросов (задач) для экзамена	
J 11/11		индикатора
1	Расскажите, что вы узнали о работе воздушного подшипника??	ОПК-4.3.1
	Как работает программа RoundPak	
2	Оцените, что будет, если предварительно не провести	ОПК-13.В.1
	калибровку контурографа?	
3	Расскажите, какие критерии вы используете для оценки	ОПК-13.3.1
	стабильной работы сканирования детали на кругломере?	
4	Оцените, что будет, если предварительно не учитывать систему	ОПК-13.В.1
	вала или систему отверстия при контроле качества изделия и	
	периодически путать эти 2 системы?	
5	Что вы узнали о работе видеоизмерительной системы? Оцените,	ОПК-13.3.1
	какие факторы влияют на точность измерения на ВИМ? Что вы	
	узнали о системах защиты от отказов при калибровке машины?	
6	Оцените ситуацию, что будет, если предварительно не провести	ОПК-13.В.1
	калибровку профилометра. Объясните цель применения	
	настройки трассировки шага дв. Объясните как влияет такой	
	отказ, как некорректная настройка модели щупа при калибровке	
7	Расскажите, какие критерии вы используете для оценки	ОПК-13.3.1
	стабильной работы сканирования детали на контурографе?	
	Какие метрологические отказы негативно влияют на точность	
	измерения контурографа?	
8	Что вы узнали о работе сканирующей системы на КИМ?? Что вы	ОПК-4.3.1
	узнали о метрологических отказах на КИМ?? Как настроить	
	калибровку в программе MCOSMOS?	
9	Расскажите, что будет, если предварительно не провести	ОПК-13.3.1
	калибровку нутромера? Что будет, если возникнет отказ, когда	
	вы без учета трещотки будете продолжать вращать барабан	
	нутромера??	
10	Опишите, какие критерии вы используете для оценки	ОПК-4.3.1
	стабильной работы КИМа? Какие метрологические отказы	

	существуют при включении пневмосети, подведенной к КИМ??	
11	Что вы узнали о работе 3D сканера?? Оцените, какие факторы	ОПК-4.3.1
	влияют на точность измерения?? Какие программы есть для	
	оценки работы прибора?	
12	Проанализируйте, что будет, если предварительно не	ОПК-4.У.1
	подключить рефрижератор на КИМ. Объясните цель	
	применения датчиков температурного расширения	
13	Почему произошли измененеия в стабильной работе	ОПК-4.У.1
	сканирования детали на кругломере? Какие факторы негативно	
	влияют на точность измерения на кругломере? Как работает	
	программа Formtracepak?	
14	Что вы узнали о работе щупа профилометра??	ОПК-13.3.1
15	Что будет, если предварительно не сделать	ОПК-13.3.1
	центрирование/выравнивание на кругломере?	
16	Оцените критерии для оценки погрешности на ручном	ОПК-13.В.1
	измерительном инструменте?	
17	Опишите, что будет, если не проводить регламентный слив	ОПК-13.3.1
	конденсата с компрессора??	
19	Оцените, что будет, если предварительно не учитывать систему	ОПК-13.В.1
	вала или систему отверстия при контроле качества изделия и	
	периодически путать эти 2 системы? Какую создать систему	
	защиты от ошибок, чтобы не путать эти системы между собой??	
20	Расскажите, какие критерии вы используете для оценки	ОПК-13.3.1
	погрешности контурографа? Какие отказы может принести	
	неправильная последовательности сшивки контура??	
21	Верно ли, что все ручные измерительные приборы имеют U-	ОПК-13.В.1
	wave канал??	
22	Объясните цель применения эталона-кольца для нутромера. Как	ОПК-4.3.1
	подключать прибор к программе MeasurLink?	
23	Расскажите, какие критерии оцениваются в программе	ОПК-13.В.1
	MeasurLink?	

Вопросы (задачи) для зачета / дифф. зачета представлены в таблице 16.

Таблица 16 – Вопросы (задачи) для зачета / дифф. зачета

№ п/п	Перечень вопросов (задач) для зачета / дифф. зачета	Код инликатора
	Учебным планом не предусмотрено	индикатора

Перечень тем для курсового проектирования/выполнения курсовой работы представлены в таблице 17.

Таблица 17 – Перечень тем для курсового проектирования/выполнения курсовой работы

№ п/п	Примерный перечень тем для курсового проектирования/выполнения курсовой работы
	Учебным планом не предусмотрено

Вопросы для проведения промежуточной аттестации в виде тестирования представлены в таблице 18.

Таблица 18 – Примерный перечень вопросов для тестов

№ п/п	Примерный перечень вопросов для тестов	Код
	примерным перечень вопросов для тестов	индикатора

1	//Начало вопроса: ВопрМножВыбор Верно ли, что характер соединения деталей, определяемый величиной получающихся зазоров или натягов называется: { =посадкой ~сопряжением ~основным отклонением }	ОПК-13.3.1
2	//Начало вопроса: ВопрМножВыбор Расскажите, что будет, если не отцентрировать кругломер { = не будет возможности провести измерение с минимальной погрешностью ~выключится прибор ~отключится воздух ~не получится сохранить протокол }	ОПК-13.3.1
3	//Начало вопроса: ВопрМножВыбор Проанализируйте, какая программа используются для кругломера? { =RoundPAk ~MeasurLink ~AutoCAD }	ОПК-4.У.1
4	//Начало вопроса: ВопрМножВыбор Найдите значение посадки: «Диаметр отверстия значительно меньше диаметра вала — посадка» { = с натягом ~с зазором ~переходная }	ОПК-13.3.1
5	//Начало вопроса: ВопрМножВыбор Найдите вид посадки 10H14/k5: «Диаметр отверстия 10 с учетом квалитетов»: { = с зазором ~ с натягом ~ переходная }	ОПК-4.3.1
6	//Начало вопроса: ВопрМножВыбор Расскажите своими словами «Абсолютная величина алгебраической разности между верхним и нижним отклонениями называется»: { =ответ 1 и 2 верны, так поле допуска - это вариация между отклонениями ~полем допуска ~допуском }	ОПК-13.В.1
7	//Начало вопроса: ВопрМножВыбор Согласны ли вы, что взаимосвязь между точностью изготовления и ценой изделия естьи она: { =прямопропорциональна: чем выше точность, выше цена ~ обратнопропорциональна: чем выше точность, ниже цена ~взаимосвязи нет }	ОПК-13.В.1

8		ОПК-13.3.1
	//Начало вопроса: ВопрМножВыбор Обьясните, есть ли разница между штангенрейсмасом и штангенциркулем: {	
	=ш.циркуль измеряет длину, ш.рейсмас измеряет высоту, последний строго в вертикальном положении ~разницы нет, приборы одинаковы ~разница в их стоимости	
9	//Начало вопроса: ВопрМножВыбор Верхнее предельное отклонение в системе отверстия обозначается: { =ES ~Ew ~±ES	ОПК-13.В.1
10	//Начало вопроса: ВопрМножВыбор Как можно объяснить, что металлический щуп передаёт профилометру на экран сигналы, преобразуемые в профилограмму: {	ОПК-13.3.1
11	//Начало вопроса: ВопрМножВыбор Обьясните, есть ли разница между системой отверстия и системой вала: { =в системе вала все охватываемые поверхности ~в системе отверстия все охватываемые поверхности ~открытый размер — есть система вала }	ОПК-13.3.1
12	//Начало вопроса: ВопрМножВыбор Обозначенный размер на рисунке представлен: { =в системе отверстия ~в системе вала ~открытый размер }	ОПК-13.В.1
13	//Начало вопроса: ВопрМножВыбор Найти значение поля допуска если ES=+0,5, EI=-0,4 :{ =0,9 ~0,1 ~0,4 }	ОПК-13.3.1
14	//Начало вопроса: ВопрМножВыбор Обьясните, есть ли разница между мультисенсорной ВИМ и стандартной ВИМ :{ =мультисенсорная ВИМ помимо камеры обладает контактным щупом ~ мультисенсорная ВИМ помимо камеры обладает воздушными подшипниками ~это два идентичных типа ВИМ	ОПК-13.3.1

	~мультисенсорная ВИМ обладает возможностью измерять твердость детали }	
15	//Начало вопроса: ВопрМножВыбор Предложите альтернативу глубиномеру из числа ручного измерительного инструмента: { =Штангенциркуль с глубиномером, при условии удовлетворения точностным требованиям ~Нутромер ~Профилометр -Микрометр }	ОПК-13.В.1
16	//Начало вопроса: ВопрМножВыбор Назовите систему, в которой представлен размер Ø100 h6: { =в системе вала ~в системе отверстия ~все ответы верны }	ОПК-13.3.1
17	//Начало вопроса: ВопрМножВыбор Объясните цель применения прибора «Surftest»: { =Получение профилограммы ~Получение осциллограммы ~Получение круглограмы }	ОПК-13.3.1
18	//Начало вопроса: ВопрМножВыбор Какие возможные изменения могут произойти в приборостроительной отрасли для профилометров: { =Появится больше импортозамещенных приборов ~Ничего не изменится ~В будущем профилометры будут не востребованы }	ОПК-13.В.1
19	//Начало вопроса: ВопрМножВыбор Почему нутрометр нужно каждый раз калибровать {	ОПК-13.3.1
20	//Начало вопроса: ВопрМножВыбор Назовите, какой калибр обозначен? { =Калибр-скоба ~Калибр - кольцо ~Калибр регулируемый }	ОПК-13.3.1
21	//Начало вопроса: ВопрМножВыбор Обьясните цель применения калибра для контурографа { =Необходим для введеия поправок ~Нужен формально,чтоб пройти процедуру поверки ~Калибр не нужен }	ОПК-13.В.1
22	//Начало вопроса: ВопрМножВыбор Посмотрите на чертеж. Что значит определение «CZ»? { =Общее поле допуска	ОПК-13.3.1

	~Зависимый допуск ~Правило прилегания «Е»	
	}	
23	//Начало вопроса: ВопрМножВыбор	ОПК-13.3.1
	Оцените задачу, на чертеже нужно указать точность проточки в	
	виде линии, как это обозначить??{	
	=Элемент-линия LE	
	~Смещенное поле допуска	
	~Зависимый допуск	
	}	

Перечень тем контрольных работ по дисциплине обучающихся заочной формы обучения, представлены в таблице 19.

Таблица 19 – Перечень контрольных работ

№ п/п	•	Пе	еречень контрольных работ
	Не предусмотрено		

10.4. Методические материалы, определяющие процедуры оценивания индикаторов, характеризующих этапы формирования компетенций, содержатся в локальных нормативных актах ГУАП, регламентирующих порядок и процедуру проведения текущего контроля успеваемости и промежуточной аттестации обучающихся ГУАП.

11. Методические указания для обучающихся по освоению дисциплины

11.1. Методические указания для обучающихся по освоению лекционного материала

Основное назначение лекционного материала — логически стройное, системное, глубокое и ясное изложение учебного материала. Назначение современной лекции в рамках дисциплины не в том, чтобы получить всю информацию по теме, а в освоении фундаментальных проблем дисциплины, методов научного познания, новейших достижений научной мысли. В учебном процессе лекция выполняет методологическую, организационную и информационную функции. Лекция раскрывает понятийный аппарат конкретной области знания, её проблемы, дает цельное представление о дисциплине, показывает взаимосвязь с другими дисциплинами.

Планируемые результаты при освоении обучающимися лекционного материала:

- получение современных, целостных, взаимосвязанных знаний, уровень которых определяется целевой установкой к каждой конкретной теме;
 - получение опыта творческой работы совместно с преподавателем;
- развитие профессионально-деловых качеств, любви к предмету и самостоятельного творческого мышления.
- появление необходимого интереса, необходимого для самостоятельной работы;
- получение знаний о современном уровне развития науки и техники и о прогнозе их развития на ближайшие годы;
- научиться методически обрабатывать материал (выделять главные мысли и положения, приходить к конкретным выводам, повторять их в различных формулировках);
 - получение точного понимания всех необходимых терминов и понятий.

Лекционный материал может сопровождаться демонстрацией слайдов и использованием раздаточного материала при проведении коротких дискуссий об особенностях применения отдельных тематик по дисциплине.

Структура предоставления лекционного материала:

– лекции согласно разделам (табл.3) и темам (табл.4).

Учебное пособие по освоению лекционного материала имеется в изданном виде Гущина Е.А. Ефремов Н.Ю., Епифанцев К.В. Цифровая метрология. (учебнометодическое пособие) Санкт-Петербург: ГУАП, 2022 – 104с.

Материалы для освоения имеются в электронном виде

- Курс лекций и практик в системе LMS https://lms.guap.ru/new/course/view.php?id=2029
- 11.2. Методические указания для обучающихся по выполнению лабораторных работ

В ходе выполнения лабораторных работ обучающийся должен углубить и В ходе выполнения лабораторных работ обучающийся должен углубить и закрепить знания, практические навыки, овладеть современной методикой и техникой эксперимента в соответствии с квалификационной характеристикой обучающегося. Выполнение лабораторных работ состоит из экспериментально-практической, расчетно-аналитической частей и контрольных мероприятий.

Выполнение лабораторных работ обучающимся является неотъемлемой частью изучения дисциплины, определяемой учебным планом, и относится к средствам, обеспечивающим решение следующих основных задач обучающегося:

- приобретение навыков исследования процессов, явлений и объектов, изучаемых в рамках данной дисциплины;
- закрепление, развитие и детализация теоретических знаний, полученных на лекциях;
 - получение новой информации по изучаемой дисциплине;
- приобретение навыков самостоятельной работы с лабораторным оборудованием и приборами.

Задание и требования к проведению лабораторных работ

Задание к выполнению лабораторной работы выдается преподавателем в начале занятия в соответствии с планом занятий. Темы лабораторных работ приведены в табл. 6 данной программы.

Выполнение лабораторной работы состоит из трех этапов:

- аналитического;
- расчетно-графического;
- контрольного в виде защиты отчета.

Структура и форма отчета о лабораторной работе

Отчет о лабораторной работе должен содержать: титульный лист, основную часть, выводы по результатам исследований.

На титульном листе должны быть указаны: название дисциплины, название лабораторной работы, фамилия и инициалы преподавателя, фамилия и инициалы студента, номер его учебной группы и дата защиты работы.

Основная часть должна содержать задание, результаты экспериментальнопрактической работы, расчетно-аналитические материалы.

Выводы по проделанной работе должны содержать результаты экспериментов, проведенных студентами на стендах, их рефлексированные выводы по значимости эксперимента, анализу видов и последствий потенциальных погрешностей, которые могли влиять на «чистоту эксперимента». Также вывод должен содержать ответ на вопрос –

какие основные наиболее сложные элементы методики им было необходимо выполнить и с чем данная сложность была связана.

Требования к оформлению отчета о лабораторной работе

Титульный лист отчета должен соответствовать шаблону, приведенному в секторе нормативной документации ГУАП https://guap.ru/regdocs/docs/uch

Оформление основной части отчета должно быть оформлено в соответствии с ГОСТ 7.32-2017. Требования приведены в секторе нормативной документации ГУАП https://guap.ru/regdocs/docs/uch

При формировании списка источников студентам необходимо руководствоваться требованиями стандарта ГОСТ 7.0.100-2018. Примеры оформления списка источников приведены в секторе нормативной документации ГУАП. https://guap.ru/regdocs/docs/uch

Методические указания по выполнению лабораторных работ имеются в изданном виде

Гущина Е.А. Ефремов Н.Ю., Епифанцев К.В,

Цифровая метрология. (учебно-методическое пособие) Санкт-Петербург: ГУАП, 2022-104c.

Курс лабораторных работ представлен в системе LMS https://lms.guap.ru/new/course/view.php?id=2029

11.3. Методические указания для обучающихся по прохождению самостоятельной работы

В ходе выполнения самостоятельной работы, обучающийся выполняет работу по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

В процессе выполнения самостоятельной работы, у обучающегося формируется целесообразное планирование рабочего времени, которое позволяет им развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, помогает получить навыки повышения профессионального уровня.

Методическими материалами, направляющими самостоятельную работу обучающихсяявляются:

- учебно-методический материал по дисциплине;
- методические указания по выполнению контрольных работ (для обучающихся по заочной форме обучения).
- 1. Подготовка лекционного материала по темам, представленным в таблице 3, и по темам, отмеченных * в соответствии с литературой, представленной в таблице 9.
 - 2. Подготовка к контрольным работам в соответствии с методическими указаниями В течение семестры студенты
 - защищают лабораторные работы (5 шт);
 - выполняют тестирования по материалам лекции в среде LMS.

Для текущего контроля успеваемости используются тесты, приведенные в таблице 18.

11.4. Методические указания для обучающихся по прохождению текущего контроля успеваемости.

В течение семестра студенты

- решают задания в формате тестирования;
- защищают лабораторные работы (5 шт)

Для текущего контроля успеваемости необходимо представить не менее 1 протокола о лабораторной работе после 4-х часов проведенных лабораторных работ.

11.5. Методические указания для обучающихся по прохождению промежуточной аттестации.

Промежуточная аттестация обучающихся предусматривает оценивание промежуточных и окончательных результатов обучения по дисциплине. Она включает в себя:

– экзамен – форма оценки знаний, полученных обучающимся в процессе изучения всей дисциплины или ее части, навыков самостоятельной работы, способности применять их для решения практических задач. Экзамен, как правило, проводится в период экзаменационной сессии и завершается аттестационной оценкой «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Лист внесения изменений в рабочую программу дисциплины

Дата внесения изменений и дополнений. Подпись внесшего изменения	Содержание изменений и дополнений	Дата и № протокола заседания кафедры	Подпись зав. кафедрой